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The present study examines the Kaniadakis holographic dark energy in the context of the Brans-Dicke scalar-tensor theory of gravity 
(Phys. Rev. 124: 925, 1961). This paper focuses on a background with an anisotropic Kantowski-Sachs space-time that is homogeneous 
in space. Under these circumstances, the Brans-Dicke scalar field denoted as 𝜙 is used as a function of the average scale factor 𝑎(𝑡). 
Using a graphical model to analyze the model's physical behaviour is part of the inquiry into the Universe's accelerating expansion. 
We evaluate the cosmological parameters such as the scalar field, the equation of state parameter and the deceleration parameter. 
Furthermore, the models' stability is assessed through the application of the squared sound speed (𝑣௦ଶ). For our models, we derive the 
widely accepted cosmic planes such as 𝜔௞ௗ௘ − 𝜔௞ௗ௘ᇱ  and statefinder (r,s) planes. It is found that the scalar field is a decreasing function 
of cosmic time and hence the corresponding kinetic energy increases. The deceleration parameter exhibits accelerated expansion of the 
Universe. It is mentioned here that the equation of state parameter lies in the phantom region and finally attains the ΛCDM model. Also, 
the 𝜔௞ௗ௘ − 𝜔௞ௗ௘ᇱ  plane provides freezing and thawing regions. In addition, the statefinder plane also corresponds to the ΛCDM model. 
Finally, it is remarked that all the above constraints of the cosmological parameters show consistency with Planck observational data.  
Keywords: Scalar-tensor theory; Scalar field; Holographic dark energy; Kantowski-Sachs model 
PACS: 98.80.-k, 95.36.+x 

1. INTRODUCTION
Recent observational data on the history of cosmic expansion have enabled the discovery of the universe's 

accelerating expansion conceivable, as provided in the works of Perlmutter et al. [1] and Riess et al. [2]. As a mysterious 
and intensely pressured force, dark energy (DE) is thought to be the fundamental reason. Nevertheless, the traits and 
behaviours of DE remain a mystery. Two main approaches are available to tackle the problem of cosmic acceleration: the 
first one includes introducing a DE component into the Universe and studying its dynamics. (Caldwell [3]; Padmanabhan 
[4]; Santhi et al. [5], The alternative, however, involves investigating changes to Einstein's theory of gravitation and 
viewing them as a flaw in general relativity. 

Among dynamical differential equation models, the holographic DE (HDE) model has become an important 
instrument to study the mystery of DE in recent years. Based on the quantum characteristics of black holes (BHs), which 
have been thoroughly studied in the literature to analyze the idea of quantum gravity, this study's research was carried 
out. [6]. The vacuum energy Λ of a system of size L should not be greater than the mass of a BH of the same size, according 
to the holographic principle, a hypothesis in quantum field theory. Within the context of quantum field theory, this idea 
is essential to comprehend the genesis of BHs. The study carried out established the formal energy density of HDE by 
Cohen et al. [7]. The equation provided may be rewritten more academically as follows:  𝜌௞ௗ௘ = 3𝑑ଶ𝑚௣ଶ𝐿ିଶ. (1)

In this case, the Planck mass reduction is represented by 𝑚௣, the numerical constant is represented by 3𝑑ଶ, and the 
IR cutoff is indicated as 𝐿. The literature has researched several infrared cutoffs in great detail, including the Hubble 
horizon 𝐻ିଵ, the event horizon, the particle horizon, the conformal universe age, the Ricci scalar radius, and the 
Granda-Oliveros cutoff [8]. Examining the current acceleration of the universe is made possible by the use of HDE models 
with various IR cutoffs, offering insights into the transition redshift value that signifies the change from early deceleration 
(𝑞 > 0) to present acceleration (𝑞 < 0). This research shows that the transition redshift value aligns with current 
observational data. Moreover, it could offer a possible resolution to the puzzle of cosmic coincidence, which concerns 
the puzzling topic of why, in the current state of the universe, the energy densities originating from dark matter and DE 
display a constant ratio. A respectable degree of agreement between the HDE model and observational data has been 
demonstrated by numerous investigations [9]. Nojiri and Odintsov [10] presented a methodology in their work that uses 
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phantom cosmology and generalized HDE to try and reconcile the early and late epochs of the universe. In research by 
Ghaffari [11], the HDE model was examined to determine whether the generalized laws of thermodynamics held in the 
context of the D-dimensional Kaluza-Klein-type FRW world. Various cosmological components of new and updated 
HDE models have been investigated by Aditya and Reddy [12]. As a generic entropy metric, Kaniadakis statistics have 
recently been used to examine various gravitational and cosmological implications [13]. The generalized 𝒦-entropy 
(Kaniadakis), a single free parameter entropy of a BH is obtained as [14]  

 𝑆𝒦 = ଵ𝒦 𝑠𝑖𝑛ℎ(𝒦𝑆஻ு), (2) 

where 𝒦 is an unknown parameter. 
Consequently, a new model of DE known as Kaniadakis Holographic DE (KHDE) [14] is presented utilizing this 

entropy and holographic DE theory, which exposes considerable properties. Jawad and Sultan [15] have discussed KHDE 
models in different theories of gravity. As Tsallis and Kaniadakis, Sadeghi et al. [16] have examined the dynamic 
structures of HDE within the context of the Brans-Dicke theory of gravity. 

Many entropy-related formalisms have been applied recently to the development and examination of cosmological 
models. Several new HDE models have been put out, such as the Renyi HDE (RHDE) model [17], the Tsallis HDE 
(THDE) [18], and the Sharma-Mittal HDE (SMHDE) [19]. Conversely, in the case of non-interacting cosmic systems, 
the SMHDE theory exhibits classical stability. The RHDE theory shows better stability when viewed individually and is 
predicated on the idea that cosmic sectors are not connected. The Tsallis, Renyi, and Sharma-Mittal entropies are 
investigated in the work by Younas et al. [20] in a flat Friedmann-Robertson-Walker (FRW) universe with Chern-Simons 
modified gravity. In the THDE, Aditya et al. [21] examined the empirical constraints on the logarithmic Brans-Dicke 
theory of gravity. The authors Prasanthi and Aditya have conducted a study on the observational restrictions in RHDE 
[22, 23]. In their study, Sharma and Dubey [23] examined the SMHDE models using several diagnostic methods. In light 
of the aforementioned research, we have chosen to examine the HDE using a novel entropy formalism known as the 
SMHDE, with the Hubble horizon serving as the infrared cutoffs in our investigation. 

The statistical isotropy of the universe is called into question discovery of large variances in cosmic microwave 
background radiation at wide angles. Even in the absence of inflation, the universe may have some anisotropic geometry 
within the framework of cosmological theories. Several researchers have recently become quite interested in investigating 
different cosmological models with anisotropic backdrops. Within the context of the Brans-Dicke theory of gravity [25], 
this study attempts to explore the Kantowski-Sachs universe taking into account the effects of pressureless matter and 
KHDE. The suggested work plan's outline is given below. Both the derivation of field equations and their solutions are 
covered in Section 2. Section 3 examines the model's physical properties. Section 4 contains the comparison of our work 
with the observational data. The paper's conclusions and a final summary are presented in the last section. 

 
2. FIELD EQUATIONS AND THE MODEL 

There have been several gravitational theories put forth as alternatives to Einstein's general theory of gravity. But 
the most effective substitute for Einstein's theory is thought to be the scalar-tensor theory created by Brans and Dicke 
[25]. Assume that the universe is composed of DE with a density of 𝜌௞ௗ௘ and pressure-free matter with an energy density 
of 𝜌௠. For the combined scalar and tenor fields, the Brans-Dicke field equations are thus provided in this instance by 

 𝑅௜௝ − ଵଶ 𝑅𝑔௜௝ = −଼గథ ൫𝑇௜௝ + 𝑇௜௝൯ − 𝜙ିଵ൫𝜙௜;௝ − 𝑔௜௝𝜙;ఈ,ఈ൯ − 𝑤𝜙ିଶ ቀ𝜙,௜𝜙,௝ − ଵଶ 𝑔௜௝𝜙,ఈ𝜙,ఈቁ, (3) 

 𝜙;ఈ,ఈ = ଼గ(ଷାଶ௪) (𝑇 + 𝑇), (4) 

 and the energy conservation equation is  

 (𝑇௜௝ + 𝑇௜௝);௝ = 0, (5) 

which is the result of field equations (3) and (4). In this case, 𝑅 is a Ricci scalar, 𝑅௜௝ is a Ricci tensor, and 𝑤 is a 
dimensionless coupling constant. 𝑇௜௝ and 𝑇௜௝ are energy-momentum tensors for pressure-less matter and KHDE, which 
are defined as  

 𝑇௜௝ = 𝜌௠𝑢௜𝑢௝;   𝑇௜௝ = (𝜌௞ௗ௘ + 𝑝௞ௗ௘)𝑢௜𝑢௝ − 𝑝௞ௗ௘𝑔௜௝, (6) 

here 𝑝௞ௗ௘ and 𝜌௞ௗ௘ are the pressure and energy density of DE respectively and 𝜌௠ is the energy density of matter. The 
equation of state (𝜔௞ௗ௘) parameter of DE is defined as 𝜔௞ௗ௘ = ௣ೖ೏೐ఘೖ೏೐.  

We consider the Kantowski-Sachs space-time in the following form  

 𝑑𝑠ଶ = 𝑑𝑡ଶ − 𝐴ଶ𝑑𝑟ଶ − 𝐵ଶ(𝑑𝜓ଶ + 𝑠𝑖𝑛ଶ𝜓𝑑𝜑ଶ), (7) 
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where 𝐴 and 𝐵 are metric potentials and only cosmic time 𝑡 functions. The Kantowski-Sachs class of metrics describes 
anisotropic and homogenous yet expanding cosmologies. They also provide models for estimating and comparing the 
consequences of anisotropies with the FRW class of cosmologies (Thorne [26]). For the Kantowski-Sachs model (7), we 
define the main parameters:  
Hubble’s parameter of the model 

 𝐻 = ௔ሶ௔  (8) 

where 

 𝑎(𝑡) = (𝐴𝐵ଶ)ଵ/ଷ (9) 

is the average scale factor. Anisotropic parameter 𝐴௛ is given by  

 𝐴௛ = ଵଷ∑ଷ௜ୀଵ ቀு೔ିுு ቁଶ, (10) 

where 𝐻ଵ = ஺ሶ஺ ,𝐻ଶ = 𝐻ଷ = ஻ሶ஻ are directional Hubble’s parameters, which express the expansion rates of the universe in 
the directions of 𝑥, 𝑦 and 𝑧 respectively. 

Expansion scalar and shear scalar are defined as  

 𝜃 = 𝑢;௜௜ = ஺ሶ஺ + 2 ஻ሶ஻, (11) 

    𝜎ଶ = ଵଶ 𝜎௜௝𝜎௜௝ = ଵଷ ቀ஺ሶ஺ − ஻ሶ஻ቁଶ, (12) 

where 𝜎௜௝ is the shear tensor, 𝐴௛ is the deviation from isotropic expansion and the universe expands isotropically if 𝐴௛ = 0. 
The deceleration parameter is given by 
 𝑞 = ௗௗ௧ ቀଵுቁ − 1. (13) 

If −1 ≤ 𝑞 < 0, the universe expands at an accelerating rate, decelerating volumetric expansion if 𝑞 > 0. If 𝑞 = 0, 
the universe expands at a constant rate. 

The field equations (3)-(5) for the metric (7) produce the following equations when adopting co-moving coordinates:  

 2 ஻ሷ஻ + ஻ሶ మ஻మ + ଵ஻మ + ௪ଶ థሶ మథమ + థሷథ + 2 ஻ሶ థሶ஻థ = −ఠೖ೏೐ఘೖ೏೐థ , (14) 

 ஺ሷ஺ + ஻ሷ஻ + ஺ሶ஻ሶ஺஻ + ௪ଶ థሶ మథమ + థሷథ + థሶథ ቀ஺ሶ஺ + ஻ሶ஻ቁ = −ఠೖ೏೐ఘೖ೏೐థ , (15) 

 2 ஺ሶ஻ሶ஺஻ + ஻ሶ మ஻మ + ଵ஻మ − ௪ଶ థሶ మథమ + 3 థሶథ 𝐻 = ఘ೘ାఘೖ೏೐థ , (16) 

 𝜙ሷ + 3𝜙ሶ𝐻 = ଼గథ(ଷାଶ௪) (𝜌௞ௗ௘ − 3𝑝௞ௗ௘ + 𝜌௠), (17) 

and the conservation equation is given by  

 𝜌ሶ௠ + 𝜌ሶ௞ௗ௘ + 3𝐻(𝜌௠ + (1 + 𝜔௞ௗ௘)𝜌௞ௗ௘) = 0. (18) 

We assume that there is minimal interaction between the DE, 𝑇௜௝ = 0 and that the pressure-less matter component 
is minimally interacting, 𝑇௜௝ = 0, due to the energy conservation equation (5). Consequently, two additive conserved 
components have been extracted from the energy conservation equation (5): maintenance of the DE's energy-momentum 
tensor 

 𝜌ሶ௞ௗ௘ + 3𝐻(1 + 𝜔௞ௗ௘)𝜌௞ௗ௘ = 0, (19) 

and the conservation of the energy-momentum tensor of the pressure-less matter  

 𝜌ሶ௠ + 3𝐻𝜌௠ = 0, (20) 

here the overhead dot represents ordinary differentiation for cosmic time 𝑡.  𝐴, 𝐵, 𝜙, 𝜔௞ௗ௘, 𝜌௞ௗ௘, and 𝜌௠ are six unknown variables in the four equations (14)-(17). As a result, some extra 
constraints are required to solve the above system of equations. We build our computations on the following physically 
acceptable assumptions: 

The shear scalar (𝜎) is regarded as proportionate to the expansion scalar (𝜃). As a result, the metric potentials 
are related to one another. (Collins et al. [27]), i.e.,  
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 𝐴 = 𝐵௞. (21) 

where 𝑘 > 1 is a constant that accounts for space-time anisotropy (we have taken the integration constant as a unity). 
The physical foundation for this assumption can be found in observations of the velocity redshift relation for extragalactic 
sources, which indicate that the Hubble expansion of the universe may achieve isotropy when 𝜎/𝜃 is constant. 

In addition, it is common in the literature to employ a power-law relationship between scalar field 𝜙 and average 
scale factor 𝑎(𝑡) of the form (Johri and Sudharsan [28]; Johri and Desikan [29]) 𝜙 ∝ ሾ𝑎(𝑡)ሿ௡ where 𝑛 denotes a power 
index. Many authors have looked into different aspects of this type of scalar field 𝜙. Given the physical significance 
of the preceding relationship, we employ the following assumption to reduce the mathematical complexity of the system 

 𝜙(𝑡) = 𝜙଴[𝑎(𝑡)]௡, (22) 

where 𝜙଴ is the proportionality constant.  
From Eqs. (14), (15), (21) and (22), we obtain the metric potentials as  

 𝐴 = ቆ ௧మ௞ିଵ − 𝐴ଵ(𝑘 − 1)ቇೖమ, (23) 

 𝐵 = ට ௧మ௞ିଵ − 𝐴ଵ(𝑘 − 1), (24) 

where 𝐴ଵ is integrating constant and 𝑛(𝑘 + 2) + 3𝑘 = 0. Now, the scalar field 𝜙 calculated as  

 𝜙(𝑡) = 𝜙଴ ቆ ௧మ௞ିଵ − 𝐴ଵ(𝑘 − 1)ቇ భల ೙(ೖశమ)
. (25) 

 Now the metric (7) can be rewritten as  

 𝑑𝑠ଶ = 𝑑𝑡ଶ − ቆ ௧మ௞ିଵ − 𝐴ଵ(𝑘 − 1)ቇ௞ 𝑑𝑟ଶ − ቆ ௧మ௞ିଵ − 𝐴ଵ(𝑘 − 1)ቇ (𝑑𝜓ଶ + 𝑠𝑖𝑛ଶ𝜓𝑑𝜑ଶ). (26) 

 
3.  COSMOLOGICAL PARAMETERS AND DISCUSSION 

Equation (26), in conjunction with equation (25) illustrates the Kantowski-Sachs universe with Kaniadakis HDE 
in Brans-Dicke's theory of gravity. The following geometrical and physical factors are crucial to the debate of cosmology. 
The spatial volume (𝑉) and average scale factor (𝑎(𝑡)) of the model are given by  

 𝑉(𝑡) = [𝑎(𝑡)]ଷ = ቆ ௧మ௞ିଵ − 𝐴ଵ(𝑘 − 1)ቇೖశమమ . (27) 

Mean Hubble’s parameter (𝐻) and expansion scalar (𝜃) are obtained as  

 𝐻 = ఏଷ = (௞ାଶ)௧ଷ௧మିଷ஺భ(௞ିଵ)మ. (28) 

The shear scalar (𝜎ଶ) and anisotropic parameter (𝐴௛) are  

 𝜎ଶ = (௞ିଵ)మ௧మଷ(௧మି ஺భ(௞ିଵ)మ)మ, (29) 

 𝐴௛ = ଶ(௞ିଵ)మ(௞ାଶ)మ . (30) 

Eq. (26) indicates the spatially homogeneous and anisotropic Kantowski - Sachs KHDE cosmological model in the 
Brans-Dicke theory of gravity. There is no initial singularity in our model, i.e. at 𝑡 = 0. From a finite volume when 𝑡 = 0, 
the model’s spatial volume increases with time. This indicates that the model's spatial expansion. At 𝑡 = 0, the parameters 𝐻(𝑡), 𝜃(𝑡), and 𝜎ଶ are finite and tend to infinity as 𝑡 → ∞. The mean anisotropic parameter 𝐴௛ represents the deviation 
from isotropic expansion. It establishes the anisotropic or isotropic nature of the model. When 𝑘 = 1, 𝐴௛ equals 0. In this 
instance, the expansion of the universe is isotropic. In addition, if 𝑉 → ∞ and 𝐴௛ = 0 as 𝑡 → ∞, The model steadily gets 
closer to isotropy. 

According to the HDE, if DE is meant to regulate the universe's current, accelerated expansion, then, taking into 
account the Kaniadakis BH entropy equation (2), the total vacuum energy contained in a box of a certain size 𝐿ଷ must not 
surpass the energy of a BH of the same mass. Next, one obtains 
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 Λସ ≡ 𝜌௞ௗ௘ ∝ 𝒮𝒦ℒర , (31) 

for the vacuum energy 𝜌௞ௗ௘. Now, taking the Hubble horizon of the universe as the IR cutoff  (i.e., 𝐿 = ଵு ,𝐴 = ସగுమ),  
 𝜌௞ௗ௘ = ଷ𝒞మுర𝒦 𝑠𝑖𝑛ℎ ቀగ𝒦ுమቁ, (32) 

where the constant 𝒞ଶ is unknown, 𝒦 belongs to a set of real numbers, and 𝐻 = ௔ሶ௔ is the Hubble parameter. Now, it's 

evident that we have 𝜌௞ௗ௘ → ଷ𝒞మுర𝒦  (the well-known Bekenstein entropy-based HDE) when 𝑘 → 0. Considering the 
pressureless fluid (with energy density 𝜌௠) and the DE candidate (with pressure 𝑝௞ௗ௘ and density 𝜌௞ௗ௘). The fractional 
energy densities of matter (Ω௠) and DE (Ω௞ௗ௘) are given as  

 Ω௠ = ఘ೘ఘ೎ೝ = ఘ೘ଷுమ         and        Ω௞ௗ௘ = ఘೖ೏೐ఘ೎ೝ = 𝒞మுమ𝒦 𝑠𝑖𝑛ℎ ቀగ𝒦ுమቁ, (33) 𝜌௖௥ is the critical energy density. The above equation can be written using Eq. (28) as  

 𝜌௞ௗ௘(𝑡) = ଷௗమ(௞ାଶ)ర௧ర(ଷ௧మିଷ஺భ(௞ିଵ)మ)రఋ sinh ൬గ ఋ ൫ଷ௧మିଷ஺భ(௞ିଵ)మ൯మ(௞ାଶ)మ௧మ ൰. (34) 

From Eqs. (14) and (27), we get the energy density of matter as  

 𝜌௠(𝑡) = 𝜌଴ ቂ ௧మ௞ିଵ − 𝐴ଵ(𝑘 − 1)ቃష(ೖశమ)మ . (35) 

Using Eqs. (23)-(25) in Eq. (14), we get the EoS parameter as  

 𝜔௞ௗ௘(𝑡) = −థబ൫ଷ௧మିଷ஺భ(௞ିଵ)మ൯రఋଷௗమ(௞ାଶ)ర௧ర ቆ ௧మ௞ିଵ − 𝐴ଵ(𝑘 − 1)ቇ భల ೙(ೖశమ) ቊ ିଷ஺భ(௞ିଵ)మ(௧మି஺భ(௞ିଵ)మ)మ + ௞(௞ିଵ)ቀ௧మି஺భ(௞ିଵ)ቁ(௧మି஺భ(௞ିଵ)మ)మ + (௞ାଵ)௧మ(௧మି஺భ(௞ିଵ)మ)మ + ௪௡మ(௞ାଶ)మ௧మ(ଷ௧మିଷ஺భ(௞ିଵ)మ)మ +  ଶ௡(௞ାଶ)൫௡(௞ାଶ)௧మିଷ௧మିଷ஺భ(௞ିଵ)మ൯ଽ(௧మି஺భ(௞ିଵ)మ)మ + ௡(௞ାଷ)(௞ାଶ)௧మଷ(௧మି ஺భ(௞ିଵ))మ 
                                  + ቆ ௧మ௞ିଵ − 𝐴ଵ(𝑘 − 1)ቇିଵൡ ቆsinh ቀగ ఋ (ଷ௧మିଷ஺భ(௞ିଵ)మ)మ(௞ାଶ)మ௧మ ቁቇିଵ. (36) 

Scalar field: We plotted a scalar field's behaviour against cosmic time for a range of parameter values. 𝑘 in Fig. 1. One 
way to conceptualize the scalar field is as a positive, declining function that ultimately approaches a minimum positive 
value. Because of the scalar field's diminishing behaviour, the corresponding kinetic energy rises. This behaviour closely 
resembles that of scalar fields in DE models that have been developed by several writers and published in literature 
(Aditya and Reddy [30]). Moreover, it is evident that when parameter 𝑘 rises, the scalar field contracts. Hence, in this 
work, Examining the additional dynamical parameters in the context of the BD scalar field is our goal. 

 
Figure 1. Plot of scalar field 𝜙 versus cosmic time 𝑡 for 𝜙଴ = 28000 and 𝐴ଵ = −38 

Energy conditions: The Raychaudhuri equations provide the foundation for the study of energy conditions and are 
essential to any analysis of the congruence of time-like and null geodesics. Energy conditions are used to illustrate other 
general conclusions regarding the behaviour of powerful gravitational fields. These are the typical energy scenarios: 
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• Dominant energy condition (DEC): 𝜌௞ௗ௘ ≥ 0, 𝜌௞ௗ௘ ± 𝑝௞ௗ௘ ≥ 0.  
• Strong energy conditions (SEC) : 𝜌௞ௗ௘ + 𝑝௞ௗ௘ ≥ 0, 𝜌௞ௗ௘ + 3𝑝௞ௗ௘ ≥ 0,  
• Null energy conditions (NEC): 𝜌௞ௗ௘ + 𝑝௞ௗ௘ ≥ 0,  
• Weak energy conditions (WEC): 𝜌௞ௗ௘ ≥ 0, 𝜌௞ௗ௘ + 𝑝௞ௗ௘ ≥ 0,  

Fig. 2 depicts the energy conditions for our KHDE model. It is clear that the NEC is violated, and the model results in a 
Big Rip. Furthermore, the WEC is observed to comply with the requirement 𝜌ௗ௘ ≥ 0. In addition, Fig. 2 shows that the 
DEC 𝜌ௗ௘ + 𝑝ௗ௘ is not satisfied. Furthermore, our model appropriately violates the SEC. This tendency, Which results 
from the late-time acceleration of the universe, corresponds with current observational data.  

 

Figure 2. Plot of energy conditions versus cosmic time 𝑡 for 𝜙଴ = 28000, 𝑤 = 0.025, 𝒦 = 0.001, 𝒞 = 9.2 and 𝐴ଵ = −38 

EoS parameter: The definition of the EoS parameter is the correlation between DE’s pressure 𝑝௞ௗ௘ and energy density 𝜌௞ௗ௘, which is expressed as 𝜔௞ௗ௘ = ௣ೖ೏೐ఘೖ೏೐. The universe's accelerated and decelerated expansion are categorized using the 

EoS parameter, which separates epochs into the following groups: For 𝜔 = 1 stiff fluid, 𝜔 = ଵଷ radiation, and 𝜔 = 0 
matter commanded (dust) (decelerating phases). It symbolizes the quintessence −1 < 𝜔 < −1/3, the cosmological 
constant 𝜔 = −1, and the phantom 𝜔 < −1. 

The EoS parameter of our DE model is depicted in Fig. 3 for various values of 𝒞. We note that the EoS parameter 
of our model starts in the aggressive phantom area (𝜔௞ௗ௘ << −1) and finally attains ΛCDM model (𝜔௞ௗ௘ = −1) and 
phantom region (𝜔௞ௗ௘ < −1). According to current observational data, this behaviour is consistent, and the current value 
(at 𝑡 = 13.7 𝐺𝑦𝑟) of our DE model’s EoS parameter is in close approximation with current Planck data 
(Aghanim et al. [31]). 

 
Figure 3. Plot of EoS parameter 𝜔௞ௗ௘ versus cosmic time 𝑡 for 𝜙଴ = 28000, 𝑤 = 0.025, 𝒦 = 0.001and 𝐴ଵ = −38 𝝎𝒌𝒅𝒆 − 𝝎𝒌𝒅𝒆ᇱ  plane: The dynamical characteristic of models of DE is examined through the 𝜔௞ௗ௘ − 𝜔௞ௗ௘ᇱ  plane analysis, 

where prime (′) signifies derivative with regard to 𝑙𝑛𝑎. Caldwell and Linder [32] proposed this approach to analyse the 
behaviour of the quintessence model. They divided the 𝜔௞ௗ௘ − 𝜔௞ௗ௘ᇱ  plane into thawing (𝜔௞ௗ௘ < 0 and 𝜔௞ௗ௘ᇱ > 0) 
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and freezing (𝜔௞ௗ௘ < 0 and 𝜔௞ௗ௘ᇱ < 0) areas. Researchers have expanded the scope of this planar study to analyze the 
dynamic behaviour of several DE models and modified theories of gravity [33]. Our DE model’s 𝜔௞ௗ௘-𝜔௞ௗ௘ᇱ  trajectory is 
depicted in Fig. 4 for distinct values of parameter 𝒞 as the 𝜔௞ௗ௘-𝜔௞ௗ௘ᇱ  plane remains same for various values of 𝒞. Both 
the thawing and freezing zones exhibit variation in the model; however, our model primarily fluctuates in the freezing 
region. The freezing region is where observational evidence indicates that the universe is expanding much more quickly. 
As a result, the behaviour of the 𝜔௞ௗ௘-𝜔௞ௗ௘ᇱ  plane is in line with the available observations. 

 
Figure 4. Plot of 𝜔௞ௗ௘ − 𝜔′௞ௗ௘ plane for 𝜙଴ = 28000, 𝑤 = 0.025, 𝒦 = 0.001, 𝒞 = 9.2 and 𝐴ଵ = −38 

Stability analysis: In this case, we evaluate our DE model's stability against minor perturbations using the squared speed 
of sound. The sign of the square of sound speed plays a vital role, as its negative (𝑣௦ଶ < 0) denotes instability and its 
positive (𝑣௦ଶ > 0) shows stability. It can be described as follows:  

 𝑣௦ଶ = ௣ሶೖ೏೐ఘሶ ೖ೏೐. (37) 

By differentiating the EoS parameter 𝜔௞ௗ௘ = ௣ೖ೏೐ఘೖ೏೐ about time 𝑡 and dividing by 𝜌ሶ௞ௗ௘, we get  

 𝑣௦ଶ = 𝜔௞ௗ௘ + ఘೖ೏೐ఘሶ ೖ೏೐ 𝜔ሶ ௞ௗ௘. (38) 

We build the squared speed of sound trajectories in terms of cosmic time in the current scenario, as illustrated in 
Fig. 5 for various values of 𝒞. We can witness from Fig. 5 that 𝑣௦ଶ curve shows positive behaviour in the first epoch and 
changes in the negative section. As a result, our model is unstable at the present and in subsequent epochs of the universe, 
but stable at the beginning. 

 
Figure 5. Plot of squared sound speed 𝑣௦ଶ versus cosmic time 𝑡 for 𝜙଴ = 28000, 𝑤 = 0.025, 𝒦 = 0.001, 𝒞 = 9.2 and 𝐴ଵ = −38 

Deceleration parameter (DP): One crucial kinematical quantity is the deceleration parameter (𝑞). This parameter shows 
the speed and slowness of the universe. There is an accelerating expansion if −1 < 𝑞 < 0, a decelerating expansion if 



17
Cosmological Dynamics of Anisotropic Kaniadakis Holographic Dark Energy Model... EEJP. 2 (2024)

𝑞 > 0, and a constant rate of expansion if 𝑞 = 0. In addition, for 𝑞 = −1, we get an exponential expansion and for 𝑞 < −1, 
Our current growth is exponential. DP obtained for our model as  

 𝑞(𝑡) = ଷ ௧ାଷ஺భ(௞ିଵ)మ(௞ାଶ)௧ − 1. (39) 

In Fig. 6, we have displayed the DP against cosmic time over a range of parameter 𝑘 values. For all values of 𝑘, we 
observe that DP stays less than -1 and ultimately approaches -1 at late times. 𝑘, indicating that the universe is accelerating. 
As a result, The universe is expanding at an exponential rate. 

 

Figure 6. Plot of deceleration parameter 𝑞 versus cosmic time 𝑡 for 𝐴ଵ = −38. 

Statefinder parameters (𝒓, 𝒔): The accelerated expansion of the universe has been explained by a variety of DE 
hypotheses. Sahni et al. [34] have presented statefinder parameters (𝑟, 𝑠) to test the validity of these models. The 𝑟 − 𝑠 
plane is the cosmological plane corresponding to these parameters, and it indicates how far a certain DE model is from 
the Λ𝐶𝐷𝑀 limit. The cosmic planes of these parameters describe several well-known regions of the universe, e.g., 𝑠 > 0 
and 𝑟 < 1 give the phantom and quintessence DE eras, respectively. (𝑟, 𝑠) = (1,0) is the Λ𝐶𝐷𝑀 limit, (𝑟, 𝑠) = (1,1) is 
the 𝐶𝐷𝑀 limit, and 𝑠 < 0 and 𝑟 > 1 are the Chaplygin gas limits. Our models’ statefinder parameters are provided by  

 𝑟(𝑡) = ଷ ௧ାଷ஺భ(௞ିଵ)మ(௞ାଶ)௧ − 1 + 2 ቀଷ ௧ାଷ஺భ(௞ିଵ)మ(௞ାଶ)௧ − 1ቁଶ + ଽ஺భ(௞ିଵ)మ൫௧మି஺భ(௞ିଵ)మ൯(௞ାଶ)మ௧య , (40) 

 𝑠(𝑡) = ቊయ ೟శయಲభ(ೖషభ)మ(ೖశమ)೟ ିଶାଶ൬య ೟శయಲభ(ೖషభ)మ(ೖశమ)೟ ିଵ൰మାଽಲభ(ೖషభ)మ൫೟మషಲభ(ೖషభ)మ൯(ೖశమ)మ೟య ቋ
 ൬ଷయ ೟శయಲభ(ೖషభ)మ(ೖశమ)೟ ିସ.ହ൰ . (41) 

Plotting 𝑟 versus 𝑠 yields the statefinders plane, as shown in Fig. 7 for different values of 𝑘. The regions of 
quintessence and phantom models can be found in the 𝑟 − 𝑠 plane for our model. Our model coincides with the Λ𝐶𝐷𝑀 
model in its evolution. 

 
Figure 7. Plot of statefinder’s plane for 𝐴ଵ = −38. 
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4. DISCUSSION AND COMPARISON 
In this section, we present a comparison of our work with the recent work on this subject and discuss the comparison 

with observational data.  
Rao and Prasanthi [35] have discussed Bianchi type-I and III modified holographic Ricci DE models in Saez– 

Ballester theory of gravitation which evolve from the phantom region and ultimately reach the quintessence region. Rao 
et al. [36] have investigated a non-static plane-symmetric universe filled with matter and anisotropic modified holographic 
Ricci DE components within the framework of Saez–Ballester's theory of gravitation. In this model, the EoS parameter 
varies from matter-dominated to the phantom region by crossing the phantom divide line and then goes towards the 
quintessence region in the latter epoch. Sadri and Vakili [37] have studied the FRW new HDE model in the framework 
of the Brans–Dicke scalar–tensor theory of gravitation taking into account the interaction between dark matter and HDE. 
They have obtained an EoS parameter that can reach the phantom era without the necessity of interaction between DE 
and dark matter. Aditya and Reddy [38] have studied locally rotationally symmetric Bianchi type-I universe within the 
framework of the Saez–Ballester scalar–tensor theory of gravitation, where the models start in the matter-dominated era, 
varies in the quintessence region, cross phantom divided line and attains a constant value in the phantom region. Prasanthi 
and Aditya [39] have discussed Bianchi type-VI0 RHDE models in general relativity where the model exhibits quintom 
as well as the phantom behaviour of the universe. Naidu et al. [40] have investigated the dynamical behaviour of Kaluza-
Klein FRW-type DE cosmological models in the framework of a scalar-tensor theory of gravitation formulated by Saez 
and Ballester. Aditya [41] studied the Bianchi type-I RHDE model in the Saez-Ballester theory of gravitation, here the 
model displays quintom behaviour and consistent ranges with the observational data. Aditya and Prasanthi [42] have 
discussed the dynamics of SMHDE in the Brans-Dicke theory of gravity, here the model starts in the matter-dominated 
era, crosses the phantom division line, and finally reaches a constant value in the aggressive phantom region. Dasunaidu 
et al. [43] discussed Kaluza-Klein FRW type DE cosmological models in the context of Saez and Ballester’s scalar-tensor 
theory of gravitation, where models begin in the matter-dominated era, evolves to the quintessence DE era, and finally 
approaches the vacuum DE and phantom era. In our KHDE model the study of the EoS parameter reveals that the model 
starts The EoS parameter analysis shows that the model starts in the aggressive phantom area ( 1−<<kdeω ) and finally 

attains ΛCDM model ( 1−=kdeω ) and phantom region ( 1−<kdeω ). This is quite in contrast with the models discussed 
above. Also, it is worthwhile to present, here, Planck's observational data given by Aghanim et al. [31] which gives the 
constraints on the EoS parameter of DE 𝜔ௗ௘ = −1.56ି଴.ସ଼ା଴.଺଴ (Planck + TT + lowE); 𝜔ௗ௘ = −1.58ି଴.ସଵା଴.ହଶ(Planck+ TT, TE, 
EE + lowE); 𝜔ௗ௘ = −1.57ି଴.ସ଴ା଴.ହ଴ (Planck + TT, TE, EE + lowE + lensing); 𝜔ௗ௘ = −1.04ି଴.ଵ଴ା଴.ଵ଴ (Planck + TT, TE, EE + 
lowE + lensing + BAO) by implying different combinations of observational schemes at 95% confidence level. It can be 
observed from Fig. 3 that the EoS parameter of our model lies within the above observational limits which shows the 
consistency of our results with the above cosmological data. The above comparison shows that our KHDE model is more 
viable than the DE models obtained by several authors, in the BD scalar–tensor theory, discussed above. 
 

5. SUMMARY AND CONCLUSIONS 
In this work, we study the Kantowski-Sachs universe and the Kaniadakis holographic dark energy in the context of 

the Brans-Dicke scalar-tensor theory of gravity. Field equations are solved using a few physically possible circumstances. 
We may analyze the dynamical properties of the DE model by constructing the cosmological parameters of our models. 
The following are some conclusions: 
• This model starts with a finite volume and extends from there with no initial singularity. As 𝑡 → ∞ approaches, the 

physical parameters 𝐻,𝜃,𝜎ଶ diverge and all drop to constant values at 𝑡 = 0. Our model also becomes isotropic 
(because 𝐴௛ = 0) and shear free when 𝐾 = 1. The scalar field of our models decreases with cosmic time and is 
positive (Fig. 1). This behaviour is comparable to various theories' scalar field models (Aditya and Reddy [30,38]).  

• Based on the deceleration parameter, we conclude that our model exhibits a super-exponential expansion (Fig. 6). 
The trajectory of statefinder parameters varies in both quintessence and phantom zones (Fig. 7). There is an obvious 
breach of the NEC, which causes a Big Rip in the model. Similar to what is predicted, our model likewise breaks 
the other energy requirements. This is because fresh observational data supports the late-time acceleration of the 
universe.  

• We produce the sound's squared speed 𝑣௦ଶ trajectory for our DE model in this scenario (Fig. 5). That 𝑣௦ଶ fluctuates 
fully in the negative area indicates that the model is unstable. The EoS parameter analysis shows that the model 
starts in the aggressive phantom area ( 1−<<kdeω ) and finally attains ΛCDM model ( 1−=kdeω ) and phantom 

region ( 1−<kdeω ). We looked into the kdekde ωω ′−  plane study and found that it happens during the freezing and 
thawing phases of the history of the universe  (Fig. 4). We find observationally that the expansion of the universe is 
significantly faster in the freezing region. Thus, the behaviour of the kdekde ωω ′−  plane agrees with the available data. 
Furthermore, we have examined how each dynamical parameter behaves for a range of 𝒞 and k values. The pictures 

make it abundantly evident that the dynamics of cosmological parameters are significantly influenced by the BD scalar 
field )(tφ . 
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У цій роботі досліджується голографічна темна енергія Каніадакіса в контексті скалярно-тензорної теорії гравітації Бранса-
Дікке (Phys. Rev. 124: 925, 1961). Ця стаття присвячена фону з анізотропним простором-часом Кантовського-Сакса, який є 
однорідним у просторі. За цих обставин скалярне поле Бренса-Дікке, позначене як ϕ, використовується як функція середнього 
масштабного коефіцієнта a(t). Використання графічної моделі для аналізу фізичної поведінки моделі є частиною дослідження 
прискореного розширення Всесвіту. Ми оцінюємо космологічні параметри, такі як скалярне поле, параметр рівняння стану 
та параметр уповільнення. Крім того, стабільність моделей оцінюється за допомогою квадрата швидкості звуку (𝑣௦ଶ). Для 
наших моделей ми виводимо загальноприйняті космічні площини, такі як 𝜔௞ௗ௘ − 𝜔௞ௗ௘ᇱ  і площини вимірювача стану (r,s). 
Виявлено, що скалярне поле є спадною функцією космічного часу і, отже, відповідна кінетична енергія зростає. Параметр 
уповільнення демонструє прискорене розширення Всесвіту. Тут згадується, що рівняння параметра стану лежить у фантомній 
області і, нарешті, досягає моделі ΛCDM. Крім того, площина 𝜔௞ௗ௘ − 𝜔௞ௗ௘ᇱ  забезпечує області замерзання і відтавання. Крім 
того, модель ΛCDM також відповідає площині вимірювача стану. Нарешті, зауважується, що всі вищезазначені обмеження 
космологічних параметрів узгоджуються з даними спостережень Планка. 
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