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The present study examines the Kaniadakis holographic dark energy in the context of the Brans-Dicke scalar-tensor theory of gravity
(Phys. Rev. 124: 925, 1961). This paper focuses on a background with an anisotropic Kantowski-Sachs space-time that is homogeneous
in space. Under these circumstances, the Brans-Dicke scalar field denoted as ¢ is used as a function of the average scale factor a(t).
Using a graphical model to analyze the model's physical behaviour is part of the inquiry into the Universe's accelerating expansion.
We evaluate the cosmological parameters such as the scalar field, the equation of state parameter and the deceleration parameter.
Furthermore, the models' stability is assessed through the application of the squared sound speed (v2). For our models, we derive the
widely accepted cosmic planes such as wyq, — W4, and statefinder (r,s) planes. It is found that the scalar field is a decreasing function
of cosmic time and hence the corresponding kinetic energy increases. The deceleration parameter exhibits accelerated expansion of the
Universe. It is mentioned here that the equation of state parameter lies in the phantom region and finally attains the ACDM model. Also,
the wyqe — Wiqe plane provides freezing and thawing regions. In addition, the statefinder plane also corresponds to the ACDM model.
Finally, it is remarked that all the above constraints of the cosmological parameters show consistency with Planck observational data.
Keywords: Scalar-tensor theory; Scalar field; Holographic dark energy; Kantowski-Sachs model

PACS: 98.80.-k, 95.36.+x

1. INTRODUCTION

Recent observational data on the history of cosmic expansion have enabled the discovery of the universe's
accelerating expansion conceivable, as provided in the works of Perlmutter et al. [1] and Riess et al. [2]. As a mysterious
and intensely pressured force, dark energy (DE) is thought to be the fundamental reason. Nevertheless, the traits and
behaviours of DE remain a mystery. Two main approaches are available to tackle the problem of cosmic acceleration: the
first one includes introducing a DE component into the Universe and studying its dynamics. (Caldwell [3]; Padmanabhan
[4]; Santhi et al. [5], The alternative, however, involves investigating changes to Einstein's theory of gravitation and
viewing them as a flaw in general relativity.

Among dynamical differential equation models, the holographic DE (HDE) model has become an important
instrument to study the mystery of DE in recent years. Based on the quantum characteristics of black holes (BHs), which
have been thoroughly studied in the literature to analyze the idea of quantum gravity, this study's research was carried
out. [6]. The vacuum energy A of a system of size L should not be greater than the mass of a BH of the same size, according
to the holographic principle, a hypothesis in quantum field theory. Within the context of quantum field theory, this idea
is essential to comprehend the genesis of BHs. The study carried out established the formal energy density of HDE by
Cohen et al. [7]. The equation provided may be rewritten more academically as follows:

Prae = 3d°mzL72. (1

In this case, the Planck mass reduction is represented by m,,, the numerical constant is represented by 3d?, and the
IR cutoff is indicated as L. The literature has researched several infrared cutoffs in great detail, including the Hubble
horizon H™1, the event horizon, the particle horizon, the conformal universe age, the Ricci scalar radius, and the
Granda-Oliveros cutoff [8]. Examining the current acceleration of the universe is made possible by the use of HDE models
with various IR cutoffs, offering insights into the transition redshift value that signifies the change from early deceleration
(q > 0) to present acceleration (q < 0). This research shows that the transition redshift value aligns with current
observational data. Moreover, it could offer a possible resolution to the puzzle of cosmic coincidence, which concerns
the puzzling topic of why, in the current state of the universe, the energy densities originating from dark matter and DE
display a constant ratio. A respectable degree of agreement between the HDE model and observational data has been
demonstrated by numerous investigations [9]. Nojiri and Odintsov [10] presented a methodology in their work that uses
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phantom cosmology and generalized HDE to try and reconcile the early and late epochs of the universe. In research by
Ghaffari [11], the HDE model was examined to determine whether the generalized laws of thermodynamics held in the
context of the D-dimensional Kaluza-Klein-type FRW world. Various cosmological components of new and updated
HDE models have been investigated by Aditya and Reddy [12]. As a generic entropy metric, Kaniadakis statistics have
recently been used to examine various gravitational and cosmological implications [13]. The generalized K -entropy
(Kaniadakis), a single free parameter entropy of a BH is obtained as [14]

Sac = 3¢ SINh(KSpu). @

where X is an unknown parameter.

Consequently, a new model of DE known as Kaniadakis Holographic DE (KHDE) [14] is presented utilizing this
entropy and holographic DE theory, which exposes considerable properties. Jawad and Sultan [15] have discussed KHDE
models in different theories of gravity. As Tsallis and Kaniadakis, Sadeghi et al. [16] have examined the dynamic
structures of HDE within the context of the Brans-Dicke theory of gravity.

Many entropy-related formalisms have been applied recently to the development and examination of cosmological
models. Several new HDE models have been put out, such as the Renyi HDE (RHDE) model [17], the Tsallis HDE
(THDE) [18], and the Sharma-Mittal HDE (SMHDE) [19]. Conversely, in the case of non-interacting cosmic systems,
the SMHDE theory exhibits classical stability. The RHDE theory shows better stability when viewed individually and is
predicated on the idea that cosmic sectors are not connected. The Tsallis, Renyi, and Sharma-Mittal entropies are
investigated in the work by Younas et al. [20] in a flat Friedmann-Robertson-Walker (FRW) universe with Chern-Simons
modified gravity. In the THDE, Aditya et al. [21] examined the empirical constraints on the logarithmic Brans-Dicke
theory of gravity. The authors Prasanthi and Aditya have conducted a study on the observational restrictions in RHDE
[22, 23]. In their study, Sharma and Dubey [23] examined the SMHDE models using several diagnostic methods. In light
of the aforementioned research, we have chosen to examine the HDE using a novel entropy formalism known as the
SMHDE, with the Hubble horizon serving as the infrared cutoffs in our investigation.

The statistical isotropy of the universe is called into question discovery of large variances in cosmic microwave
background radiation at wide angles. Even in the absence of inflation, the universe may have some anisotropic geometry
within the framework of cosmological theories. Several researchers have recently become quite interested in investigating
different cosmological models with anisotropic backdrops. Within the context of the Brans-Dicke theory of gravity [25],
this study attempts to explore the Kantowski-Sachs universe taking into account the effects of pressureless matter and
KHDE. The suggested work plan's outline is given below. Both the derivation of field equations and their solutions are
covered in Section 2. Section 3 examines the model's physical properties. Section 4 contains the comparison of our work
with the observational data. The paper's conclusions and a final summary are presented in the last section.

2. FIELD EQUATIONS AND THE MODEL
There have been several gravitational theories put forth as alternatives to Einstein's general theory of gravity. But
the most effective substitute for Einstein's theory is thought to be the scalar-tensor theory created by Brans and Dicke
[25]. Assume that the universe is composed of DE with a density of py4. and pressure-free matter with an energy density
of p,,. For the combined scalar and tenor fields, the Brans-Dicke field equations are thus provided in this instance by

8 = _ _
Rij — %Rgij = —f(Tij +Tij)—¢ 1(¢i;j - 9ij¢’;'g) — w2 (¢,i¢,j - %gijd),ad)'a)s 3)
8 _
P = Gogm T+ )

and the energy conservation equation is

(Ty +Ty),; =0, (5)

which is the result of field equations (3) and (4). In this case, R is a Ricci scalar, R;; is a Ricci tensor, and w is a

dimensionless coupling constant. T;; and T; ;j are energy-momentum tensors for pressure-less matter and KHDE, which
are defined as

Tij = pmwity; Tij = (Prae + Prae) Withi — PrdaeJijs (6)

here pyqe and pyqe are the pressure and energy density of DE respectively and p,, is the energy density of matter. The

equation of state (wyq.) parameter of DE is defined as wyqe = Z"de‘,
kde

We consider the Kantowski-Sachs space-time in the following form

ds? = dt? — A%dr? — B2(dy? + sin*pdp?), 7
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where A and B are metric potentials and only cosmic time t functions. The Kantowski-Sachs class of metrics describes
anisotropic and homogenous yet expanding cosmologies. They also provide models for estimating and comparing the
consequences of anisotropies with the FRW class of cosmologies (Thorne [26]). For the Kantowski-Sachs model (7), we
define the main parameters:

Hubble’s parameter of the model

—4
H="2 ®)
where
a(t) = (ABH)'/3 )
is the average scale factor. Anisotropic parameter 4, is given by
1 Hi—H\?2
Ay =338, (25, (10)

A B . . . . . .
where H, = < H, =H; = 5 are directional Hubble’s parameters, which express the expansion rates of the universe in

the directions of x, y and z respectively.
Expansion scalar and shear scalar are defined as

0 =ul=2+27, (11
L N2
2 1 4ji _1(A B
o? =700, =3(5-5) - (12)

where g;; is the shear tensor, Ay, is the deviation from isotropic expansion and the universe expands isotropically if A, = 0.
The deceleration parameter is given by

q =%(§)—1. (13)

If =1 < q < 0, the universe expands at an accelerating rate, decelerating volumetric expansion if ¢ > 0. If g = 0,
the universe expands at a constant rate.
The field equations (3)-(5) for the metric (7) produce the following equations when adopting co-moving coordinates:

2§+§—E+B—2+‘;’E+§+ zig - utepi, (14)
2yl +—+%%+z+i( 1) = - ebite (15)
¢ +3pH = ¢(3+2W) ———(Prae — 3Pkae T Pm) (17)

and the conservation equation is given by
Pm + Prae + 3H(pm + (1 + wyge) Prae) = 0. (18)

We assume that there is minimal interaction between the DE, T; ; = 0 and that the pressure-less matter component
is minimally interacting, T;; = 0, due to the energy conservation equation (5). Consequently, two additive conserved

components have been extracted from the energy conservation equation (5): maintenance of the DE's energy-momentum
tensor

Prae + 3H(L + Wyge)Prae = 0, (19)

and the conservation of the energy-momentum tensor of the pressure-less matter
pm + 3Hppy =0, (20)

here the overhead dot represents ordinary differentiation for cosmic time t.

A, B, ¢, Wrge> Prae, and p,, are six unknown variables in the four equations (14)-(17). As a result, some extra
constraints are required to solve the above system of equations. We build our computations on the following physically
acceptable assumptions:

The shear scalar (o) is regarded as proportionate to the expansion scalar (6). As a result, the metric potentials
are related to one another. (Collins et al. [27]), i.e.,
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A = Bk, 1)

where k > 1 is a constant that accounts for space-time anisotropy (we have taken the integration constant as a unity).
The physical foundation for this assumption can be found in observations of the velocity redshift relation for extragalactic
sources, which indicate that the Hubble expansion of the universe may achieve isotropy when ¢ /6 is constant.

In addition, it is common in the literature to employ a power-law relationship between scalar field ¢ and average
scale factor a(t) of the form (Johri and Sudharsan [28]; Johri and Desikan [29]) ¢ o [a(t)]™ where n denotes a power
index. Many authors have looked into different aspects of this type of scalar field ¢p. Given the physical significance
of the preceding relationship, we employ the following assumption to reduce the mathematical complexity of the system

¢ (t) = dola(®)]", (22)

where ¢ is the proportionality constant.
From Egs. (14), (15), (21) and (22), we obtain the metric potentials as

A= (kt—_zl — Ak — 1))2, (23)

B= 5 a0k~ 1), (24)

where A; is integrating constant and n(k + 2) + 3k = 0. Now, the scalar field ¢ calculated as

2 6n(k+2)
$(t) = ¢y (k— — Ay (k — 1)) . (25)

Now the metric (7) can be rewritten as

k
ds? = dt? — (kt—_zl Ak — 1)) dr? — (kt—_zl A (k- 1)) (d? + sin2pdg?). (26)

3. COSMOLOGICAL PARAMETERS AND DISCUSSION
Equation (26), in conjunction with equation (25) illustrates the Kantowski-Sachs universe with Kaniadakis HDE
in Brans-Dicke's theory of gravity. The following geometrical and physical factors are crucial to the debate of cosmology.
The spatial volume (V) and average scale factor (a(t)) of the model are given by

k+2
) =
V() = [a@®))® = (r — Ay (k — 1)) . @7)
Mean Hubble’s parameter (H) and expansion scalar (8) are obtained as
_6_ (k+2)t
H= 3 3t2-34;(k-1)? (28)
The shear scalar (62) and anisotropic parameter (4j,) are
2 _ (k-1)2¢2
7 T3 a (k-2 (29)
_ 2(k-1)2
h — (k+2)2 " G0)

Eq. (26) indicates the spatially homogeneous and anisotropic Kantowski - Sachs KHDE cosmological model in the
Brans-Dicke theory of gravity. There is no initial singularity in our model, i.e. at t = 0. From a finite volume when t = 0,
the model’s spatial volume increases with time. This indicates that the model's spatial expansion. Att = 0, the parameters
H(t), 8(t), and 62 are finite and tend to infinity as t — co. The mean anisotropic parameter A, represents the deviation
from isotropic expansion. It establishes the anisotropic or isotropic nature of the model. When k = 1, 4, equals 0. In this
instance, the expansion of the universe is isotropic. In addition, if V — oo and A, = 0 as t — oo, The model steadily gets
closer to isotropy.

According to the HDE, if DE is meant to regulate the universe's current, accelerated expansion, then, taking into
account the Kaniadakis BH entropy equation (2), the total vacuum energy contained in a box of a certain size L3 must not
surpass the energy of a BH of the same mass. Next, one obtains
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S
A = prge L—jf, (31
for the vacuum energy pyq.- Now, taking the Hubble horizon of the universe as the IR cutoff (i.e., L = %, A= :—Z),
3¢2H* . K
Prae = == sinh (), (32)

where the constant C? is unknown, X belongs to a set of real numbers, and H = % is the Hubble parameter. Now, it's

24
evident that we have ppg4, — %TH (the well-known Bekenstein entropy-based HDE) when k — 0. Considering the
pressureless fluid (with energy density p,,,) and the DE candidate (with pressure p, 4. and density pyq.)- The fractional
energy densities of matter (£,,) and DE (Q4.) are given as

Qp=2m=Lm and Qg = 2kde = &2 sinh (nx)’ (33)

Pcr 3H2 Pcr X H?

Per 1s the critical energy density. The above equation can be written using Eq. (28) as

_ 3d%(k+2)tt o (18 (3t2-34, (k-1)2)°
Prae(t) = (3t2-34(k—1)2)*5 smh( (k+2)2t2 (4
From Egs. (14) and (27), we get the energy density of matter as
—(k+2)
t? 2
() = po[i=— Ak = D] * . (35)
Using Egs. (23)-(25) in Eq. (14), we get the EoS parameter as
1
_ bo(3t2-34,(k-1)2)"s 2 _ 6nk+2) (34, (k-1)2 k(k_l)(tz_Al(k_l))
Wiae (t) = 3d2(k+2)4t* i A= 1) (t2-44(k-1)2)2 (t2-44(k-1)2)2
(k+1)t2 wn?(k+2)2t2 2n(k+2)(n(k+2)t2-3t2-34,(k-1)2) | n(k+3)(k+2)t>
(t2-A1(k-1)H)?2 * (3t2-3441(k-1)?)? 9(t2-41(k-1)%)2 3(t2- A1 (k-1))?
2 -1 6( 2 ( )2)2 -1
t . 8 (3t2—-34, (k-1
+ (a — Ay (k- 1)> }(smh (—(m)ztz )) . (36)

Scalar field: We plotted a scalar field's behaviour against cosmic time for a range of parameter values. k in Fig. 1. One
way to conceptualize the scalar field is as a positive, declining function that ultimately approaches a minimum positive
value. Because of the scalar field's diminishing behaviour, the corresponding kinetic energy rises. This behaviour closely
resembles that of scalar fields in DE models that have been developed by several writers and published in literature
(Aditya and Reddy [30]). Moreover, it is evident that when parameter k rises, the scalar field contracts. Hence, in this
work, Examining the additional dynamical parameters in the context of the BD scalar field is our goal.

4500 T T

r~ - - -k=1.4| |
. —k=1.5
o e k=1.6| |

3500 -

Scalar field

Time t (Gyr)

Figure 1. Plot of scalar field ¢ versus cosmic time t for ¢, = 28000 and 4A; = —38

Energy conditions: The Raychaudhuri equations provide the foundation for the study of energy conditions and are
essential to any analysis of the congruence of time-like and null geodesics. Energy conditions are used to illustrate other
general conclusions regarding the behaviour of powerful gravitational fields. These are the typical energy scenarios:
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e Dominant energy condition (DEC): prge = 0, prae L Prae = 0.

e Strong energy conditions (SEC) : prge + Prdae = 0, Prae + 3Pkae = 0,

e  Null energy conditions (NEC): prge + Prae = 0,

e  Weak energy conditions (WEC): pxge = 0, prge + Prae = 0,
Fig. 2 depicts the energy conditions for our KHDE model. It is clear that the NEC is violated, and the model results in a
Big Rip. Furthermore, the WEC is observed to comply with the requirement p;, = 0. In addition, Fig. 2 shows that the
DEC pg4e + Pge 1s not satisfied. Furthermore, our model appropriately violates the SEC. This tendency, Which results
from the late-time acceleration of the universe, corresponds with current observational data.

1000 T T T T

|l " " Pide 1

800 Prde™Prde |

400 - pkde+3pkde

"""""""""""" PidePide
200 e, E
oHf--=-===========-=--==--“- _:__:_-:;-.:-i e
—
/ —
-200 1
——

-400 b
-600 =

800 E
-1000 + 1
00 ; . ) ‘ . A

a 2 4 [ 8 10 12 14
Time t (Gyr)

Figure 2. Plot of energy conditions versus cosmic time t for ¢ = 28000, w = 0.025, X = 0.001,C = 9.2 and 4, = —38

EoS parameter: The definition of the EoS parameter is the correlation between DE’s pressure pyq. and energy density
Prde> Which is expressed as wyge = Z"l. The universe's accelerated and decelerated expansion are categorized using the
kde

EoS parameter, which separates epochs into the following groups: For w = 1 stiff fluid, w = % radiation, and w = 0
matter commanded (dust) (decelerating phases). It symbolizes the quintessence —1 < w < —1/3, the cosmological

constant w = —1, and the phantom w < —1.
The EoS parameter of our DE model is depicted in Fig. 3 for various values of C. We note that the EoS parameter
of our model starts in the aggressive phantom area (wy4, << —1) and finally attains ACDM model (wgq, = —1) and

phantom region (wy4. < —1). According to current observational data, this behaviour is consistent, and the current value
(at t =13.7Gyr) of our DE model’s EoS parameter is in close approximation with current Planck data
(Aghanim et al. [31]).

& o 4 &b b b b e
.
\
.
.
.
.
LY
.
.

EoS parameter

1 L 1 I
6 8 10 12 14

Time t (Gyr)

Figure 3. Plot of EoS parameter w4, versus cosmic time t for ¢, = 28000, w = 0.025, K = 0.001and A; = —38

Wpyge — Wpge plane: The dynamical characteristic of models of DE is examined through the w4, — Wj4e plane analysis,
where prime (') signifies derivative with regard to [na. Caldwell and Linder [32] proposed this approach to analyse the
behaviour of the quintessence model. They divided the wyge — wige plane into thawing (wige < 0 and wpge > 0)



16
EEJP. 2 (2024) A. Vijaya Prasanthi, et al.

and freezing (wpqe < 0 and w4, < 0) areas. Researchers have expanded the scope of this planar study to analyze the
dynamic behaviour of several DE models and modified theories of gravity [33]. Our DE model’s Wy go-W}qe trajectory is
depicted in Fig. 4 for distinct values of parameter C as the wjg.-Wg4e plane remains same for various values of C. Both
the thawing and freezing zones exhibit variation in the model; however, our model primarily fluctuates in the freezing
region. The freezing region is where observational evidence indicates that the universe is expanding much more quickly.
As a result, the behaviour of the wyge-wyg4e plane is in line with the available observations.

-10000{ \
-20000-
kde _300001

= 40000

=50000+

~60000 ‘ . IS LES
-200 -150 -100 50 0

W
kde
Figure 4. Plot of wyge — @ kqe plane for ¢y = 28000, w = 0.025, K = 0.001, € = 9.2 and A; = —38

Stability analysis: In this case, we evaluate our DE model's stability against minor perturbations using the squared speed
of sound. The sign of the square of sound speed plays a vital role, as its negative (v2 < 0) denotes instability and its
positive (v2 > 0) shows stability. It can be described as follows:

v2 = Dhde, (37)
Pkde
By differentiating the EoS parameter wq, = Z"de about time t and dividing by pyg., We get
kde
v = Wige + 55 Gy (38)
Pkde

We build the squared speed of sound trajectories in terms of cosmic time in the current scenario, as illustrated in
Fig. 5 for various values of C. We can witness from Fig. 5 that vZ curve shows positive behaviour in the first epoch and
changes in the negative section. As a result, our model is unstable at the present and in subsequent epochs of the universe,
but stable at the beginning.

[F-c=ra—c=22——c=a2]

204

~104

—20

Time t - (Gyr)

Figure 5. Plot of squared sound speed v2 versus cosmic time t for ¢y = 28000, w = 0.025, K = 0.001,C = 9.2 and 4; = —38

Deceleration parameter (DP): One crucial kinematical quantity is the deceleration parameter (q). This parameter shows
the speed and slowness of the universe. There is an accelerating expansion if —1 < g < 0, a decelerating expansion if
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q > 0, and a constant rate of expansion if ¢ = 0. In addition, for ¢ = —1, we get an exponential expansion and for g < —1,
Our current growth is exponential. DP obtained for our model as
_ 3t+341(k-1)? _
q(e) = 1D g, (39)

In Fig. 6, we have displayed the DP against cosmic time over a range of parameter k values. For all values of k, we
observe that DP stays less than -1 and ultimately approaches -1 at late times. k, indicating that the universe is accelerating.
As aresult, The universe is expanding at an exponential rate.

Deceleration parameter
&

6 8
Time t (Gyr)

Figure 6. Plot of deceleration parameter g versus cosmic time t for A; = —38.

Statefinder parameters (r,s): The accelerated expansion of the universe has been explained by a variety of DE
hypotheses. Sahni et al. [34] have presented statefinder parameters (7, s) to test the validity of these models. The r — s
plane is the cosmological plane corresponding to these parameters, and it indicates how far a certain DE model is from
the ACDM limit. The cosmic planes of these parameters describe several well-known regions of the universe, e.g., s > 0
and r < 1 give the phantom and quintessence DE eras, respectively. (r,s) = (1,0) is the ACDM limit, (r,s) = (1,1) is
the CDM limit, and s < 0 and r > 1 are the Chaplygin gas limits. Our models’ statefinder parameters are provided by

_ 3t4344(k-1)? _ (3 t+341(k—1)? _ )2 941 (k—1)2(t2-A1(k—1)?)
r(t) = e 1+2 e 1) + o . (40)
3 t4341 (k=1)2 364341 (k=02 \2 . A (k=1)2(t2-4; (k-1)2)
S :{ o 2+2( ot 1) * k2203 } @1

(33 t+3A4(k—1)2

(k+2)t _4'5)

Plotting r versus s yields the statefinders plane, as shown in Fig. 7 for different values of k. The regions of
quintessence and phantom models can be found in the r — s plane for our model. Our model coincides with the ACDM

model in its evolution.

A ==--k=14
~ —k=1.5
————— k=1.6
* (r,s)=(1,0) A CDM model

-200 -150 -100 -50 o 50 100 150

Figure 7. Plot of statefinder’s plane for 4; = —38.
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4. DISCUSSION AND COMPARISON

In this section, we present a comparison of our work with the recent work on this subject and discuss the comparison
with observational data.

Rao and Prasanthi [35] have discussed Bianchi type-I and III modified holographic Ricci DE models in Saez—
Ballester theory of gravitation which evolve from the phantom region and ultimately reach the quintessence region. Rao
etal. [36] have investigated a non-static plane-symmetric universe filled with matter and anisotropic modified holographic
Ricci DE components within the framework of Saez—Ballester's theory of gravitation. In this model, the EoS parameter
varies from matter-dominated to the phantom region by crossing the phantom divide line and then goes towards the
quintessence region in the latter epoch. Sadri and Vakili [37] have studied the FRW new HDE model in the framework
of the Brans—Dicke scalar—tensor theory of gravitation taking into account the interaction between dark matter and HDE.
They have obtained an EoS parameter that can reach the phantom era without the necessity of interaction between DE
and dark matter. Aditya and Reddy [38] have studied locally rotationally symmetric Bianchi type-I universe within the
framework of the Saez—Ballester scalar—tensor theory of gravitation, where the models start in the matter-dominated era,
varies in the quintessence region, cross phantom divided line and attains a constant value in the phantom region. Prasanthi
and Aditya [39] have discussed Bianchi type-VIp RHDE models in general relativity where the model exhibits quintom
as well as the phantom behaviour of the universe. Naidu et al. [40] have investigated the dynamical behaviour of Kaluza-
Klein FRW-type DE cosmological models in the framework of a scalar-tensor theory of gravitation formulated by Saez
and Ballester. Aditya [41] studied the Bianchi type-I RHDE model in the Saez-Ballester theory of gravitation, here the
model displays quintom behaviour and consistent ranges with the observational data. Aditya and Prasanthi [42] have
discussed the dynamics of SMHDE in the Brans-Dicke theory of gravity, here the model starts in the matter-dominated
era, crosses the phantom division line, and finally reaches a constant value in the aggressive phantom region. Dasunaidu
et al. [43] discussed Kaluza-Klein FRW type DE cosmological models in the context of Saez and Ballester’s scalar-tensor
theory of gravitation, where models begin in the matter-dominated era, evolves to the quintessence DE era, and finally
approaches the vacuum DE and phantom era. In our KHDE model the study of the EoS parameter reveals that the model

starts The EoS parameter analysis shows that the model starts in the aggressive phantom area (@, ,, << —1) and finally

attains ACDM model ( @,,, = —1) and phantom region ( @, ,, < —1). This is quite in contrast with the models discussed

above. Also, it is worthwhile to present, here, Planck's observational data given by Aghanim et al. [31] which gives the
constraints on the EoS parameter of DE wg, = —1.562353 (Planck + TT + lowE); wg, = —1.58%53%(Planck+ TT, TE,
EE + lowE); wge = —1.577339 (Planck + TT, TE, EE + lowE + lensing); wg, = —1.04%313 (Planck + TT, TE, EE +
lowE + lensing + BAO) by implying different combinations of observational schemes at 95% confidence level. It can be
observed from Fig. 3 that the EoS parameter of our model lies within the above observational limits which shows the
consistency of our results with the above cosmological data. The above comparison shows that our KHDE model is more
viable than the DE models obtained by several authors, in the BD scalar—tensor theory, discussed above.

5. SUMMARY AND CONCLUSIONS
In this work, we study the Kantowski-Sachs universe and the Kaniadakis holographic dark energy in the context of
the Brans-Dicke scalar-tensor theory of gravity. Field equations are solved using a few physically possible circumstances.
We may analyze the dynamical properties of the DE model by constructing the cosmological parameters of our models.
The following are some conclusions:

e This model starts with a finite volume and extends from there with no initial singularity. As t — oo approaches, the
physical parameters H,8,a? diverge and all drop to constant values at t = 0. Our model also becomes isotropic
(because Ay, = 0) and shear free when K = 1. The scalar field of our models decreases with cosmic time and is
positive (Fig. 1). This behaviour is comparable to various theories' scalar field models (Aditya and Reddy [30,38]).

e Based on the deceleration parameter, we conclude that our model exhibits a super-exponential expansion (Fig. 6).
The trajectory of statefinder parameters varies in both quintessence and phantom zones (Fig. 7). There is an obvious
breach of the NEC, which causes a Big Rip in the model. Similar to what is predicted, our model likewise breaks
the other energy requirements. This is because fresh observational data supports the late-time acceleration of the
universe.

e  We produce the sound's squared speed v2 trajectory for our DE model in this scenario (Fig. 5). That v2 fluctuates
fully in the negative area indicates that the model is unstable. The EoS parameter analysis shows that the model

starts in the aggressive phantom area (@, ,;, << —1) and finally attains ACDM model (W, = —1) and phantom

region (@,,, <—1). We looked into the @, — a);de plane study and found that it happens during the freezing and
thawing phases of the history of the universe (Fig. 4). We find observationally that the expansion of the universe is
significantly faster in the freezing region. Thus, the behaviour of the @), ;, — 0),; 4o Plane agrees with the available data.

Furthermore, we have examined how each dynamical parameter behaves for a range of C and & values. The pictures
make it abundantly evident that the dynamics of cosmological parameters are significantly influenced by the BD scalar

field @() .
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V uiii poboTi mocimkyeThes rojgorpadiuHa TemHa eHeprisi Kaniagakica B KOHTEKCTI CKaJsIpHO-TEH30pHOI Teopil rpasitariii bpanca-
Hixke (Phys. Rev. 124: 925, 1961). Lls craTTs npucBsdeHa GoHy 3 aHI30TPOITHHM MPOCTOopoM-4acoM KanToBchkoro-Cakca, SKuil €
OJTHOPITHUM Yy TpocTopi. 3a ux 00CTaBHH cKaisipHe moje bpeHca-Jlikke, mo3HaUeHE SIK ¢, BAKOPUCTOBYETHCS SIK (DYHKIIISI CEPEAHBOTO
MacmrabHoro koedirieHTa a(?). Bukoprucranns rpadiqHoi Momeni Uit aHali3y (i3HIHOI TOBEAIHKH MOJIENI € YaCTHHOIO TOCIIPKCHHS
MPUCKOPEHOT0 po3IIHpeHHs BeecBiTy. MU OLiHIOEMO KOCMOJIOTIYHI apaMeTpH, Taki K CKaJSIpHE 110J1e, lIapaMeTp PiBHSHHS CTaHy
Ta MapaMeTp yIOBimbHEHHA. KpiM Toro, cTabinbHicTh MOfeneil OMiHIOEThCA 33 JOMOMOIOK KBAApaTa MIBUAKOCTI 3ByKy (vZ). Ins
HAaLMX MOJENeil MU BUBOAMMO 3arajbHONPHAHATI KOCMIUHI IUIOWMHH, TaKi K Wyge — Wyge | IVIOLIMHA BUMIpIOBaYa CTaHy (I,s).
BusiBiieHo, 110 CKaJIsIpHE MOJe € CriafHo (YHKIIEI KOCMIYHOrO 4yacy i, OTKe, BiIOBigHA KiHETHYHA eHepris 3pocrtae. [lapamerp
YIOBUIBHEHHS IEMOHCTpY€E NPUCKOpeHe po3umpenHs Beecsity. TyT 3ragyeTbes, 110 PiBHAHHS TapaMeTpa CTaHy JISKHTb y paHTOMHIN
obmnacri i, mapemrri, nocsrae mozaeiai ACDM. Kpim TOro, INIOIMEA Wy ge — Wiqe 320€31€Uye 00acTi 3aMep3anns i BiaraBanus. Kpim
Toro, monesib ACDM Takosx BiJIOBia€e TUIONIMHI BUMiproBaya ctaHy. Hapemiri, 3ayBaKy€eThCs, 1110 BCi BUIIE3a3HAYCHI OOMEKCHHS
KOCMOJIOTIYHUX MapaMeTpiB y3roPKyIOThCs 3 JaHUMH CrIocTeperxeHb [naHka.

KurouoBi cioBa: ckansapno-menzopna meopis,; ckansipue noie; 2010epadiuna memna enepeis, modens Kanmoscokozo-Caxca





