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This paper is devoted to investigate five dimensional homogeneous and isotropic FRW model with varying gravitational
and cosmological constant with cosmic time. Exact solution of the Einstein field equations are obtained by using the
equation of state p = (γ−1)ρ (gamma law), where γ which is an adiabatic parameter varies continuously as the universe
expands. We obtained the solutions for different values of curvature K = 0, 1,−1 by using a(t) = R0(1 + α2t2)n, where
α, n and R0 are positive constants. Behaviour of the cosmological parameters are presented for different cases of the
models. Physical interpretation of the derived model are presented in details. Interestingly the proposed model justified
the current cosmological observations with dark energy.
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1. INTRODUCTION

The present universe is expanding with ever accelerating from the recent observational [1, 2, 3, 4] data
on cosmic microwave background radiation(CMBR) and from WMAP data [5, 6]. Recent observations of type
Ia supernovae (SNe Ia) at redshift z < 1 provide startling and puzzling evidence that the expansion of the
universe at the present time appears to be accelerating, behavior attributed to “dark energy” with negative
pressure[1, 2, 3, 7, 8, 9, 10, 11]. These observations strongly favour a significant and positive value of Λ. Some
of the authors like [12, 13, 14] have studied the physics of the universe in higher dimensional space time.

Now-a-days peoples are more interested to study in higher dimensional space-time, since Einstein’s field
equations in higher dimensions may have physical relevance as early as a time before the universe underwent
compactification transitions. The solutions of Einstein field equations may have physical relevance in these
higher dimensional space times. The phase transitions in the early universe can also lead to topological knots in
the vacuum expectation value of a scalar field, which are concentrated in a small region, and by using a suitable
scalar field we can prove that phase transitions can result in such objects. Therefore, to unify gravity and other
interactions, it is more feasible to study higher dimensional space-time to solve cosmological problems. Also,
it is well known that Friedmann-Robertson-Walker (FRW) spatially homogeneous and isotropic cosmological
models are widely considered as good approximation of the present and early stages of the universe. FRW line
element fits best with the cosmological principle and consistent with the present day observational data. At its
early stage of evolution, study of five dimensional space-time is important because of the fact that cosmos might
have had a higher dimensional era. In order to unify gravitation with electromagnetism , a five dimensional
space-time geometry was first proposed by Kaluza [15] and Klein [16]. In the context of the Kaluza-Klein
theories[15, 16, 17, 18] the study of higher dimensional cosmological models have obtained much importance.
Many researchers have studied the problems in the field of higher dimensions. Appelquist et al.[18], Rahaman
et al. [19] formulated higher dimensional spherically symmetric perfect fluid model in Lyra geometry. Samanta
et al.[20] investigated five dimensional Bianchi type-1 string cosmological model in Lyra manifold.

In FRW type of homogeneous cosmological model, the dimensionality has a marked effect on the time
temperature relation of the universe and our universe appears to cool more slowly in higher dimensional space
time as suggested by Chatterjee [21]. In the recent years, cosmological model with a relic cosmological constant
have received considerable attention among researchers for various reasons [22, 23, 24, 25, 26, 27]. We should
realize that the existence of a nonzero cosmological constant in Einstein’s equations is a feature of deep and
profound consequence. The recent observations indicate that Λ ∼ 10− 55cm2 while particle physics prediction
for Λ is greater than this value by a factor of order 10120. This discrepancy is known as cosmological constant
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problem. Ratra and Peebles[28], Dolgov [29, 30, 31], Sahni and Starobinsky [32], Padmanabhan [33] and
Peebles [34] are the some of the researchers who recently studied on the cosmological constant “problem” and
consequence on cosmology with a time-varying cosmological constant. For earlier reviews on this topic, we can
referred to Zeldovich [35], Weinberg [36] and Carrol et al. [37].

G.S. Khadekar et.al.[38] discuss the big-bounce cosmological model by assuming the cosmological constant
Λ = αρ and Λ = βH2, where α and β are the constant and ρ andH, are the energy density and Hubble parameter
respectively by considering a class of five-dimensional cosmological model. Adhav K.S. et.al.[39] studied Bianchi
type-III cosmological models in the presence of the bulk viscous fluid with varying Λ. Mukhopadhyay U. et.
al.[40] discuss about the time variable and the accelerating universe in the Einstein’s field equations under the
phenomenological assumption of Λ = αH2 for the full physical range of α. Shabani and Ziaie[42] studied about
the classical bouncing behaviour of the Universe in terms of f(R, T ) = R+ h(T ) gravity theories. Minas et al.
[43] examined the realization of bounces based on a modified gravity theory related to Finsler and Finsler-like
geometries. Surendra and Kiranmala [44] studies the role of higher-dimensional FRWmodels with the framework
of the particle creation in the context of variable cosmological and gravitational constants. Mahanta and Das
[45] studied the spatially homogeneous and anisotropic Bianchi type-III universe filled with non interacting new
holographic dark energy and cold dark matter with variable gravitational and cosmological constant terms.
Further Agrawal et al.[46, 47, 48] developed a bouncing cosmology model with a suitable bouncing scale factor
and studied its cosmic dynamics. Similarly, Singh et al.[49] studied the bouncing behaviour of the universe
in modified gravity with higher-order curvature, finding that the extremal acceleration occurs at the bouncing
point. And Zubair and Farooq[50] explore the bouncing models in the framework of 4D EGB with a flat,
isotropic FRW universe.

Motivating from the above literatures here in this paper we investigate the spatially homogeneous and
isotropic FRW universe in the context of variable cosmological and gravitational constants. We evaluate different
cosmological parameters with the assumption that our universe is filled with distributions of matter. In sections
2.1-2.9, we have presented the solution of field equations and discussion for the cosmological parameters for the
different values of curvature index parameters K = 0, 1,−1 and γ = 1, 43 , 2. In sec. 4 we also study the physical
interpretation of the cosmological parameters in the context of solutions. Concluding remarks of the work is
presented in sec. 5 .

2. FIELD EQUATIONS

Here we consider the five dimensional FRW metric[51, 52, 53] in the form

ds2 = dt2 − a2(t)

[
dr2

(1−Kr2)
+ r2(dθ2 + sin2 θdθ2) + (1−Kr2)dψ2

]
(1)

where a(t) is the scale factor K = 0,−1 or + 1 is the curvature parameter for flat, open and closed universe
respectively. The universe is assumed to be filled with distribution of matter represented by energy-momentum
tensor of a perfect fluid

Tµν = (ρ+ p)uµvν − pgµν , (2)

where ρ is the energy density of the cosmic matter, p is its pressure and uµ is the five-velocity vector such that
uµu

µ = 1. The Einstein field equations with time-dependent cosmological and gravitational constants is given
by

Rµν − 1

2
gµνR = 8πG(t)Tµν + Λ(t)gµν (3)

where Rµν is the Ricci tensor, G(t) and Λ(t) being the variable gravitational and cosmological constants. The
divergence of (3), taking into account the Bianchi identity, gives

(8πGTµν + Λgµν)
;ν

= 0. (4)

Equation (3) and (4) may be considered as the fundamental equations of gravity with G and Λ coupling
parameters. Using comoving coordinates

uν = (1, 0, 0, 0, 0), (5)

in (2) and with the line element (1), Einstein’s field equation (3), yields

8πG(t)ρ =
6ȧ2

a2
+

6K

a2
− Λ(t), (6)

8πG(t)p = −3ȧ

a
− 3ȧ2

a2
− 3K

a2
+ Λ(t), (7)

where dot denotes derivative w.r.t ′t′.
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In uniform cosmology G = G(t) and Λ = Λ(t) so that the conservation (4) is given by

ρ̇+ 4(ρ+ p)H = −

(
Ġ

G
ρ+

Λ̇

8πG

)
. (8)

The usual energy momentum conservation relation Tµν
;ν = 0 leads to

ρ̇+ 4(ρ+ p)H = 0. (9)

The field equations (6) - (7) can also be written as

3ä

a
= −4πG(t)

[
2p+ ρ− Λ(t)

8πG(t)

]
, (10)

6ȧ2

a2
= 8πG(t)

[
ρ+

Λ(t)

8πG(t)

]
. (11)

Equation (10) and (11) can be written in terms of the Hubble paramater H = ȧ
a to give the below the equation

respectively

Ḣ +H2 = −4π

3
G(t)(2p+ ρ) +

Λ(t)

6
, (12)

H2 =
4π

3
G(t)ρ+

Λ(t)

6
− K

a2
. (13)

In order to solve the above field equations (9), (12) and (13) we used the bouncing scale factor as suggested
by[41, 42, 50]

a(t) = R0(1 + α2t2)n, (14)

where α, n and R0 are positive constants.
The equation of state is

p = (γ − 1)ρ, (15)

where γ is a constant (1 ≤ γ ≤ 2).
Using equations (14) and (15), equation (9) yields

ρ =
C1

{R0(1 + α2t2)n}4γ
(16)

where C1 is a arbitrary constant.
From eqn (15) and (16), the pressure is

p =
(γ − 1)C1

{R0(1 + α2t2)n}4γ
(17)

From eqn (14), Hubble Paramater is

H =
2nα2t

1 + α2t2
. (18)

From eqn (12) and (13), we get

Ḣ = −8π

3
G(t)ργ +

K

a2
. (19)

Using eqns (14), (16) and eqn (18), eqn. (19) becomes

G(t) =
3R4γ

0 (1 + α2t2)4nγ

8πγC1

[
K

R2
0(1 + α2t2)2n

− 2α2n(1− α2t2)

(1 + α2t2)2

]
(20)

Using eqns. (14), (16), (18) and (20) eqn. (13) becomes

Λ(t) =
3

γ

[
2α2n(1 + α2(4γn− 1)t2))

(1 + α2t2)2
+

(2γ − 1)K

R0(1 + α2t2)2n

]
(21)

The deceleration parameter becomes

q =
−1 + α2t2(1− 2n)

2α2nt2
. (22)

Now we can prove to study for the different values of curvature parameters K and γ as under
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Figure 1. Behaviour of Scale factor a(t), Hubble parameter H(t) and Declaration parameter q(t) against t for
different values of α, R0 = 1 and n = 3

4 .

2.1. When K = 0(flat) and taking γ = 1(Dust universe), we get

ρ =
C1

R4
0(1 + α2t2)4n

,

p = 0

G(t) =
3α2nR4

0

4C1π
.(−1 + α2t2)(1 + α2t2)−2+4n,

Λ(t) =
1

(1 + α2t2)2
6α2n(1 + (−1 + 4n)α2t2).

2.2. When K = 0(flat) and taking γ = 4
3(Radiation universe)

ρ =
C1

R
4
3
0 (1 + α2t2)

16n
3

,

p =− 2C1

3R
4
3
0 (1 + α2t2)

16n
3

,

G(t) =
9α2n(α2t2 − 1)(R0(1 + α2t2)n)

16
3

16πC1(1 + α2t2)2
,

Λ(t) =
9α2n

2(1 + α2t2)2

(
1 +

(
−1 +

16n

3

)
α2t2

)
.

2.3. When K = 0(flat) and taking γ = 2(Zel′dovichuniverse)

ρ =
C1

R8
0(1 + α2t2)8n

,
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Figure 2. Plot (a) corresponds to the evolution of ρ(t) against t, plot (b) corresponds to the behaviour of G(t)
against t, whereas plot (c) corresponds to the evolution of Λ(t) against t for different values of α, C1 = R0 = 1
and n = 3

4 .
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Figure 3. Plot (a) corresponds to the evolution of ρ(t) against t whereas plot (b) corresponds to the behaviour
of p(t) against t for different values of α, C1 = R0 = 1 and n = 3
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Figure 4. Plot (a) depicts to the behaviour of G(t) against t, whereas plot (b) depicts to the evolution of Λ(t)
against t for different values of α, C1 = R0 = 1 and n = 3

4 .
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Figure 5. Plot (a) corresponds to the evolution of ρ(t) against t and plot (b) corresponds to the behaviour of
p(t) against t for different values of α, C1 = R0 = 1 and n = 3
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Figure 6. Plot (a) depicts to the behaviour of G(t) versus t, whereas plot (b) depicts to the evolution of Λ(t)
versus t for different values of α, C1 = R0 = 1 and n = 3

4 .

p =
C1

R8
0(1 + α2t2)8n

,

G(t) =
3α2nR8

0(α
2t2 − 1)(1 + α2t2)−2+8n

8πC1
,

Λ(t) =
3α2n

(1 + α2t2)2
(
1 + α2 (−1 + 8n)α2t2

)
.

2.4. When K = 1(closed) and taking γ = 1(Dust universe)

ρ =
C1

R4
0(1 + α2t2)4n

,

p =0

G(t) =
3R4

0(1 + α2t2)4n

8πC1

[
1

R0(1 + α2t2)2n
− 2α2n(1− α2t2)

(1 + α2t2)2

]
Λ(t) =

3

R2
0(1 + α2t2)2n

+
6α2n(1 + (−1 + 4n)α2t2

(1 + α2t2)2
.

2.5. When K = 1(closed) and taking γ = 4
3(Radiation universe)

ρ =
C1

R
4
3
0 (1 + α2t2)

16n
3

,

p =− 2C1

3R
4
3
0 (1 + α2t2)

16n
3

,
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Figure 7. Plot (a) corresponds to the evolution of ρ(t) versus t, (b) depicts to the behaviour of G(t) against
t, whereas plot (c) depicts to the evolution of Λ(t) against t for different values of α, C1 = R0 = 1 and n = 3

4 .

(a) (b)

Figure 8. Plot (a) depicts to the behaviour of ρ(t) against t, whereas plot (b) depicts to the evolution of p(t)
against t for different values of α, C1 = R0 = 1 and n = 3

4 .

G(t) =
R3

0(1 + α2t2)3n

2πC1

[
1

R2
0(1 + α2t2)2n

− 2α2n(1− α2t2)

(1 + α2t2)2

]
Λ(t) =

2

R2
0(1 + α2t2)2n

+
8α2n(1 + (−1 + 3n)α2t2)

(1 + α2t2)2
.

2.6. When K = 1(closed) and taking γ = 2(Zel’dovich universe)

ρ =
C1

R8
0(1 + α2t2)8n

,

p =
C1

R8
0(1 + α2t2)8n

,

G(t) =
3R8

0(1 + α2t2)8n

16πC1

[
1

R2
0(1 + α2t2)2n

− 2α2n(1− α2t2)

(1 + α2t2)2

]
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(a) (b)

Figure 9. Plot (a) depicts to the behaviour of G(t) versus t, whereas plot (b) depicts to the evolution of Λ(t)
versus t for different values of α, C1 = R0 = 1 and n = 3

4 .

(a) (b)

Figure 10. Plot (a) depicts to the behaviour of ρ(t) against t, whereas plot (b) depicts to the evolution of p(t)
against t for different values of α, C1 = R0 = 1 and n = 3

4 .

Λ(t) =
9

2R2
0(1 + α2t2)2n

+
3α2n(1 + (−1 + 8n)α2t2)

(1 + α2t2)2
.

2.7. When K = −1(open) and taking γ = 1(Dust universe)

ρ =
C1

R4
0(1 + α2t2)4n

,

p =0,

G(t) =
3R4

0(1 + α2t2)4n

8πC1

[
− 1

R2
0(1 + α2t2)2n

− 2α2n(1− α2t2)

(1 + α2t2)2

]

(a) (b)

Figure 11. Plot (a) depicts to the behaviour of G(t) against t, whereas plot (b) depicts to the evolution of
Λ(t) against t for different values of α, C1 = R0 = 1 and n = 3

4 .
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Figure 12. Plot (a) corresponds to the evolution of ρ(t) versus t, plot (b) depicts to the behaviour of G(t)
against t, whereas plot (c) depicts to the evolution of Λ(t) against t for different values of α, C1 = R0 = 1 and
n = 3

4 .

Λ(t) =− 3

R2
0(1 + α2t2)2n

+
6α2n(1 + (−1 + 4n)α2t2)

(1 + α2t2)2
.

2.8. When K = −1(open) and taking γ = 4
3(Radiation universe)

ρ =
C1

R
4
3
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16n
3

,

p =− 2C1
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3
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16n
3

,
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9R
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3
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3

32πC1
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− 1
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[
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0(1 + α2t2)2n

+
2α2n(3 + (−3 + 16n)α2t2)
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.

2.9. When K = −1(open) and taking γ = 2(Zel’dovich universe)

ρ =
C1

R8
0(1 + α2t2)8n

,

p =
C1

R8
0(1 + α2t2)8n

,

G(t) =
3R8

0nα
2(−1 + α2t2)(1 + α2t2)−2+8n

8πC1
− 3R6

0(1 + α2t2)6n

16πC1

Λ(t) =
3nα2(1 + (−1 + 8n)α2t2)

(1 + α2t2)2
− 9

2R2
0(1 + α2t2)2n

.
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(a)

t

(b)

Figure 13. Plot (a) corresponds to the evolution of ρ(t) versus t, plot (b) corresponds to the evolution of p(t)
against t for different values of α, C1 = R0 = 1 and n = 3

4 .

(a) (b)

Figure 14. Plot (a) depicts to the behaviour of G(t) against t, whereas plot (b) depicts to the evolution of
Λ(t) against t for different values of α, C1 = R0 = 1 and n = 3

4 .

(a) (b)

Figure 15. Plot (a) corresponds to the evolution of ρ(t) versus t, plot (b) depicts to the evolution of p(t)
against t for different values of α, C1 = R0 = 1 and n = 3

4 .

t

(a) (b)

Figure 16. Plot (a) depicts to the behaviour of G(t) against t, whereas plot (b) depicts to the behaviour of
Λ(t) against t for different values of α, C1 = R0 = 1 and n = 3

4 .
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3. BEHAVIOUR OF BOUNCING COSMOLOGY

We will discuss matter bounce scenarios in FRW model in the present analysis. The study focuses on
the dynamic of energy density ρ, pressure p, and the EoS parameter ω. In general, bouncing models meet the
following conditions.

Bouncing models go through a contracting phase before bouncing, resulting in non-singular bounces i.e.,

the expansion of universe a(t) decreases with time as ˙a(t) < 0. Thus, Hubble parameter H = ȧ
a < 0 represents

contracting era of universe. As a result, Hubble parameter H = 0 disappears at bouncing point. EoS ω
and deceleration parameter q are identical for homogeneous and flat FRW. The bounce point shows singular
behaviour for both expressions.

Whenever a(t) increases with increase in cosmic time t, this implies ˙a(t) > 0, which implies H > 0. When

accelerating near the bouncing point (Ḣ > 0), we can predict that the derivative of H will be positive. When
an EoS parameter is bouncing, it evolves in phantom form. Different values of α, R0 = 1 and n = 3

4 can be
used to measure the contribution of theory, while the bouncing parameter is used to measure the bouncing
effects. We have also studied cosmological parameters, energy densities, pressures, cosmological parameters,
and gravitational parameters in terms of cosmic time.

4. PHYSICAL INTERPRETATION

Fig 1(a) shows the behaviour of scale factor against cosmic time for different values of bouncing parameter
α. Fig 1(b) of equation (18) shows the evolution of Hubble parameter, H(t) becomes 0(zero) as t → 0 and ∞.
Equation (22) suggests that the deceleration parameter versus time is plotted in Fig. 1(c), q(t) → −∞ at t →
0 and q is negative quantities for sufficiently large values of t for different values of α, R0 = 1 and n = 3

4 .
For different values of bouncing parameter, in the section 2.1 corresponds to fig.2 energy density becomes

zero as t tends to infinity and at t = 0, ρ = 1 but for the flat universe the pressure is zero. The gravitational
constant always increase when time increase whereas cosmological constant decreases when time increases and
G(t) → 0 when t = 0, but Λ(t) is positive constant at t = 0. In fig. 3 and fig. 4 shows the dynamical behaviour
of the section 2.2, energy density becomes zero as t→ ∞ and ρ = 1 when t = 0. The pressure is zero as t→ ∞
and p = −2

3 when t = 0. The gravitational constant always increase when time increase whereas cosmological
constant decreases when time increases and G(t) → 0 when t = 0, but Λ(t) is positive constant at t = 0. In
fig. 5 and fig. 6 shows the dynamical behaviour of the section 2.3, energy density becomes zero as t → ∞ and
ρ = 1 when t = 0. The pressure is zero as t → ∞ and p = −2

3 when t = 0. The gravitational constant always
increase when time increase whereas cosmological constant decreases when time increases and G(t) → 0 when
t = 0, but Λ(t) is positive constant at t = 0.

For different values of α, R0 = 1 and n = 3
4 , in the section 2.4 corresponds to fig.7 energy density becomes

zero as t tends to infinity and at t = 0, ρ = 1 but for K = 1(closed) and γ = 1(Dust universe) the pressure is
zero. The gravitational constant always increase when time increases whereas cosmological constant decreases
when time increases and G(t) → 0 when t = 0, but Λ(t) is positive constant at t = 0. In fig. 8 and fig. 9 shows
the dynamical behaviour of the section 2.5, energy density becomes zero as t→ ∞ and ρ = 1 when t = 0. The
pressure is zero as t → ∞ and p = −2

3 when t = 0. The gravitational constant always increases when time
increases whereas cosmological constant also increases when time increases and G(t) → 0 when t = 0, but Λ(t)
is positive constant at t = 0. In fig. 10 and fig. 11 shows the dynamical behaviour of the section 2.6, energy
density becomes zero as t → ∞ and ρ = 1 when t = 0. The pressure is also zero as t → ∞ and p = 1 when
t = 0. When time increases the gravitational constant always increases whereas cosmological constant decreases
and G(t) → 0 when t = 0, but Λ(t) is positive constant at t = 0.

The graphical behaviour of cosmological parameter in the section 2.7 corresponds to fig.12 energy density
becomes zero as t → ∞ and ρ = 1 at t = 0 but for K = −1(open) and γ = 1(Dust universe) the pressure is
zero. The gravitational constant always increase when time increase whereas cosmological constant decreases
when time increases and G(t) → 0 when t = 0, but Λ(t) is constant at t = 0. In fig. 13 and fig. 14 shows the
dynamical behaviour of the section 2.8, energy density becomes zero as t→ ∞ and ρ = 1 at t = 0. The pressure
is zero as t→ ∞ and p = −2

3 at t = 0. The gravitational constant always increases when time increase whereas
cosmological constant decreases when time increases and G(t) → 0 when t = 0, but Λ(t) is constant at t = 0.
In fig. 15 and fig. 16 shows the dynamical evolution of the section 2.9, energy density becomes zero as t → ∞
and ρ = 1 when t = 0. The pressure is zero as t→ ∞ and p = 1 when t = 0. The gravitational constant always
increase when time increase whereas cosmological constant decreases when time increases and G(t) → 0 when
t = 0, but Λ(t) is constant at t = 0.

5. CONCLUSION REMARKS

In the present contexts we attempt to reinterpret a mater bounce scenario with the framework of higher
dimensional FRW model with variable G and Λ. Since now a days the study of bouncing cosmology becomes
an interesting area to avoid the possible singularity occurring in the usual models under general theory of
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relativity. Our proposed model can provide some useful scenario for the bouncing model. We have presented
the different model for different stages of the universe by calculating the physical parameters of the models with
the use of bouncing parameters. Analysing the Scale factor, Hubble parameter, deceleration parameter, energy
density, pressure, gravitational and cosmological constant have been extensively investigated for different values
of α, R0 = 1 and n = 3

4 . In general, the behaviour near bounce is influenced by the bouncing parameter.
It is emphasized by the bouncing scale factors that the cosmos undergoes a contraction, a bounce, and an
accelerating phase at late times. The parameter H indicates the contracting phase (H < 0) before the bounce,
and the expanding phase (H > 0) after the bounce at t ≈ 0. In the decelerating phase of the universe, all
deceleration parameter values are negative and indicate accelerated expansion.

In our model for different values of K and γ, all the behaviour of energy density increase before bounce and
decrease after bounce but ρ = 1 at bouncing point t = 0. While the pressure profile is negative in the section 2.2,
2.3, 2.5 and 2.8, whereas p = −2

3 at bouncing point t = 0 which justifies the current cosmic expansion with dark
energy. Although p = 1 at bouncing point t = 0, the pressure is positive in sections 2.6 and 2.9, also satisfied a
contracting phase before the bounce and an expanding phase after the bounce. The choice of model parameters
is strictly determined by the evolution of cosmological parameters and in particular, the conservation equation.

The constant G and Λ are allowed to depend on the cosmic time t. The gravitational constant G decreases
before the bounce, and increases after the bounce and G(t) = 0 at t = 0 in all the sections 2.1 - 2.9. The
cosmological term Λ increases before the bounce, and decreases after the bounce and Λ(t) = constant at
bouncing point t = 0 in all the sections 2.1 - 2.9. But in the case of α = 1, of the section 2.7 - 2.9 cosmological
term Λ is negative at bouncing point t = 0. In our research, we have found that the explosion of the universe
at the early stages of its creation was only a consequence of the creation of matter. Thus, studying the early
evolution of the universe requires understanding the implications of time varying Λ and G. And also we hope
to shed some light on the real universe. In addition to providing insights into cosmological structure formation,
this study could also provide insight into the formation of universe. Through this approach, higher dimensional
space time allows the unified description of early evolution of the universe with variables G and Λ. Generally,
the models are scalar expansion, non-shear, and isotropic. According to the above points, our proposed model
provides good bouncing solutions with the parameters chosen.
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9. APPENDIX-I

The Einstein field equations with time dependent cosmological and gravitational terms is given by

Rµν − 1

2
gµνR = 8πG(t)Tµν + Λ(t)gµν (23)

The Bianchi identities from eqn. (23) are given by

Rk
µνi;j +Rk

µij;ν +Rk
µjν;i = 0 (24)

Apply antisymmetric property in the second term, we have

Rk
µνi;j −Rk

µji;ν +Rk
µjν;i = 0 (25)

Contracting with respect to k and i, we get

Rk
µνk;j −Rk

µjk;ν +Rk
µjν;k = 0 (26)

But by the definition of Ricci tensor, we get

Rk
µνk = Rµν and R

k
µjk = Rµj
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From eqn. (26) gives
Rµν;j −Rµj;ν +Rk

µjν;k = 0

Since derivatives of fundamental tensors are 0(zero), we can expressed the above equation as:

(gµjRµν);j − (gµjRµj);ν + (gµjRk
µνj);k = 0

or
Rj

ν;j −R;ν +Rk
ν;k = 0

Changing the dummy indices j and k to µ, we obtain

Rµ
ν;µ −R;ν +Rµ

ν;µ = 0 (27)

But

R;ν =
∂R

∂xν
δ

δxµ
(δµνR) = (δµνR);µ

Therefore eqn.(27) becomes
2Rµ

ν;µ − (δµνR);µ = 0

or

(Rµ
ν − 1

2
δµνR);µ = 0

or

(Rµν − 1

2
gµνR)

;µ = 0

Hence eqn.(23) becomes
(8πG(t)Tµν + Λ(t)gµν)

;µ = 0

10. APPENDIX-II

We have,
Tµν = (ρ+ p)uµuν − pδµν

Differentiation both side w.r.t. ν, we have

0 = [(ρ+ p)uµuν − pδµν ];ν

Multiplying both sides by uµ, we have

⇒ [(ρ+ p)uµuν − pδµν ];νu
µ = 0

⇒ (ρ+ p);νuµuνu
µ + (ρ+ p)(uµuν);νu

µ − p;νu
µ = 0

⇒ (ρ;ν + p;ν)uν + (ρ+ p)(uν);ν − p;νu
µ = 0

⇒ ρ;νuν + (ρ+ p)[(uν),ν + uαΓαν,ν ] = 0

⇒ ρ̇+ 4(ρ+ p)H = 0 ∵ Γ12,2 = Γ13,3 = Γ14,4 = Γ15,5 =
ȧ

a
= H
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ÇI ÇÌIÍÍÈÌ ÃÐÀÂIÒÀÖIÉÍÈÌ ÒÀ ÊÎÑÌÎËÎÃI×ÍÈÌ ×ËÅÍÎÌ

Ó ÊÎÑÌÎËÎÃI� Ç ÂIÄÑÊÎÊÎÌ
Àñåì Äæîòií Ìåéòåéa, Êàíãóäæàì Ïðiéîêóìàð Ñiíãõa, Ñà¹ä Ñàáàíàìa, Ñ. Êiðàíìàëà ×àíób
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Öÿ ñòàòòÿ ïðèñâÿ÷åíà äîñëiäæåííþ ï'ÿòèâèìiðíî¨ îäíîðiäíî¨ òà içîòðîïíî¨ ìîäåëi FRW çi çìiíîþ ãðàâiòàöiéíî¨ òà
êîñìîëîãi÷íî¨ ïîñòiéíî¨ ç êîñìi÷íèì ÷àñîì. Òî÷íèé ðîçâ'ÿçîê ðiâíÿíü ïîëÿ Åéíøòåéíà îòðèìó¹òüñÿ çà äîïîìîãîþ
ðiâíÿííÿ ñòàíó p = (γ − 1)ρ (ãàììà-çàêîí), äå γ, ÿêèé ¹ àäiàáàòè÷íèì ïàðàìåòðîì, áåçïåðåðâíî çìiíþ¹òüñÿ â ìiðó
ðîçøèðåííÿ Âñåñâiòó. Ìè îòðèìàëè ðiøåííÿ äëÿ ðiçíèõ çíà÷åíü êðèâèçíè K = 0, 1,−1, âèêîðèñòîâóþ÷è a(t) =
R0(1 + α2t2)n, äå α, n i R0 � äîäàòíi êîíñòàíòè. Ïîâåäiíêà êîñìîëîãi÷íèõ ïàðàìåòðiâ ïðåäñòàâëåíà äëÿ ðiçíèõ
âèïàäêiâ ìîäåëåé. Äåòàëüíî ïðåäñòàâëåíà ôiçè÷íà iíòåðïðåòàöiÿ îòðèìàíî¨ ìîäåëi. Öiêàâî, ùî çàïðîïîíîâàíà
ìîäåëü âèïðàâäîâó¹ ïîòî÷íi êîñìîëîãi÷íi ñïîñòåðåæåííÿ òåìíî¨ åíåðãi¨.
Êëþ÷îâi ñëîâà: ï'ÿòèâèìiðíèé; FRW ìåòðèêà; êîñìîëîãi÷íèé òåðìií; ìàñøòàáíèé êîåôiöi¹íò âiäñêîêó

https://doi.org/10.3390/universe5030074
https://doi.org/10.1007/s13538-021-00955-y
https://doi.org/10.1007/s13538-021-00955-y
https://doi.org/10.37418/amsj.10.3.51
https://doi.org/10.1002/prop.202100065
10.1088/1402-4896/ac49b2
https://doi.org/10.1140/epjc/s10052-023-11266-8
https://doi.org/10.1007/JHEP03(2023)191
https://doi.org/10.1140/epjp/s13360-023-03772-1
https://doi.org/10.1007/s10714-011-1211-9
https://www.prespacetime.com/index.php/pst/article/view/1633/1559
https://www.prespacetime.com/index.php/pst/article/view/1633/1559
https://doi.org/10.1016/j.newast.2020.101564

	Introduction
	Field equations
	 When K=0(flat) and taking =1(Dust universe), we get 
	 When K=0(flat) and taking =43(Radiation universe)
	When K=0(flat) and taking =2(Zel'dovich universe) 
	 When K=1(closed) and taking =1(Dust universe)
	 When K=1(closed) and taking =43(Radiation  universe) 
	When K=1(closed) and taking =2(Zel'dovich  universe)
	 When K=-1(open) and taking =1(Dust universe)
	When K=-1(open) and taking =43(Radiation  universe)
	When K=-1(open) and taking =2(Zel'dovich  universe)

	Behaviour of bouncing cosmology
	Physical interpretation
	Conclusion remarks
	Credit authorship contribution statement
	Declaration of competing interest
	Data Availability
	Appendix-I
	Appendix-II

