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We investigate the cosmological scenario involving spatially homogeneous and anisotropic Bianchi type-V I0 space-time
in the context of the Sharma-Mittal holographic dark energy model within the framework of Brans-Dicke’s theory
of gravitation. In order to achieve this objective, the Hubble, deceleration, equation-of-state parameters have been
discussed. The deceleration parameter (q) is used to measure the pace at which the expansion of the universe is
accelerating. The equation-of-state parameter (ωsmhde) characterizes the quintessence and vacuum areas of the universe.
All the parameters demonstrate consistent behaviour following the Planck 2018 data. We assess the dynamical stability
by defining the squared speed of sound and examining its behaviour. In addition, the energy conditions and the variation
of ωsmhde and ω′

smhde in the model indicate the present accelerating expansion of the universe.

Keywords: Bianchi type-V I0 model; Dark energy model; Brans-Dicke theory of gravity; Cosmology; Sharma-Mittal
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1. INTRODUCTION

The phenomenon of accelerated expansion of the universe has been thoroughly demonstrated by several
observations [1]-[3]. Studies imply that the universe is spatially flat and consists of two main components:
dark energy (DE) with negative pressure, dust matter composed of cold dark matter (CDM) and baryons.
To understand the nature of DE, it is necessary to determine whether it arises from a cosmological constant (Λ) or
a dynamical model. The dynamical DE models may be distinguished from the cosmological constant by using the
equation of state (EoS) parameter ωDE = pDE

ρDE
, where pDE represents the pressure and ρDE represents the energy

density of DE. Multiple possibilities for differential evolution have been suggested (Copeland et al. [4]). The data
analysis of SNeIa demonstrates that these dynamical models are more consistent with the current understanding
of the universe compared to Λ. An alternative approach involves altering the geometric component of the
Einstein-Hilbert action, which is referred to as modified theories of gravity, to analyze the expansion phenomena.
For a comprehensive examination of DE and modified theories of gravity, please refer to the sources cited as
[5]-[7]. The developments in the exploration of black hole theory and string theory have led to the formulation
of the holographic principle. This principle suggests that the number of possible configurations of a physical
system should be limited as well as that this limitation should be determined by the system’s surface area
rather than its volume. Additionally, the holographic principle suggests that there should be a restriction on
the system’s lowest energy state.

The holographic DE (HDE) is a very intriguing dynamical concept that is founded upon the holographic
principle. The validity of HDE has been evaluated and verified by many astronomical methodologies, including
using the anthropic principle (Huang and Li [8]). Incorporating the holographic principle into cosmology allows
for determining the maximum amount of entropy present in the universe. Li [9] put the following limit on the
DE density, as stated by Cohen et al. [10]

ρDE= 3d2m2
pL

−2. (1)

the symbol mp represents the decreased Planck mass, 3d2 indicates a numerical constant, and L represents the
IR-cutoff. Several types of IR-cutoff have been investigated in academic studies, including the Hubble horizon
H−1, event horizon, particle horizon, conformal universe age, Ricci scalar radius, and Granda–Oliveros cutoff
[11]-[12]. The HDE models, using various infrared cutoffs, provide a modern understanding of the universe’s
acceleration. They additionally demonstrate that the transition redshift value, which marks the transfer from
a previous deceleration phase (q>0) to the current acceleration phase (q<0), corresponds with contemporary
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observable data. Nojiri and Odintsov [13] proposed a technique to merge the initial and final phases of the
universe by using generalized HDE and phantom cosmology. They have now expanded this notion to what they
refer to as Hinflation [14]. Various formulations of entropy have been used in recent decades to construct and
analyze cosmological models. Multiple innovative models of HDE have been developed, such as the Tsallis HDE
[15, 16], the Sharma-Mittal HDE (SMHDE) [17], and the Renyi HDE model [18]. Numerous researchers have
evaluated different cosmological models of new HDE models [19]- [30]. Jawad and Sultan [31], Sharma [32], and
Drepanou et al. [33] have investigated SMHDE models within different gravitational theories. The researchers
Sadeghi et al. [34] examined the dynamic formations of HDE within the framework of Brans-Dicke’s theory of
gravity, using the Tsallis and Kaniadakis methodologies.

In the last few decades, universes that are both spatially homogeneous and anisotropic have attracted a
lot of attention from theoretical cosmologists. According to Akarsu and Kilinc [35], the main empirical data
from CMBR (Bennett et al. [36]) supports the idea that the universe is transitioning from a non-uniform to
a uniform phase. Moreover, it is believed that the isotropic FRW model may not provide a complete and
correct picture of matter in the early universe. It is essential to take into account anisotropic space-times
to objectively evaluate cosmological models for their ability to attain the observed degree of homogeneity and
isotropy. Because of its anisotropic character, researchers have given a lot of attention to homogeneous but
not necessarily isotropic Bianchi type (BT) cosmological models. In the framework of anisotropic Bianchi type
space-times, several renowned researchers have recently proposed fascinating cosmological models that include
DE. several researchers (Ref. [37]-[49]) have looked at anisotropic cosmological models in various scenarios.

In this work, we take into account the BT-V I0 universe filled with matter and SMHDE within the framework
of Brans-Dicke’s theory of gravitation, motivated by the previously mentioned findings and discussion. This
paper’s work is organized in the following way: Section-2 contains the BT-V I0 metric and field equations of the
model using anisotropic SMHDE fluid and matter. In addition, we constructed the SMHDE model and found
the solutions to the field equations in section-3. Various cosmological parameters that constitute our model are
presented in section-4. In the last section, we derive a few conclusions based on our results.

2. METRIC AND FIELD EQUATIONS

The Brans-Dicke [50] field equations in the presence of matter and DE are given by

Rij −
1

2
Rgij = −8πϕ−1

(
Tij + T ij

)
− wϕ−2

(
ϕ,iϕ,j −

1

2
gijϕ,kϕ

,k

)
− ϕ−1

(
ϕi;j − gijϕ

,k
;k

)
, (2)

and
ϕ,k
;k = 8π

(
T + T

)
(3 + 2w)−1.

Also, the energy conservation equation is (
T ij + T

ij
)
;j
= 0. (3)

The energy-momentum tensor for the matter and DE are respectively defined as

T ij = ρmuiuj , Tij = (ρsmhde + psmhde)uiuj − psmhdegij . (4)

Here ρm, ρsmhde are the energy densities of matter and the dark energy respectively. psmhde is the pressure of
the dark energy. In a comoving coordinate system, from equations (4), we get

T 1
1 = T 2

2 = T 3
3 = −psmhde, T

4
4 = ρsmhde ; T

1

1 = T
2

2 = T
3

3 = 0, T
4

4 = ρm (5)

where ρm, ρsmhde and psmhde are the functions of cosmic time t only.
We consider the geometry of the universe as spatially homogeneous and anisotropic BT-V I0 line element

which can be written as
ds2=dt2 −A2dx2 −B2e2xdy2 − C2e−2xdz2, (6)

where A, B and C are functions of cosmic time t only. The following are the some of physical parameters which
are useful in finding the solution of field equations for the BT-V I0 space-time given by Eq. (6). The average
scale factor a(t) and volume V of the BT-V I0 space-time are defined as

V= [a(t)]
3
=ABC. (7)

Anisotropic parameter Ah is given by

Ah=
1

3

3∑
i=1

(
Hi −H

H

)2

(8)
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where H1=
Ȧ
A , H2=

Ḃ
B , H3=

Ċ
C are directional Hubble’s parameters and H= 1

3

(
Ȧ
A + Ḃ

B + Ċ
C

)
is mean Hubble’s

parameter. Here and after an overhead dot denotes differentiation concerning cosmic time t. Expansion scalar
(θ) and shear scalar (σ2) are defined as

θ=ui
;i=

Ȧ

A
+

Ḃ

B
+

Ċ

C
(9)
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3
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Ȧ2

A2
+

Ḃ2

B
+

Ċ2
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AC
− ḂĊ
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)
(10)

where ui= (1, 0, 0, 0) is the four-velocity in the comoving coordinates. The deceleration parameter is given by

q=
d

dt

(
1

H

)
− 1. (11)

In the comoving coordinate system, with the help of (5), the field equations (2) for the metric (6) can be
written as
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ȦĊ

AC
− 1

A2
+

w

2

ϕ̇2

ϕ2
+

ϕ̇

ϕ

(
Ȧ
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ḂĊ
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Ċ

C

)
= 8π

(
ρsmhde + ρm

ϕ

)
(15)

Ḃ
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Also the energy conservation equation (3) can be written as

˙ρm +

(
Ȧ
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+

Ḃ

B
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C

)
(ρm + ρsmhde + psmhde) + ρ̇smhde = 0 (18)

where an overhead dot denotes differentiation with respect to time t and EoS parameter of DE is ωsmhde =
psmhde

ρsmhde
. From (16) by taking the integrating constant as unity, we get

C = B (19)

Using equation (19), the field equations (12) to (17) reduce to
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3. MODEL AND COSMOLOGICAL PARAMETERS

The field equations (20)-(23) form a set of four distinct equations involving six variables:
A,B, ρsmhde, ωsmhde, ρm, and ϕ. To get a deterministic outcome for the nonlinear field equations in our model,
we impose the following reasonable physical constraints. we consider the fact that expansion scalar θ is directly
proportional to shear scalar σ which leads to a relation between the metric potentials as follows

B=Ak (24)

k represents a positive constant that accounts for the anisotropy of space-time. Collins et al. [51] have de-
termined that in a spatially homogeneous space-time, the normal congruence to the homogeneous expansion
adheres to the constraint that the ratio of the shear stress (σ) to the Hubble parameter (H) remains constant.

In addition, it is common in the literature to employ a power-law relationship between scalar field ϕ and
average scale factor a(t) of the form (Johri and Sudharsan [52]; Johri and Desikan [53]) ϕ ∝ [a (t)]

n
where n

denotes a power index. Many authors have looked into different aspects of this type of scalar field ϕ. Given the
physical significance of preceding relationship, we employ the following assumption to reduce the mathematical
complexity of the system

ϕ(t) = ϕ0[a(t)]
n. (25)

Using the relations (24) and (25) in Eqs. (20) and (21), we obtain the metric potentials as

A(t) =

√
k2 t2

4
− A0

k2
; B(t) = C(t) =

(
k2 t2

4
− A0

k2

) k
2

(26)

where k2 = 2
1−k , n = 3−6k

2k+1 , A0 is an integrating constant. The scalar field of the model is

ϕ(t) = ϕ0

(
k2 t2

4
− A0

k2

)n(2k+1)
6

. (27)

Now metric (6), with the help of metric potentials in Eq. (26), can be written as

ds2 = dt2 −
(
k2 t2

4
− A0

k2

)
dx2 −

(
k2 t2

4
− A0

k2

)k (
e2xdy2 + e−2xdz2

)
. (28)

Eq. (28) represents a spatially homogeneous and anisotropic BT-V I0 SMHDE model within the framework of
Brans-Dicke theory of gravitation with the following physical parameters. The average scale factor a(t) and
volume V (t) of the model are, respectively, given by

V (t) = a(t)3 =

(
k2 t2

4
− A0

k2

) 2k+1
2

. (29)

The average Hubble’s parameter H and expansion scalar θ are obtained as

H = 3θ=(2 k + 1) k2 t

(
3 k2 t2 − 12

A0

k2

)−1

. (30)

The shear scalar σ2 and average anisotropic parameter Ah are given by

σ2=
k22(k − 1)

2
t2

3
(
k2 t2 − 4 A0

k2

)2 ; Ah=
2(k − 1)

2

(2k + 1)
2 . (31)

From the above parameters it is observed that both the spatial volume and average scale factor of the
universe exhibit the expansion of the universe. Furthermore, during the first epoch, which is when t= 0, all
values become finite. However, as t approaches infinity, they diverge. It is worth mentioning that when k= 1,
the model becomes shear-free and isotropic, as shown by the conditions σ2= 0 and Ah= 0.

As a dynamical DE component, we assume Sharma-Mittal holographic DE. It is defined by (Sharma and
Mittal [54]) and is formulated using Sharma-two-parametric Mittal’s entropy

SSM =
1

d1

(1 + δκ

4

) d1
δ

− 1

 , (32)
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where κ = 4πL2 and L represents the IR cutoff. R and δ are two free parameters in this case. At the
appropriate d1 limits, Renyi and Tsallis entropies can be recovered. Sharma-Mittal entropy is transformed into
Renyi entropy in the limit d1 → 0, and Tsallis entropy in the limit d1 → 1− δ. According to Cohen et al. [10],
the relationship between the system entropy and the IR and UV cutoffs yields the energy density

ρde =
3d22SSM

8πL4
. (33)

Using the above equation and the Hubble horizon cutoff L = 1
H , we can calculate the energy density of the

Sharma-Mittal HDE model (Jahromi et al. [17]) as follows:

ρde =
3d22H

4

8πd1

(1 + δπ

H2

) d1
δ

− 1

 , (34)

where C2 denotes the free parameter. Using Hubble parameter H(t) in the above Eq. (34), we get the energy
density of SMHDE of our model as

ρde =
3d22 ((2 k + 1) k2 t)
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)4

1 +

δπ
(
3 k2 t2 − 12 A0

k2

)2
((2 k + 1) k2 t)

2


d1
δ

− 1

 . (35)

Using Eqs. (34), (27) and (26) in Eq. (15), we get the energy density of matter as
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Using Eqs. (34), (27) and (26), from Eq. (20) and (21) we obtain the EoS parameter of SMHDE as
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4. PHYSICAL DISCUSSION

This section examines the expansion of the universe by analyzing cosmological parameters such as the
scalar field, EoS ωsmhde, squared sound speed v2s , deceleration q parameters, and the ωsmhde −ω′

smhde plane for
the anisotropic SMHDE model.

Scalar field: Figure 1 indicates the behavior of the scalar field in terms of cosmic time for various values
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of parameter k. The scalar field exhibits a positive value and experiences a steady decline throughout its de-
velopment. The decreasing nature of the scalar field indicates the increasing pattern of kinetic energy in this
model. Furthermore, we have seen that when the parameter k increases, the scalar field decreases.

EoS parameter: The equation of state parameter (ω) is often used for classifying the many phases of the
expanding universe. The EoS parameter, represented as ω=p

ρ , is a measure of the relationship between pressure

(p) and energy density (ρ) of a given matter distribution. The decelerated and accelerated phases consist of
the following time intervals: Decelerated phases, such as those involving cold dark matter or dust fluid (ω
is zero), indicating the radiation era for (ω is between 0 and 1/3), and the fluid is characterized as stiff for
ω = 1. Accelerating phase, such as the cosmic constant/vacuum period (ω is -1), which corresponds to the
quintessence period (when −1 < ω < −1/3), it is known as the phantom era (ω < −1), indicating a quintom
period characterized by the mixture of both quintessence and phantom components.

The EoS parameter of SMHDE with Hubble horizon cutoff is given in Eq. (37). In Fig. 2, we inves-
tigate the evolution of EoS parameter ωsmhde in terms of cosmic time t for different values of k. Fig. 2
shows that initially ωsmhde starts from DE era, varies in quintessence region −1 <ωsmhde<− 1/3 and phantom
region ωsmhde < −1. As the parameter k increases the EoS parameter of our model enters into phantom region.
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Figure 1. Plot of scalar field versus cosmic time t
for A0 = −3900.69 and ϕ0 = 1750.
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Figure 2. Plot of EoS parameter versus cosmic time
t for A0 = −3900.69, δ = 1.5, d1 = 4.5, d2 = 2.2 and
ω = 75000.

Squared sound speed: The squared speed of the sound parameter is defined as

v2s=
ṗsmhde

ρ̇smhde
=ωsmhde +

ρsmhde

ρ̇smhde
ω̇smhde. (38)

The sign of this parameter is essential when considering the stability of DE models. The stability of the DE
model is determined by the positive signature of v2s . If the signature is negative, the model becomes unstable. By
substituting the energy density and EoS parameter from equations (35) and (37) into the equation for squared
sound speed (v2s) provided by equation (38), we do a graphical analysis of v2s for our model. Figure 2 illus-
trates the relationship between the square of the velocity, denoted as v2s , and the time t. The trajectories exhibit
positive behaviour throughout the model’s development. Therefore, this demonstrates the stability of our model.

ωsmhde−ω′
smhde plane: We examine the ωsmhde − ω′

smhde plane, where ω′
smhde represents the rate of change

of the EoS parameter ωsmhde concerning the natural logarithm of the scale factor ’ln a’. Caldwell and Linder
[55] propose using this framework to examine the cosmic evolution of the quintessence DE scenario. More-
over, it has been observed that the ωsmhde − ω′

smhde plane can be separated into two distinct areas: thawing
(ωsmhde< 0, ω′

smhde> 0) and freezing (ωsmhde< 0, ω′
smhde< 0). The freezing zone exhibits a more accelerated

phase of cosmic expansion in comparison to the thawing area.
Figure 4 depicts the relationship between the ωsmhde − ω′

smhde plane and various values of k. Figure 4
demonstrates that the ωsmhde−ω′

smhde plane represents the area where freezing occurs, regardless of the specific
parameter values. Modern cosmological data suggest that the freezing zone exhibits a phase of increased cosmic
acceleration in contrast to the thawing area. Hence, the ωsmhde − ω′

smhde plane of our model exhibits cosmic
acceleration inside the freezing region.
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Figure 3. Plot of v2s versus time t for A0 =
−3900.69, δ = 1.5, d1 = 4.5, d2 = 2.2 and ω =
75000.

Figure 4. Plot of ωsmhde − ω′
smhde for A0 =

−3900.69, δ = 1.5, d1 = 4.5, d2 = 2.2 and ω =
75000.

Energy conditions: The Raychaudhuri equations initiated the exploration of energy conditions, playing a crucial
role in analyzing the alignment of null and time-like geodesics. The energy conditions are used to illustrate other
universal principles about the dynamics of intense gravitational fields. The often observed energy conditions are
as follows:

Dominant energy condition (DEC): ρsmhde ≥ 0, ρsmhde ± psmhde ≥ 0.

Strong energy conditions (SEC) : ρsmhde + psmhde ≥ 0, ρsmhde + 3psmhde ≥ 0,

Null energy conditions (NEC): ρsmhde + psmhde ≥ 0,

Weak energy conditions (WEC): ρsmhde ≥ 0, ρsmhde + psmhde ≥ 0,

Figure 5 illustrates the energy conditions of our SMHDE model. It is seen that the WEC satisfies the
condition ρsmhde ≥ 0. Also, Fig. 5 demonstrates that the SEC ρsmhde + 3psmhde ≥ 0 is not fulfilled. This
phenomenon, resulting from the universe’s acceleration in its latter stages, aligns with current observational
findings.
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Figure 5. Plot of energy conditions versus cosmic
time t for A0 = −3900.69, δ = 1.5, d1 = 4.5, d2 =
2.2 and ω = 75000.
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Deceleration parameter: The expansion of the universe may be determined by using the dimensionless cosmo-
logical parameter referred to as the deceleration parameter (DP). When DP has positive values, the model slows
down in the usual manner. However, when q is equal to zero, the model grows at a consistent pace. The model
demonstrates accelerated expansion when the value of q is between −1 and 0, and a super-exponential expansion
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when q is less than −1. Using Eqs. (11) and (30), we get the deceleration parameter can be calculated as

q=
3 k2

2t2 + 12A0
2

(2 k + 1) k2
2t2

− 1. (39)

Figure 5 displays the behavior of the deceleration parameter q in terms of cosmic time t for different values of
k. It is important to mention that our model is accelerating throughout the evolution of the model and which
is consistent with the recent observational data.

5. CONCLUSIONS

The accelerated expansion phenomenon of the universe has got much attraction with the passage of time.
Upto now, many approaches have been adopted for explaining this phenomenon with variety of dynamical DE
models and modified theories of gravity. Here, we reconsider the expansion phenomenon in the Brans-Dicke
scenario leads to an accelerated universe. Thus, we have considered the Sharma-Mittal holographic dark energy
within the context of anisotropic Bianchi type-V I0 space-time in Brans-Dicke theory of gravitation. In this case,
we have assumed the Hubble horizon as the infrared cutoff. We have examined well-recognized cosmological
parameters, including the equation of state, deceleration, squared speed of sound parameters and ωsmhde −
ω′
smhde plane. Our findings have been condensed into the following summary:

The scalar field exhibits a positive value and experiences a steady decrease throughout its development.
The decreasing nature of the scalar field indicates the increasing pattern of kinetic energy in this model.
Furthermore, we have seen that when the parameter k increases, the scalar field decreases. The EoS pa-
rameter ωsmhde of the SMHDE model initially starts from the dark energy era and varies in quintessence
region −1 <ωsmhde< − 1/3 and finally it becomes less than −1, which means the model approaches phan-
tom region at late times. We have made a comparison of our results with present Planck collaboration data
[56] where the limits on the EoS parameter are given as ωde= − 1.56+0.60

−0.48 (Planck + TT + lowE), ωde= −
1.58+0.52

−0.41 (Planck + TT,TE,EE + lowE), ωde= − 1.57+0.50
−0.40 (Planck + TT,TE,EE + lowE + lensing), ωde= −

1.04+0.10
−0.10 (Planck + TT,TE,EE + lowE + lensing + BAO). It can be seen that the results for the EoS param-

eter of our model are consistent with the Planck Collaboration data. The ωsmhde − ω′
smhde plane depicts the

area where freezing occurs for all three parameter values. Modern cosmological measurements indicate that the
freezing zone reveals a period of greater cosmic acceleration compared to the thawing region. Therefore, the
ωsmhde − ω′

smhde plane of our model demonstrates cosmic acceleration in the freezing area and aligns well with
the facts. The paths of the ωsmhde − ω′

smhde plane, as predicted by our model, align with the observed data

[57, 58] ωsmhde=−1.13+0.24
−0.25, ω

′
smhde< 1.32 (Planck+WP+BAO). The squared sound speed trajectories exhibit

positive behaviour throughout the evolution of the universe and hence our model is stable. Our model violates
the SEC regulations and this phenomenon resulting from the universe’s acceleration in its latter epochs aligns
with current observational data. Our model demonstrates an accelerating expansion of the universe throughout
the evolution of model.
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ÊÎÑÌI×ÍI ÀÑÏÅÊÒÈ ÃÎËÎÃÐÀÔI×ÍÎ� ÌÎÄÅËI ÒÅÌÍÎ� ÅÍÅÐÃI�
ØÀÐÌÀ-ÌIÒÒÀËÀ Â ÒÅÎÐI� ÃÐÀÂIÒÀÖI� ÁÐÅÍÑÀ-ÄIÊÊÅ

Þ. Àäiòüÿa, Ä. Òåäæåøâàðàðàîa, Ó.Þ. Äiâ'ÿ Ïðàñàíòib
aÄåïàðòàìåíò ôóíäàìåíòàëüíèõ òà ãóìàíiòàðíèõ íàóê, Òåõíîëîãi÷íèé iíñòèòóò GMR,

Ðàäæàì-532127, Iíäiÿ
bÔàêóëüòåò ñòàòèñòèêè òà ìàòåìàòèêè Êîëåäæó ñàäiâíèöòâà, Óíiâåðñèòåò ðîñëèííèöòâà Dr.Y.S.R.,

Ïàðâàòèïóðàì-535502, Iíäiÿ

Ìè äîñëiäæó¹ìî êîñìîëîãi÷íèé ñöåíàðié iç ïðîñòîðîâî îäíîðiäíèì i àíiçîòðîïíèì ïðîñòîðîì-÷àñîì òèïó Á'ÿíêi
V I0 â êîíòåêñòi ãîëîãðàôi÷íî¨ ìîäåëi òåìíî¨ åíåðãi¨ Øàðìà-Ìiòòàëà â ðàìêàõ òåîði¨ ãðàâiòàöi¨ Áðàíñà-Äiêêå. Äëÿ
äîñÿãíåííÿ öi¹¨ ìåòè îáãîâîðþâàëèñÿ Õàááë, óïîâiëüíåííÿ, ïàðàìåòðè ðiâíÿííÿ ñòàíó. Ïàðàìåòð óïîâiëüíåííÿ
(q) âèêîðèñòîâó¹òüñÿ äëÿ âèìiðþâàííÿ òåìïó, ç ÿêèì ïðèñêîðþ¹òüñÿ ðîçøèðåííÿ Âñåñâiòó. Ïàðàìåòð ðiâíÿííÿ
ñòàíó (ωsmhde) õàðàêòåðèçó¹ êâiíòåñåíöiþ òà âàêóóìíi îáëàñòi Âñåñâiòó. Óñi ïàðàìåòðè äåìîíñòðóþòü óçãîäæåíó
ïîâåäiíêó âiäïîâiäíî äî äàíèõ Planck 2018. Ìè îöiíþ¹ìî äèíàìi÷íó ñòàáiëüíiñòü, âèçíà÷àþ÷è êâàäðàò øâèäêîñòi
çâóêó òà äîñëiäæóþ÷è éîãî ïîâåäiíêó. Êðiì òîãî, åíåðãåòè÷íi óìîâè òà âàðiàöiÿ ωsmhde i ω

′
smhde ó ìîäåëi âêàçóþòü

íà ïîòî÷íå ïðèñêîðåíå ðîçøèðåííÿ Âñåñâiòó.
Êëþ÷îâi ñëîâà: ìîäåëü òèïó Bianchi-V I0; ìîäåëü òåìíî¨ åíåðãi¨; òåîðiÿ ãðàâiòàöi¨ Áðåíñà-Äiêêå; êîñìîëîãiÿ;

ãîëîãðàôi÷íà òåìíà åíåðãiÿ Øàðìà-Ìiòòàëà
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