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This study explores the optical properties of monolayers from transition metal dichalcogenides (TMDs), materials that have gained 
attention post-graphene discovery for their unique electronic and optical characteristics. We analyze the crystal structure, Brillouin 
zones, and electronic band structures of TMD monolayers, laying the foundation to understand their diverse optical phenomena. 
Special emphasis is placed on the energy spectrum across valleys and the use of an effective Hamiltonian for parallel spin bands. 
We investigate interband optical transitions, including single-, two-, and three-photon processes, developing equations to calculate 
transition probabilities that take into account polarization, light frequency, and temperature. Our theoretical analysis, rooted in 
quantum mechanics, sheds light on the matrix elements that dictate these transitions, underscoring the impact of complex 
compositions on the optical behavior of TMD monolayers. This work not only advances our understanding of TMD optical 
properties but also highlights their potential for optoelectronic applications, marking a significant contribution to the field of 
semiconductor physics. 
Keywords: Polarized photon; Matrix element; Optical transitions; Two-Band approximation; Current carriers; Electron 
Hamiltonian; Momentum operator; Spin states 
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INTRODUCTION 
The discovery of a method for producing graphene [1] sparked significant interest in the exploration of various two-

dimensional (2D) atomic layers of transition metal dichalcogenides (TMDs), which exhibit unique physical properties. 
Transition metal dichalcogenides are a class of chemical compounds denoted by the formula 𝑀𝑋 , where 𝑀 represents a 
transition metal (e.g., Mo, W) and X denotes a chalcogen (e.g., S, Se) [2-5]. 

In recent years, two-dimensional (2D) structures such as graphene, monolayers of transition metal dichalcogenides 
(TMDs), monolayers of hexagonal boron nitride, and van der Waals heterostructures based on them have occupied a 
special place in the field of semiconductor nanosystems [3,4]. The most widely studied representatives among TMDs 
include 𝑀𝑜𝑆 , 𝑀𝑜𝑆𝑒 , 𝑊𝑆 , and 𝑊𝑆𝑒  monolayers [5-7]. These two-dimensional systems are actively investigated both 
experimentally and theoretically. It's noteworthy that the boundaries of the hexagonal Brillouin zone are delineated at the 𝐾± points. In such scenarios, under the dipole approximation, 𝜎  or 𝜎  polarized light is selectively absorbed in the 𝐾  
or 𝐾  valleys, respectively [6]. 

Currently, numerous studies focus on the diverse structures of metal dichalcogenides [6]. However, the optical 
properties of samples with intricate structures remain insufficiently explored. In light of this, the theoretical investigation 
of single- and multiphoton absorption in monolayers of metal dichalcogenides becomes paramount. This involves a 
detailed examination of the matrix elements of optical transitions, which constitutes the core subject of this work. Such 
analysis is crucial for understanding the complex optical behaviors of these materials. 

BASIC PROPERTIES OF TMD MONOLAYERS 
Fig. 1a,b schematically illustrates the crystal structure and atomic arrangement within TMD monolayers. The 

monomolecular layer, characterized by the 𝐷  point group, features a horizontal mirror plane that intersects the metal 
atom layer. The unit cell comprises a metal atom flanked by two chalcogen atoms, positioned in planes above and below 
the metal plane, respectively. The Brillouin zone is depicted as a regular hexagon (Fig. 1c). The correct exclusion zones 
at the 𝐾± points are identified by the time-reversal symmetry between them. Near these points, the electron dispersion in 
both the valence and conduction bands exhibits a parabolic shape (Fig. 1d). It is important to note that at the 𝐾± points, 
the band splitting due to spin-orbit coupling vanishes, leading to degeneracy. This symmetry, under the time-reversal 
operator, allows for the association of states with opposite spins in different valleys. 

As a result, we derive the effective Hamiltonian matrix for the 𝐾  point, which is a 2×2 matrix describing the states 
with parallel spins in the conduction and valence bands for spin projection s = +1/2 near this point [6], i.e. 

Cite as: R.Y. Rasulov, V.R. Rasulov, K.K. Urinova, M.A. Mamatova, B.B. Akhmedov, East Eur. J. Phys. 1, 393 (2024), https://doi.org/10.26565/2312-
4334-2024-1-40 
© R.Y. Rasulov, V.R. Rasulov, K.K. Urinova, M.A. Mamatova, B.B. Akhmedov, 2024; CC BY 4.0 license 

https://orcid.org/0000-0002-5512-0654
https://orcid.org/0000-0001-5255-5612
https://orcid.org/0000-0001-6980-9877
https://orcid.org/0000-0003-4894-3588
https://doi.org/10.26565/2312-4334-2024-1-40
https://periodicals.karazin.ua/eejp/index
https://portal.issn.org/resource/issn/2312-4334
https://creativecommons.org/licenses/by/4.0/


394
EEJP. 1 (2024) Rustam Y. Rasulov, et al.

 𝐻 𝐸 /2 γ 𝑘 − 𝑖𝑘γ 𝑘 𝑖𝑘 −𝐸 /2 . (1) 

Here, 𝑘 𝑘 , 𝑘  represents the two-dimensional wave vector relative to the γ point in the Brillouin zone, and 𝐾  signifies a parameter proportional to the interband matrix element of the momentum operator. 𝐸  denotes the band 
gap. For spin levels within the same valley 𝑠 −1/2 , the band gap 𝐸  transforms to 𝐸 , where Δ is the sum of the 
spin-orbit coupling induced energy splittings in the conduction and valence bands. It is important to note that the band 
gap widths in structures based on molybdenum and tungsten exhibit quantitative differences [5-8]. The effective 
Hamiltonian for the 𝐾  valley is obtained by the substitution in expression (1) from 𝑘 ± 𝑖𝑘 → 𝑘 ∓ 𝑖𝑘  [1]. The energy 
spectrum of an electron, as described by Hamiltonian (1), is given by the following expression, which is also referred to 
as the Dirac-like energy spectrum [8]: 

 ε , λε , ε 𝐸 /2 γ 𝑘 , (2) 

where 𝜏  corresponds to the conduction band, while 𝜏 − denotes the valence band. The distinction in band gaps, 
denoted as 𝐸± 𝑘 , leads to variations in the energy spectrum, which are depicted in Fig. 1. This figure illustrates how 
the energy spectrum varies with different band gap values (Fig. 1a) and electron effective masses (Fig. 1b) [5-10]. The 
diverse band gaps and effective masses across different materials result in significant differences in their electronic 
properties, as visually represented in these figures. 

Figure 1. (a) is an 𝑀𝑋  schematic representation of the monolayer crystal structure of TMD described by the chemical formula. 
Blue spheres - metal atoms (M), yellow - chalcogen (X), (b) - arrangement of atoms, (c) two-dimensional Brillouin zone, (d) 𝐾± 
image of the energy spectrum near points corresponding to the Brillouin zone and the usual rules for choosing radiation for falls. 
Here λKc and λKv are the widths of the spin-orbit bands separating the conduction band and valence band, respectively.  

In many instances, to streamline the calculations, the energy spectrum of charge carriers for very small magnitudes 
of the wave vector 𝑘  can be approximated as follows: 

 ε ℏ ∗ ,  (3) 

where 𝑚∗ 𝐸 / 2𝑣   is expressed as effective mass, 𝑣 𝛾/ℏ  quantity per unit speed. 
Literature sources, including [4], present varying numerical values for the effective mass of electrons and the band 

gap in monolayers of metal dichalcogenides. Consequently, Figure 1 illustrates the energy spectra of charge carriers for 
diverse values of the aforementioned band parameters: it showcases how the energy spectrum's band gap varies with a 
specific effective mass, alongside the results plotted against the two-dimensional wave vector. Meanwhile, Figure 2 
displays the energy spectrum as a function of the effective mass and two-dimensional wave vector, with the band gap 
held constant. 

 
COMPONENT MATRIX ELEMENTS OF INTERBAND OPTICAL TRANSITIONS 

The coefficient of linear-circular dichroism, indicative of the probabilities of optical transitions, is determined by 
the underlying matrix elements. These elements facilitate a quantum mechanical analysis of such transitions. Moving 
forward, we will conduct a detailed examination of the matrix elements associated with single- and multiphoton optical 
transitions, aiming to deepen our understanding of these processes. 

Interband single-photon optical transitions. This optical transitions in monolayers of metal dichalcogenides are 
influenced by the polarization vector 𝑒 of light, its frequency, and the temperature of the sample. Assuming the effect of 
coherent saturation is negligible, the probability of these optical transitions between the conduction (C) and valence (V) 
bands can be expressed as: 

 𝑊 ; ℏ ℏ ∑ 𝑓 𝐸 − 𝑓 𝐸⃗ | 𝑒 ⋅ �⃗� | δ 𝐸 − 𝐸 − ℏω  (4) 

is calculated by the expression, here where 𝑒 ⋅ �⃗� -pulse operator and the interband matrix element of the scalar product 
of the polarization vector of polarized light, the remaining quantities are well-known quantities. (1) the eigenfunctions of 
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the Hamiltonian, i.e., the propagation coefficient of the wave functions of current carriers [10] is determined as noted in 
the work, and if we pay attention to the fact that the operator 𝑘 impulse is the first-order derivative obtained from 
relation (1) according to wave vector, then 𝑒 ⋅ �⃗�  the matrix element of the operator of single-photon interband optical 
transitions will be noted in the following form 

 ⟨с|𝑒 ⋅ �⃗�|𝑉⟩ = ℏ с 𝑒  + 𝑒 𝑉⟩ = ℏ ⃗ 𝑒 𝐸 + 𝐸 𝑘 − −𝐸 + 𝐸 𝑘 𝑒 . (5) 

Here 𝑝 = ℏ , 𝑘 = 𝑘 + 𝑘 , 𝑒± = 𝑒 ± 𝑖𝑒 . (Diagonal) matrix element of the pulse operator corresponding to 
single-band networks and single-photon optical transitions: 

 𝑝сс = −𝑝 = 𝑒 ⋅ �⃗�сс = 4 ℏ ⃗ ⋅ ⃗  = 4𝑝 γ ⃗ ⋅ ⃗ .  (6) 

is recorded on the form. If we neglect the contribution of the coherent saturation effect, then the squared modulus of the 
composite matrix element will be written as 

 𝑀 ; (𝑘) = ℏ 𝑝 𝑒 − 2 𝑒 − 𝑒 ,  (7) 

Interband two-photon optical transitions. In the general case, two-photon interband optical transitions occur in two 
stages: at the first stage - interband single-photon optical transitions, then intraband single-photon optical transitions (and 
vice versa at the second stage) [12]. Then the matrix element of the two-photon optical transition has the form  

 М( ) 𝑘 , 𝑒 = ( ⃗⋅ ⃗) ( ⃗⋅ ⃗)⃗ ⃗ ℏ − ( ⃗⋅ ⃗) ( ⃗⋅ ⃗)ℏ ,  (8)  

If we take into account the law of conservation of energy for a given optical transition, then 

 М( ) 𝑘 , 𝑒 = ( ⃗⋅ ⃗) ( ⃗⋅ ⃗)ℏ (𝑒 ⋅ �⃗�) .  (9) 

Since the energy spectra of current carriers in the conduction band and valence band differ from each other in sign, 
the relation (𝑒 ⋅ �⃗�) = −(𝑒 ⋅ �⃗�)  is appropriate. Expression (9) takes into account 𝐸 𝑘 − 𝐸 𝑘 − 𝑁ℏω = 0 
relationships associated with 𝑁 photon absorption of polarized light (from this relationship we obtain 𝑘 (ω) =(𝑁ℏω) − 𝐸 / /(2γ) expressions. Thus, М( ) 𝑘 , 𝑒  is determined by the relation 

 ℏ (𝑝 − 𝑝 ) = ℏ 𝑇 𝑒  − 𝑇 𝑒 (𝑒 ⋅ 𝑘  + 𝑒 ⋅ 𝑘  ), (10) 

where 𝑇± = 𝐸 + 4𝛾 𝑘 ± 𝐸 / 2 𝐸 + 4𝛾 𝑘 , also here the squared modulus of the value М( ) 𝑘 , 𝑒  is 
determined by the expression 

 ℏ 𝑝 γ ℜ( ) + ℜ( ) + ℜ( ) ,  (11) 

where, ℜ( ) = 4𝑇 𝑘 𝑒 2𝑒 𝑘 + 𝑒 𝑘 , ℜ( ) = 4𝑇 𝑒 𝑒 𝑘 + 𝑒 𝑘 , ℜ( ) = 8 ⋅ 𝑇 ⋅ (𝑇 𝑘⁄ ) ⋅ 𝑘 + 𝑘 𝑒 − 𝑘 𝑘 𝑒 ⋅ 𝑘 − 𝑘 𝑒 + 𝑘 + 𝑘 𝑒 ⋅ 𝑒 𝑘 + 𝑒 𝑘 . 

Interband three-photon optical transitions. Now optical transitions involving three photons from the valence band 
to the conduction band (interband) occur according to the following scheme 𝑉, 𝑘 → 𝑉, 𝑘 → 𝑉, 𝑘 → 𝑐, 𝑘 , 𝑉, 𝑘 → 𝑉, 𝑘 → 𝑐, 𝑘 → 𝑐, 𝑘 , 𝑉, 𝑘 → 𝑐, 𝑘 → 𝑐, 𝑘 → 𝑐, 𝑘 , 𝑉, 𝑘 → 𝑐, 𝑘 → 𝑉,𝑘 → 𝑐,𝑘 . 

Then the matrix element of interband three-photon optical transitions is represented as 
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М( ) 𝑘 , 𝑒 = ( ⃗⋅ ⃗)(ℏ ) 2( (𝑒 ⋅ �⃗�)сс + (𝑒 ⋅ �⃗�) − 4(𝑒 ⋅ �⃗�)сс(𝑒 ⋅ �⃗�) − (𝑒 ⋅ �⃗�) (𝑒 ⋅ �⃗�) с) . 

Then the square of the modulus of the two-photon optical transition М( ) 𝑘 , 𝑒 : 

 М( ) 𝑘 , 𝑒 = ℏ (ℏ ) (ℜ + ℜ ℜ ).  (12) 

here, ℜ = 𝑇 𝑘 𝑒 − 2 𝑒 − 𝑒 𝑘 − 𝑘 + 4𝑘 𝑘 𝑒 𝑒 𝑘 𝑇 𝐸 + 4γ 𝑘 𝑇 , 

ℜ = 𝑇 4γ 𝑘 + 𝐸 𝑒 − 128γ 𝑒 𝑘 + 𝑘 𝑒 − 256γ 𝑘 𝑘 𝑒 𝑒 𝑘 , ℜ = 𝑇 𝑘 𝑒 − 2𝑇 𝑇 𝑘 𝑒 − 𝑒 𝑘 − 𝑘 + 4𝑘 𝑘 𝑒 𝑒  + 𝑇 𝑘 𝑒 . 
 

CONCLUSIONS 
Through this analysis, we have derived matrix element expressions for single-, two-, and three-photon optical 

transitions between the spin states of the conduction and valence bands. These expressions enable the classification of 
optical transitions based on the angle between the polarization vectors and wave vectors of the charge carriers, as well as 
on the band parameters specific to monolayers of transition metal dichalcogenides. Furthermore, they allow for the 
determination of the spectral and temperature dependences of the coefficients for single- and multi-photon interband 
absorption of light and linear-circular dichroism. These aspects will be thoroughly investigated in subsequent work. 

The theory of nonlinear absorption of polarized radiation in two-dimensional, atomically thin layers of transition 
metal dichalcogenides has been advanced. It is important to highlight that excluding the effects of coherent saturation 
from the analysis of interband single-photon absorption of polarized radiation [11] reveals that linear-circular 
dichroism does not manifest in atomically thin metal dichalcogenides. This observation is attributed to the fact that, 
under these conditions, the probabilities of single-photon optical transitions are independent of the polarization states 
of light. 

 
ORCID 

Rustam Y. Rasulov, https://orcid.org/0000-0002-5512-0654; Voxob R. Rasulov, https://orcid.org/0000-0001-5255-5612 
Bakhodir B. Akhmedov, https://orcid.org/0000-0003-4894-3588; Makhliyo A. Mamatova https://orcid.org/0000-0001-6980-9877 

 
REFERENCES 

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D.E. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, “Electric 
field effect in atomically thin carbon films,” science, 306(5696), 666-669 (2004). https://doi.org/10.1126/science.1102896 

[2] N. Huo, Y. Yang, Y.N. Wu, X.G. Zhang, S.T. Pantelides, and G. Konstantatos, “High carrier mobility in monolayer CVD-grown 
MoS2 through phonon suppression,” Nanoscale, 10(31), 15071-15077 (2018). https://doi.org/10.1039/C8NR04416C 

[3] A. Taffelli, S. Dirè, A. Quaranta, and L. Pancheri, “MoS2 based photodetectors: a review,” Sensors, 21(8), 2758 (2021). 
https://doi.org/10.3390/s21082758 

[4] G.H. Shin, C. Park, K.J. Lee, H.J. Jin, and S.Y. Choi, “Ultrasensitive phototransistor based on WSe2–MoS2 van der Waals 
heterojunction,” Nano Letters, 20(8), 5741-5748 (2020). https://doi.org/10.1021/acs.nanolett.0c01460 

[5] T. Wang, F. Zheng, G. Tang, J. Cao, P. You, J. Zhao, and F. Yan, “2D WSe2 flakes for synergistic modulation of grain growth 
and charge transfer in tin‐based perovskite solar cells,” Advanced Science, 8(11), 2004315 (2021). 
https://doi.org/10.1002/advs.202004315 

[6] S.H. Su, W.T. Hsu, C.L. Hsu, C.H. Chen, M.H. Chiu, Y.C. Lin, W.-H. Chang, al., “Controllable synthesis of band-gap-tunable 
and monolayer transition-metal dichalcogenide alloys,” Frontiers in Energy Research, 2, 104870 (2014). 
https://doi.org/10.3389/fenrg.2014.00027 

[7] C. Ernandes, L. Khalil, H. Almabrouk, D. Pierucci, B. Zheng, J. Avila, P. Dudin, et al., “Indirect to direct band gap crossover in 
two-dimensional WS2(1−x)Se2x alloys,” npj 2D Mater. Appl. 5(1), 7 (2021). https://doi.org/10.1038/s41699-020-00187-9 

[8] E.L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures, (Alpha Science International Ltd., Harrow, UK, 2005). 
[9] R.Y. Rasulov, V.R Rasulov, N.Z. Mamadalieva, and R.R. Sultanov, “Subbarrier and Overbarrier Electron Transfer through 

Multilayer Semiconductor Structures,” Russian Physics Journal, 63, 537-546 (2020). https://doi.org/10.1007/s11182-020-02067-7 
[10] M.M. Glazov, Electron and Nuclear Spin Dynamics in Semiconductor Nanostructures, (Oxford University Press, Oxford, 2018). 

https://doi.org/10.13140/RG.2.2.18718.56640 
[11] V.R. Rasulov, R.Ya. Rasulov, and I. Eshboltaev, “Linearly and circular dichroism in a semiconductor with a complex valence 

band with allowance for four-photon absorption of light,” Physics of the Solid State, 59(3), 463–468 (2017). 
https://doi.org/10.1134/S1063783417030283 

[12] R. Rasulov, V. Rasulov, and I. Eshboltaev, “On the Theory of the Ballistic Linear Photovoltaic Effect in Semiconductors of 
Tetrahedral Symmetry Under Two-Photon Absorption,” Russian Physics Journal, 59, 92–98 (2016). 
https://doi.org/10.1007/s11182-016-0742-7 



397
Single and Multiphoton Optical Transitions in Atomically Thin Layers of Transition... EEJP. 1 (2024)

ОДНО-ТА БАГАТОФОТОННІ ОПТИЧНІ ПЕРЕХОДИ В АТОМНО ТОНКІХ ШАРАХ ДИХАЛЬКОГЕНІДІВ 
ПЕРЕХІДНИХ МЕТАЛІВ 

Рустам Я. Расуловa, Вокхоб Р. Расуловa, Камолахон К. Уріноваb, Махліє А. Маматоваa, Баходір Б. Ахмедовa 

a Ферганський державний університет, Фергана, Узбекистан 
 b Кокандський державний педагогічний інститут, Коканд, Узбекистан 

У статті обговорюється виробництво та властивості двовимірних атомних шарів дихалькогенідів перехідних металів (ТМД) з 
акцентом на оптичних властивостях моношарів. Він починається зі вступу до відкриття методів виробництва графену та 
подальшого інтересу до TMD. Деталізовано основні властивості моношарів ТМД, їх кристалічну структуру та зону Бріллюена. 
У статті досліджено енергетичний спектр електронів у різних долинах та ефективний гамільтоніан, що описує стани в 
паралельних спінових зонах. Обговорення поширюється на матричні елементи міжзонних оптичних переходів, включаючи одно-
, дво- та трифотонні переходи. Наведено рівняння для розрахунку ймовірностей оптичних переходів, включаючи такі фактори, 
як вектор поляризації, частота світла та температура зразка. Викладено теоретичний аналіз складових матричних елементів для 
цих переходів, наголошуючи на квантово-механічних аспектах. Стаття сприяє дослідженню оптичної поведінки моношарів 
дихалькогенідів перехідних металів (ТМД), зокрема в структурах складного складу. 
Ключові слова: поляризований фотон; матричний елемент; оптичні переходи; двозонне наближення; носії струму; 
електронний Гамільтоніан; оператор імпульсу; спінові стани 




