
East European Journal of Physics. 1. 43–54 (2024)
43

DOI: 10.26565/2312-4334-2024-1-03 ISSN 2312-4334

COSMOLOGICAL EVOLUTION OF BIANCHI TYPE-V I0 KANIADAKIS
HOLOGRAPHIC DARK ENERGY MODEL

B. Ganeswara Raoa,b, Dipana Jyoti Mohantyb, Y. Adityac,*, U.Y. Divya Prasanthid
aDepartment of Mathematics, Sri G.C.S.R. College, Rajam-532127, India
bDepartment of Mathematics, GIET University, Gunupur-765002, India

cDepartment of Mathematics, GMR Institute of Technology, Rajam-532127, India
dDepartment of Statistics & Mathematics, College of Horticulture, Dr. Y.S.R. Horticultural University,

Parvathipuram-535502, India
∗Corresponding Author e-mail: aditya.y@gmrit.edu.in; yaditya2@gmail.com

Received December 5, 2023; revised December 19, 2023; accepted January 10, 2024

The purpose of this paper is to construct an anisotropic and spatially homogeneous Bianchi type-V I0 Kaniadakis holo-
graphic dark energy model in general relativity. For this purpose, we consider Hubble horizons as the IR cutoff. To obtain
a deterministic solution of the model’s field equations, we assume a relationship between the metric potentials which
leads to an exponential solution and accelerated expansion. To investigate the physical behaviour of our dark energy
model, we obtain some important cosmological parameters like Hubble, deceleration, equation of state and statefinder as
well as ωkhde − ω′

khde, r− s and r− q planes. We also included the stability analysis for the dark energy model through
the squared speed of sound. It is observed that the equation of state parameter shows ΛCDM model at late times. Also,
the squared speed of sound gives the stability of the Kaniadakis holographic dark energy model at the initial epoch and
the model is unstable at late times. Statefinder diagnostic and deceleration parameters exhibit a smooth transition of
the universe from the decelerating phase to the current accelerated expansion of the universe and also correspond to the
ΛCDM model at late times. All these cosmological parameters support recent observational data.

Keywords: Bianchi type-V I0 model; Dark energy model; General theory of relativity; Cosmology; Kaniadakis holographic
dark energy

PACS: 98.80.-k, 95.36.+x

1. INTRODUCTION

Einstein’s general relativity (GR) is regarded as a key theory for comprehending the concealed features of
gravitational dynamics, which provide a fundamental comprehension of astrophysical events and the universe.
Recent observations have provided compelling evidence that the universe undergoes both early inflation and
late-time rapid expansion [1]-[3]. The phenomenon is attributed to the existence of an enigmatic force called
dark energy (DE), which exhibits repulsive gravitational effects. There are primarily two methods to addressing
the enigmatic characteristics of dark energy and cosmic acceleration problems. Modified theories of gravity
are different attempts to integrate dark energy by modifying the action principle in general relativity. In an
alternative approach, many dynamical dark energy candidates are offered in order to comprehend the essence
of dark energy. Both updated theories of gravity and dynamical DE models have received quite positive
evaluations [4]-[7]. Of the several dynamical dark energy theories, the primary contender is the cosmological
constant. However, it is plagued by issues of cosmic coincidence and fine-tuning. Due to this rationale, many
alternative dynamical differential equation (DE) models have been proposed, including a range of scalar field
models such as K-essence, phantom, quintessence, ghost, etc., as well as Chaplygin gas and holographic DE
models [8]-[14].

Among the several dynamical DE models, the holographic dark energy model has gained popularity as a
preferred method to investigate the riddle of dark energy. The proposal is based on the quantum characteristics
of black holes, which have been thoroughly studied in the literature to research quantum gravity [13, 14]. As
per the holographic principle, the vacuum energy Λ of a system of size L must not exceed the mass of a black
hole of the same size, since this would result in the development of a black hole in quantum field theory. The
energy density of HDE is determined according to the formulation provided by Cohen et al. [15]

ρkhde= 3d2m2
pL

−2. (1)

where mp represents the reduced Planck mass, 3d2 denotes a numerical constant, and L represents the IR-cutoff.
Various forms of IR-cutoff have been examined in the scholarly literature, such as the Hubble horizonH−1, event
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horizon, particle horizon, conformal universe age, Ricci scalar radius, and Granda–Oliveros cutoff [16]- [18]. The
HDE models, with different IR cutoffs, provide a contemporary understanding of the universe’s acceleration.
They also demonstrate that the transition redshift value, which marks the move from an earlier deceleration
phase (q>0) to the present acceleration phase (q<0), aligns with modern observational evidence. Nojiri and
Odintsov [19] introduced a method for combining the early and late stages of the universe using generalized HDE
and phantom cosmology. They have recently extended this concept to what they call Hinflation [20] In recent
times, many formulations of entropy have been used to create and examine cosmological models. Several novel
models of holographic dark energy (HDE) have been developed, including the Tsallis HDE [21, 22], Sharma-
Mittal HDE [23], and Renyi HDE model [24]. Several writers have examined several cosmological models of new
HDE models [25]- [33]. Recently, the Kaniadakis statistics, which serves as a generalized measure of entropy
[34]- [36], has been used to investigate various gravitational and cosmological implications. The generalized
K -entropy (Kaniadakis), which represents the entropy of a black hole, may be determined using a single free
parameter [37]

SK=
1

K
sinh(KSBH) (2)

where K is an unknown parameter. Thus, by using the concept of entropy and the notion of holographic dark
energy, a novel model of dark energy called Kaniadakis holographic dark energy (KHDE) is proposed [37],
which exhibits significant characteristics. Jawad and Sultan [38], Sharma [39], and Drepanou et al. [40] have
examined KHDE models inside various gravitational theories. The dynamic structures of HDE, as investigated
by Sadeghi et al. [41], have been analyzed within the context of Brans-Dicke’s theory of gravity, using the
Tsallis and Kaniadakis approaches.

Theoretical cosmology has shown increasing interest in anisotropic and spatially homogeneous worlds in
recent decades. The primary empirical data from CMBR (Bennett et al. [42]) has been deemed as evidence
in favor of a shift from a non-uniform phase of the universe to a uniform phase (Akarsu and Kilinc [43]).
Furthermore, there is a belief that during the first stages of the universe, the isotropic FRW model may not
provide a comprehensive and accurate depiction of matter. To conduct a realistic analysis of cosmological
models and determine whether they can reach the observed level of homogeneity and isotropy, it is necessary
to consider space-times that are both spatially homogeneous and anisotropic. Bianchi type (BT) cosmological
models, which are homogeneous but not necessarily isotropic, have garnered significant attention from academics
because to their anisotropic nature. Recently, several academics have developed intriguing cosmological models
that include dark energy in the context of anisotropic Bianchi space-times. Various scholars have examined
anisotropic cosmological models in diverse contexts [44]- [60].

Motivated by the above investigations and discussion, in this work, we consider BT-V I0 space-time filled
with matter and KHDE in the framework of GR. The work in this paper is configured as follows: In Sec. 2,
the BT-V I0 metric is given and the field equations in the presence of anisotropic KHDE fluid and matter are
derived. Also, we obtained the solution of the field equations and constructed the KHDE model. Sec. 3 contains
several cosmological parameters of our model. The results are summarised with conclusions in the last section.

2. FIELD EQUATIONS AND KANIADAKIS HDE MODEL

Einstein’s general theory of relativity is usually regarded as one of the most accomplished theories of gravity
in contemporary physics. The salient feature of GR is its enduring constancy, which has been unaltered for over
a century. The equations governing the field in this theory are expressed as

Rij −
1

2
Rgij=− 8πG

c4
Tij (3)

where Rij is the Ricci tensor, Tij is the energy–momentum tensor of matter distribution, G is Newton’s grav-
itational constant, R is Ricci scalar, gij is metric potential, and c is the speed of light. Here we assume the
gravitational constants 8πG=c= 1. We consider the geometry of the universe as spatially homogeneous and
anisotropic BT-V I0 line element which can be written as

ds2=dt2 −A2dx2 −B2e2xdy2 − C2e−2xdz2, (4)

where A, B and C are functions of cosmic time t only. The following are the some of physical parameters which
are useful in finding the solution of field equations for the BT-V I0 space-time given by Eq. (4).
The average scale factor a(t) and volume V of the BT-V I0 space-time are defined as

V= [a(t)]
3
=ABC. (5)

Anisotropic parameter Ah is given by

Ah=
1

3

3∑
i=1

(
Hi −H

H

)2

(6)
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where H1=
Ȧ
A , H2=

Ḃ
B , H3=

Ċ
C are directional Hubble’s parameters and H= 1

3

(
Ȧ
A + Ḃ

B + Ċ
C

)
is mean Hubble’s

parameter. Here and after an overhead dot denotes differentiation concerning cosmic time t. Expansion scalar
(θ) and shear scalar (σ2) are defined as

θ=ui
;i=

Ȧ

A
+

Ḃ

B
+

Ċ

C
(7)

σ2=
1

2
σijσij=

1

3

(
Ȧ2

A2
+

Ḃ2

B
+

Ċ2

C2
− ȦḂ

AB
− ȦĊ

AC
− ḂĊ

BC

)
(8)

where

σij=
1

2

(
ui;µh

µ
j + uj;µh

µ
i

)
− 1

3
θhij , (9)

with hij=gij−uiuj is the projection tensor while ui= (1, 0, 0, 0) is the four-velocity in the comoving coordinates.
The deceleration parameter is given by

q=
d

dt

(
1

H

)
− 1. (10)

The matter distribution is assumed to be the combination of pressure-less matter and anisotropic DE which
are, respectively, given as

T ′
ij=ρmuiuj (11)

T ij= (ρkhde + pkhde)uiuj − pkhdegij . (12)

where pkhde and ρkhde are the pressure and energy density of DE fluid whereas ρm is the energy density of
matter. The EoS parameter ωkhde of DE is defined as ωkhde=

pkhde

ρkhde
. To ensure the present acceleration of

the universe, here, we consider the anisotropic distribution of DE. After parameterizing the energy-momentum
tensor of DE T ij , it can be expressed as follows:

T ij= [1,− ωx,−ωy,−ωz]ρkhde

= [1,− ωkhde,−(ωkhde + α),− (ωkhde + β)]ρkhde (13)

where ωx=ωkhde, ωy=ωkhde + α and ωz=ωkhde + β are the directional equation of state (EoS) parameters on
x, y and z respectively. Here, α and γ are the deviations from EoS parameter ωkhde in y and z directions
respectively.

In the comoving coordinate system, with the help of (13), the field equations (3) for the metric (4) can be
written as

B̈

B
+

C̈

C
+

ḂĊ

BC
+

1

A2
=− ωkhdeρkhde (14)

Ä

A
+

C̈

C
+

ȦĊ

AC
− 1

A2
=− (ωkhde + α) ρkhde (15)

Ä

A
+

B̈

B
+

ȦḂ

AB
− 1

A2
=− (ωkhde + β) ρkhde (16)

ȦḂ

AB
+

ḂĊ

BC
+

ȦĊ

AC
− 1

A2
=ρkhde + ρm (17)

Ḃ

B
− Ċ

C
= 0 (18)

and, also, the energy conservation equation
(
T ′
ij + T ij

)
;j
= 0 is obtained as

ρ̇m + ρ̇khde +

(
Ȧ

A
+

Ḃ

B
+

Ċ

C

)
(ρm + (1 + ωkhde)ρkhde) +

(
α
Ḃ

B
+ β

Ċ

C

)
ρkhde= 0. (19)

On integration, Eq. (18) yields B=k1C, where k1 is an integration constant. It can be taken as unity,
without loss of any generality, so that we have

B=C. (20)

Given the Eq. (20), the field equations (14) to (17) reduce to

2
B̈

B
+

Ḃ2

B2
+

1

A2
=− ωkhdeρkhde (21)
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Ä

A
+

B̈

B
+

ȦḂ

AB
− 1

A2
=− (ωkhde + α) ρkhde (22)

Ä

A
+

B̈

B
+

ȦḂ

AB
− 1

A2
=− (ωkhde + β) ρkhde (23)

2
ȦḂ

AB
+

Ḃ2

B2
− 1

A2
= (ρkhde + ρm). (24)

From Eqs. (22) and (23), we obtain
α=β. (25)

The reason for this is that the model exhibits isotropy in the y and z directions, resulting in the elimination of
any deviations from the equation of state of dark energy. Based on Equation (25), the field equations (21)-(24)
form a set of three distinct equations involving six variables: , B, ρkhde, ωkhde, ρm, and α. To get a predictable
outcome for the complex and nonlinear field equations in our model, we impose the following reasonable physical
constraints:

Here, we consider the fact that expansion scalar θ is directly proportional to shear scalar σ which leads to
a relation between the metric potentials as follows:

B=Ak (26)

k represents a positive constant that accounts for the anisotropy of space-time. Collins et al. [61] have de-
termined that in a spatially homogeneous space-time, the normal congruence to the homogeneous expansion
adheres to the constraint that the ratio of the shear stress (σ) to the Hubble parameter (H) remains constant.

Using the relation (26) in Eqs. (21) and (22), we obtain

ȦA2k = A0exp

∫ {
A

(k − 1)Ȧ

(
−2

A2
+ αρkhde

)}
dt. (27)

Recently, it has been common to assume that the skewness parameter is a function of the energy density of
dark energy, in order to obtain a more comprehensive and specific solution. This assumption has been made by
Akarsu and Kilinc [62], as well as Sharif and Zubair [63]. To get the explicit solution for Eq. (27), we use the
assumption that there is a relationship between the skewness parameter α(t) and the energy density of dark
energy (DE), denoted as ρkhde

α(t) =
1

ρkhde

(
2

A2
+ α0(k − 1)

Ȧ

A

)
(28)

where α0 is an arbitrary constant. These kinds of assumptions have been taken by several authors in literature
[64]-[66]. Hence, from Eqs. (27) and (28) we find the metric potentials as

A=

(
A0 (2k + 1)

α0
exp(α0t) + (2k + 1)A1

) 1
2k+1

B=C=

(
A0 (2k + 1)

α0
exp(α0t) + (2k + 1)A1

) k
2k+1

. (29)

Here A0 and A1 integrating constants. Now metric (4), with the help of metric potentials in Eq. (29), can be
written as

ds2 = dt2 −
(
A0 (2k + 1)

α0
exp(α0t) + (2k + 1)A1

) 2
2k+1

dx2

−
(
A0 (2k + 1)

α0
exp(α0t) + (2k + 1)A1

) 2k
2k+1 (

e2xdy2 + e−2xdz2
)
. (30)

Eq. (29) represents a spatially homogeneous and anisotropic BT-V I0 KHDE model within the framework of
GR with the following properties along with the physical parameters given in the next sections. The average
scale factor and volume of the model are, respectively, given by

a(t) =

(
A0 (2k + 1)

α0
exp(α0t) + (2k + 1)A1

) 1
3

(31)
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V=

(
A0 (2k + 1)

α0
exp(α0t) + (2k + 1)A1

)
(32)

The average Hubble’s parameter H and expansion scalar θ are obtained as

H= 3θ=
(2k + 1)A0exp(α0t)

3
(

A0(2k+1)
α0

exp(α0t) + (2k + 1)A1

) (33)

The shear scalar σ2 and average anisotropic parameter Ah are given by

σ2=
A2

1(k − 1)
2
e2(α0t)

3
(

A0(2k+1)
α0

exp(α0t) + (2k + 1)A1

)2 (34)

Ah=
2(k − 1)

2

(2k + 1)
2 . (35)

The statistics above demonstrate that as time (t) advances, both the spatial volume and average scale factor of
the universe exhibit exponential growth, indicating the expansion of the universe. Furthermore, during the first
epoch, which is when t= 0, all values become finite. However, as t approaches infinity, they diverge. It is worth
mentioning that when k= 1, the model becomes shear-free and isotropic, as shown by the conditions σ2= 0 and
Ah= 0.
According to the HDE theory, for DE to be responsible for the current rapid expansion of the Universe, the
total amount of vacuum energy contained inside a box of size L∧3 should not exceed the energy of a black hole
of the same size, as determined by the Kaniadakis black hole entropy equation (Eq. (2)). Subsequently, an
individual acquires

Λ4 ≡ ρkhde ∝
SK

L4
(36)

for the vacuum energy ρkhde. Now, taking the Hubble horizon of the universe as the IR cutoff (i.e., L= 1
HA= 4π

H2 ),

ρkhde=
3C2H4

K
sinh

(
πK
H2

)
(37)

where the constant C2 is unknown, K belongs to a set of real numbers, and H= ȧ
a is the Hubble parameter.

Now, it is clear that we have ρkhde → 3C2H4

K (the well-known Bekenstein entropy-based HDE) when k → 0.
Considering the pressureless fluid (with energy density ρm) and the dark energy candidate (with pressure pkhde
and density ρkhde).

The fractional energy densities of matter (Ωm) and DE (Ωkhde) are given as

Ωm=
ρm
ρcr

=
ρm
3H2

and Ωkhde=
ρkhde
ρcr

=
C2H2

K
sinh

(
πK
H2

)
, (38)

ρcr is the critical energy density.
We are considering non-interacting DE and matter in this case. As a result, we have from Eq. (19) that

both of these are conserved individually
ρ̇m + 3Hρm= 0, (39)

ρ̇khde + 3H(1 + ωkhde)ρkhde +
6kH

2k + 1

(
2

A2
+

α0(k − 1)3̇H

2k + 1

)
= 0. (40)

Differentiating Eq. (37) concerning time, we obtain

ρ̇khde=
ρkhdeḢ

H2

(
4H − 2πK

H
coth

(
πK
H2

))
. (41)

Given Eqs. (33) and (41), from Eq. (40), we obtain the EoS parameter of KHDE as

ωkhde=− 1− 2Ḣ

3H2

(
2− πK

H2
coth

(
πK
H2

))
− 2k

3(2k + 1)H2Ωkhde

[
2

A2
+

3Hα0(k − 1)

2k + 1

]
(42)

where

Ḣ=
(2k + 1)

2
A2

0exp(2α0t)

3
(

A0(2k+1)
α0

exp(α0t) + (2k + 1)A1

)2 +
(2k + 1)A0α0exp(α0t)

3
(

A0(2k+1)
α0

exp(α0t) + (2k + 1)A1

) . (43)

Here metric potential A(t), Hubble parameterH(t) and fractional energy density of KHDE Ωkhde are respectively
given in Eqs. (29), (33) and (38).
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3. COSMOLOGICAL PARAMETERS

In this section, we explore the expanding behaviour of the universe through well-known cosmological pa-
rameters like equation of state (EoS) ωkhde, squared sound speed v2s , deceleration q parameters and cosmological
planes such as ωkhde − ω′

khde, statefinders (r − s) and r − q for the constructed anisotropic KHDE model.

EoS parameter

The equation of state parameter (ω) is often used to classify the different stages of the expanding universe.
Specifically, the shift from decelerated to accelerated phases encompasses DE and radiation-dominated epochs.
The equation of state (EoS) parameter, denoted by ω=p

ρ , is defined as the ratio of pressure (p) to energy density

(ρ) of the matter distribution. The decelerated and accelerated phases include the following periods:

� Decelerated phase: Cold dark matter or dust fluid ω= 0, radiation era 0 <ω< 1
3 and stiff fluid ω= 1.

� Accelerated phase: Cosmological constant/vacuum era ω= − 1, quintessence −1 <ω<−1
3 , phantom era

ω<− 1 and quintom era (combination of both quintessence and phantom).

The EoS parameter of KHDE with Hubble horizon cutoff is given in Eq. (42). In Fig. 1, we investigate the
evolution of EoS parameter ωkhde in terms of redshift z for different values of C. Fig. 1 shows that initially
ωkhde starts from matter dominated era, varies in quintessence region −1 <ωkhde<− 1/3 and finally it becomes
−1, which means the model becomes ΛCDM model at late times.

Squared sound speed

The squared speed of the sound parameter is defined as

v2s=
ṗkhde
ρ̇khde

=ωkhde +
ρkhde
ρ̇khde

ω̇khde. (44)

This parameter is useful in discussing the stability of DE models depending upon its sign. The positive signature
of v2s determines a stable DE model otherwise the model becomes unstable.

Using energy density and EoS parameter given in the Eqs. (37) and (42) in the squared sound speed
expression (v2s) Eq. (44), we analyze v2s graphically for our model. Fig. 2 elaborates the plot of v2s versus
redshift z. Initially, the trajectories represent positive behaviour and negative at the present epoch and late
times. Hence, this shows that our model is stable at the initial epoch and unstable at present and late times.
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Figure 1. Plot of EoS parameter ωde versus redshift
z for k = 0.98, A1 = −0.04, α0 = 0.85, A0 = 0.04
and K = 0.01.
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Figure 2. Plot of v2s versus redshift z for k = 0.98,
A1 = −0.04, α0 = 0.85, A0 = 0.04 and K = 0.01.

ωkhde − ω′
khde plane

We analyze the ωkhde−ω′
khde plane, where ω′

khde represents the evolutionary mode of the equation of state
parameter ωkhde, and the prime symbol indicates differentiation concerning the natural logarithm of the scale
factor ’ln a’. Caldwell and Linder [67] have suggested using this framework to investigate the cosmic progression
of the quintessence dark energy scenario. Furthermore, it has been noted that the ωkhde − ω′

khde plane may
be divided into two distinct regions: thawing (ωkhde< 0, ω′

khde> 0) and freezing (ωkhde< 0, ω′
khde< 0). The

freezing zone demonstrates a more rapid period of cosmic expansion compared to the thawing region.
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Figure 3 examines the relationship between the ωkhde − ω′
khde plane and the KHDE model, specifically for

various values of C. Figure 3 illustrates that the ωkhde − ω′
khde plane corresponds to the area where freezing

occurs for all three parameter values. Contemporary cosmological measurements indicate that the freezing zone
reveals a period of greater cosmic acceleration compared to the thawing region. Therefore, the ωkhde − ω′

khde
plane of our model demonstrates cosmic acceleration in the freezing area and aligns well with the facts.

Energy conditions

The investigation of energy conditions was began by the Raychaudhuri equations, which are essential in any
examination of the alignment of null and time-like geodesics. The energy requirements are used to demonstrate
other general theorems about the behavior of powerful gravitational fields. The energy situations often seen are
as follows:

Dominant energy condition (DEC): ρde ≥ 0, ρde ± pde ≥ 0.
Strong energy conditions (SEC) : ρde + pde ≥ 0, ρde + 3pde ≥ 0,
Null energy conditions (NEC): ρde + pde ≥ 0,
Weak energy conditions (WEC): ρde ≥ 0, ρde + pde ≥ 0,
Figure 4 illustrates the energy conditions of our KHDE model. There is an obvious violation of the NEC,

leading to the model resulting in a Big Rip. Furthermore, it is seen that the WEC satisfies the condition ρde ≥
0. Furthermore, Figure 4 demonstrates that the DEC ρde+ pde is not fulfilled. Furthermore, our model violates
the SEC regulations, which are deemed suitable. This phenomenon, resulting from the universe’s acceleration
in its latter stages, aligns with current observational findings.

ω
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Figure 3. Plot of ωde − ω′
de plane for k = 0.98,

A1 = −0.04, α0 = 0.85, A0 = 0.04 and K = 0.01.
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Figure 4. Plot of energy conditions versus redshift
z for k = 0.98, A1 = −0.04, α0 = 0.85, A0 = 0.04,
C = 9.3 and K = 0.01.

Deceleration parameter

The nature of the expansion of the universe can be estimated using the dimensionless cosmological param-
eter known as the deceleration parameter (DP). It defined as

q=− 1− Ḣ

H2
. (45)

For positive values of DP, the model decelerates in the standard way whereas for q= 0 the model expands at
a constant rate. The model shows accelerated expansion for −1 ≤ q< 0 and a super exponential expansion for
q<− 1. The deceleration parameter can be obtained as

q=− 1− 3(2k + 1)A1α0

(2k + 1)α0exp(α0t)
. (46)

Figure 5 displays the relationship between the deceleration parameter q and the redshift z for different values
of A1. It is important to highlight that the model demonstrates a seamless transition from the universe’s initial
decelerated phase to its present accelerated phase. Within the specified range of 0.5 <z< 0.85, the universe
transitioned from a state of deceleration to a state of acceleration. This aligns with previous findings in the
field of cosmology [68, 69]. The transition redshift (zt) from decelerating to accelerating expansion has been
reported to be between 0.3 and 0.8, with a 95% confidence level. Additionally, it has been determined that the
redshift for accelerating expansion (zacc) is greater than 0.14 in the most conservative scenario.
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Statefinder parameters

The dynamic expansion of the universe may be accurately characterized by the Hubble and deceleration
parameters. Nevertheless, several dynamical dark energy models have identical parameter values at the current
period. As a result, these factors were unsuccessful in determining the most suitable model among the several
dynamical dark energy theories. Sahni et al. [70] developed a set of dimensionless cosmological parameters
called statefinders, which are defined as follows:

r=

...
a

aH3
, s=

r − 1

3(q − 1
2 )

. (47)

These statefinders establish a correspondence with the ΛCDM and CDM models for (r, s) = (1, 0) and
(r, s) = (1, 1), respectively. If the trajectories of r − s belong to the region s> 0 and r< 1, then the model
belongs to the phantom and quintessence phases whereas the Chaplygin gas model appears for r> 1 with s< 0.
The statefinders are obtained as

r= 10 +
(A0exp(α0t) +A1α0)

2

α2
0exp(2α0t)

; s=
9 + (A0exp(α0t)+A1α0)

2

α2
0exp(2α0t)

3
(
− 3

2 − 3(2k+1)A1α0

(2k+1)α0exp(α0t)

) . (48)

Fig. 6 incorporates the trajectories of (r, s) parameters. It can be observed that the parameter ‘s’ is both
positive and negative for all values of r. This implies that the KHDE model achieved a correspondence with
the Chaplygin gas model, quintessence and phantom models. Also, the r− s plane corresponds to ΛCDM limit
at late times.
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Figure 5. Plot of deceleration parameter q versus
redshift z for k = 0.98, A1 = −0.04 and α0 = 0.85.
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−0.04 and α0 = 0.85.

r − q plane

Figure 7 depicts the development of our model in the r − q plane. The values (r, q) = (1, 0.5) represent
standard cold dark matter (SCDM) whereas (r, q) = (1,−1) represents the steady state (SS) model. The ΛCDM
model evolves along the dotted line (see Fig. 7) from a fixed point in the SCDM model to a fixed point in the
SS model. At late times, our model comes close to the SS model. The r − q trajectory of our model is found
to be quite comparable to the DE models previously presented in the literature [71, 72]. In Fig. 7, we plot the
trajectories in the r− q plane. It can be observed from the figure that our KHDE model always approaches the
study state model, i.e., (r, q) = (1,− 1) as ΛCDM model approach in the later epochs.

4. DISCUSSION AND CONCLUSION

This study investigates the Kaniadakis holographic dark energy within the context of anisotropic Bianchi
type-V I0 space-time in general relativity. In this case, we have regarded the Hubble horizon as the infrared
cutoff. We have examined well-recognized cosmological parameters, including the equation of state (EoS),
deceleration parameter, and squared speed of sound parameter. Additionally, we have explored cosmological
planes such as the ωkhde − ω′

khde plane, the statefinder (r − s) plane, and the r − q plane. Our findings have
been condensed into the following summary:

� The EoS parameter ωkhde of the KHDE model initially starts from the matter-dominated era, varies in
quintessence region −1 <ωkhde<−1/3 and finally it becomes −1, which means the model becomes ΛCDM
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Figure 7. Plot of the r − q plane for k = 0.98, A1 = −0.04 and α0 = 0.85.

model at late times. We have made a comparison of our results with present Planck collaboration data
(2018) [73] where the limits on the EoS parameter are given as

ωkhde=− 1.56+0.60
−0.48 (Planck + TT + lowE)

ωkhde=− 1.58+0.52
−0.41 (Planck + TT,TE,EE + lowE)

ωkhde=− 1.57+0.50
−0.40 (Planck + TT,TE,EE + lowE + lensing)

ωkhde=− 1.04+0.10
−0.10 (Planck + TT,TE,EE + lowE + lensing + BAO) .

It can be seen that the results for the EoS parameter of our model are consistent with the Planck Collab-
oration data.

� The ωkhde − ω′
khde plane (Fig. 3) depicts the area where freezing occurs for all three parameter values.

Contemporary cosmological measurements indicate that the freezing zone reveals a period of greater
cosmic acceleration compared to the thawing region. Therefore, the ωkhde − ω′

khde plane of our model
demonstrates cosmic acceleration in the freezing area and aligns well with the facts. The paths of the
ωkhde − ω′

khde plane, as predicted by our model, align with the observed data [74, 75]

ωkhde=− 1.13+0.24
−0.25, ω

′
khde< 1.32 (Planck +WP+ BAO).

� The squared sound speed trajectories exhibit positive behaviour initially and negative behaviour at the
current epoch and late periods. Therefore, this demonstrates that our model is steady throughout the
beginning period but becomes unsteady during the present and late times. The violation of the NEC
leads to the occurrence of a Big Rip in the model. Furthermore, it is seen that the WEC satisfies the
condition ρde ≥ 0. Furthermore, the condition of the DEC ρde + pde is not met. Furthermore, our model
violates the SEC regulations, which are deemed suitable. This phenomenon, resulting from the universe’s
acceleration in its latter stages, aligns with current observational findings.

� Our model demonstrates a smooth transition from the universe’s initial decelerated phase to its present
accelerated phase. Within the specified range of 0.5 <z< 0.85, the universe transitioned from a state
of deceleration to a state of acceleration. This aligns with previous findings in the field of cosmology
[68, 69]. The present value of the deceleration parameter is ≈ −0.82 which is by the observational data
(Capozziello et al. [76]) given as q= − 0.930 ± 0.218 (BAO +Masers + TDSL + Pantheon +Hz,q= −
1.2037 ± 0.175 (BAO + Masers + TDSL + Pantheon + H0 + Hz). It can be observed from the r − s
plane that our model achieved a correspondence with the Chaplygin gas model, quintessence and phantom
models. Also, the r − s plane corresponds to ΛCDM limit at late times. It can be seen from the r − q
plane that our KHDE model always approaches the study state model, i.e., (r, q) = (1, − 1) as ΛCDM
model approach in the later epochs.
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ÊÎÑÌÎËÎÃI×ÍÀ ÅÂÎËÞÖIß ÃÎËÎÃÐÀÔI×ÍÎ� ÌÎÄÅËI ÒÅÌÍÎ� ÅÍÅÐÃI�
ÊÀÍIÀÄÀÊIÑÀ ÒÈÏÓ ÁIÀÍÊI-V I0

Á. Ãàíåøâàðà Ðàîa,b, Äiïàíà Äæiîòi Ìîõàíòib, Þ. Àäèòüÿc, Þ.É. Äiâ'ÿ Ïðàñàíòid
aÄåïàðòàìåíò ìàòåìàòèêè Øði G.C.S.R. Êîëåäæ, Ðàäæàì-532127, Iíäiÿ
bÄåïàðòàìåíò ìàòåìàòèêè, Óíiâåðñèòåò GIET, Ãóíóïóð-765002, Iíäiÿ

cÄåïàðòàìåíò ìàòåìàòèêè, Òåõíîëîãi÷íèé iíñòèòóò GMR, Ðàäæàì-532127, Iíäiÿ
dÄåïàðòàìåíò ñòàòèñòèêè i ìàòåìàòèêè, Êîëåäæ ñàäiâíèöòâà, ä-ð Y.S.R. Óíiâåðñèòåò ñàäiâíèöòâà,

Ïàðâàòiïóðàì-535502, Iíäiÿ

Ìåòîþ öi¹¨ ñòàòòi ¹ ïîáóäîâà àíiçîòðîïíî¨ òà ïðîñòîðîâî îäíîðiäíî¨ ãîëîãðàôi÷íî¨ ìîäåëi òåìíî¨ åíåðãi¨ Êàíiàäàêiñà

òèïó Áiàíêi VI0 â çàãàëüíié òåîði¨ âiäíîñíîñòi. Äëÿ öüîãî ìè ðîçãëÿäà¹ìî îáði¨ Õàááëà ÿê ìåæó iíôðà÷åðâîíî-

ãî âèïðîìiíþâàííÿ. Ùîá îòðèìàòè äåòåðìiíîâàíèé ðîçâ'ÿçîê ðiâíÿíü ïîëÿ ìîäåëi, ìè ïðèïóñêà¹ìî çâ'ÿçîê ìiæ

ìåòðè÷íèìè ïîòåíöiàëàìè, ÿêèé ïðèçâîäèòü äî åêñïîíåíöiàëüíîãî ðîçâ'ÿçêó òà ïðèñêîðåíîãî ðîçøèðåííÿ. Ùîá

äîñëiäèòè ôiçè÷íó ïîâåäiíêó íàøî¨ ìîäåëi òåìíî¨ åíåðãi¨, ìè îòðèìó¹ìî äåÿêi âàæëèâi êîñìîëîãi÷íi ïàðàìåòðè,

òàêi ÿê Õàááë, óïîâiëüíåííÿ, ðiâíÿííÿ ñòàíó òà âèìiðþâà÷ ñòàíó, à òàêîæ ωkhde − ω′
khde, r− s i r− q ïëîùèíè. Ìè

òàêîæ âêëþ÷èëè àíàëiç ñòàáiëüíîñòi äëÿ ìîäåëi òåìíî¨ åíåðãi¨ ÷åðåç êâàäðàò øâèäêîñòi çâóêó. Ïîìi÷åíî, ùî ðiâ-

íÿííÿ ïàðàìåòðà ñòàíó ïîêàçó¹ ìîäåëü ΛCDM ó ïiçíié ÷àñ. Êðiì òîãî, êâàäðàò øâèäêîñòi çâóêó äà¹ ñòàáiëüíiñòü

ìîäåëi KHDE íà ïî÷àòêîâié åïîñi, à ìîäåëü ¹ íåñòàáiëüíîþ íà ïiçíiõ åòàïàõ. Äiàãíîñòè÷íi ïàðàìåòðè âèìiðþâà÷à

ñòàíó òà ïàðàìåòðè óïîâiëüíåííÿ äåìîíñòðóþòü ïëàâíèé ïåðåõiä Âñåñâiòó âiä ôàçè óïîâiëüíåííÿ äî ïîòî÷íîãî ïðè-

ñêîðåíîãî ðîçøèðåííÿ Âñåñâiòó, à òàêîæ âiäïîâiäàþòü ìîäåëi ΛCDM ó ïiçíi ÷àñè. Óñi öi êîñìîëîãi÷íi ïàðàìåòðè

ïiäòâåðäæóþòü îñòàííi äàíi ñïîñòåðåæåíü.

Êëþ÷îâi ñëîâà: ìîäåëü òåìíî¨ åíåðãi¨ òèïó Bianchi-V I0; çàãàëüíà òåîðiÿ âiäíîñíîñòi; êîñìîëîãiÿ; ãîëîãðàôi÷íà
òåìíà åíåðãiÿ Êàíiàäàêiñà
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