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The article presents the results of the theoretical study of the plasma density axial distribution in a stationary gas
discharge sustained by the eigen dipolar wave that propagates in a long cylindrical plasma-metal structure. The discharge
structure consists of a column of magnetized non-uniform plasma placed in the metal waveguide of variable radius. The
study of the gas discharge is carried out within the framework of the electrodynamic model, in which the main attention
is paid to the electrodynamic part of the model. To describe the processes that take place in plasma, the model
equations are used. The influence of the metal waveguide inhomogeneity along the structure and the plasma density
radial non-uniformity on the phase characteristics of the dipolar wave, its spatial attenuation, the field components radial
distribution, the axial distribution of the plasma density sustained by this mode are determined. It is also analysed the
condition for the discharge stability and find the regions, where dipolar mode can sustain the stable discharge. The
obtained results can be useful for various technological applications.

Keywords: Gas discharge; Plasma-metal waveguide; Dipolar eigen wave; Phase and attenuation properties; Zakrzewski
criterion
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1. INTRODUCTION

Till now microwave gas discharge in stationary regime that is sustained by the eigen electromagnetic wave of
the discharge structure is used as the effective plasma sources in different technological applications [1, 2, 3]. One
of the important property of such discharges that take place in cylindrical structures and sustained by the waves
with azimuthal wave numbers m = 0,±1,±2 is good uniformity of plasma density axial distribution [1, 2, 4].
Theoretical modeling of plasma density axial distribution of the eigen wave sustained discharges and the study
of the stability conditions of such discharges, was carried out within the framework of the electrodynamic
approach [2], which shows a good agreement with the experimental data [1]. One of the characteristic feature
of this approach is the detailed study of the electrodynamics characteristics of the eigenwaves of the discharge
structure, such as the dispersion (phase) properties, the spatial attenuation coefficient, and the wave field
spatial structure. According to this approach plasma is described with rather simple model equations. Such
model approach is simple but allow us to take into account the elementary processes occurring in plasma in
proper manner, that relates, among other things, with the wave energy transfer to plasma in the diffusion and
recombination gas discharge regimes [2, 5]. The number of articles were devoted to the study of the plasma
density axial distribution in the stationary microwave discharges that take place in cylindrical plasma-metal
structures with the fixed radius of metal enclosure [1, 6]. Besides it was shown that variable radius of the
metal wall of plasma – metal cylindrical discharge structure can be used as one of the mechanism to control the
plasma density value and its axial distribution in such discharges [7]. The work [8] was devoted to the study
of plasma density axial distribution in the discharges, that are sustained by the eigen waves of such discharge
structure taking into account the approximation of plasma density radial uniformity. The involving of a plasma
density radial density nonuniformity to the model leads to more accurate desctiption of the plasma density axial
distribution in the discharge. Let emphasize that long gas discharges can be sustained not only by symmetric
(m = 0), but also by the dipolar (m = ±1), eigen wave what significantly affect as the plasma density axial
profile, as the stability region of such discharge. The experiments have shown that the use of eigen dipole
(m = ±1) waves give the possibility to obtain somewhat smaller plasma density values, but axial uniformity of
plasma density profile is much better as compared with the discharges sustained by the symmetric wave [1, 2].

Previously, the study of the plasma density radial distribution for the discharges sustained by the symmetric
(m = 0) mode was carried out in the work [9] with taking into account the radial inhomogeneity of the plasma
density and changes in the radius of the metal waveguide along the discharge. The influence of the variable radius
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of the waveguide metal enclosure and the kind of plasma density radial profile on the dispersion properties, the
attenuation coefficient and radial field structure of the eigen dipole (m = ±1) wave that sustains the discharge
was studied in [10]. The aim of this work is to study the influence of the variable radius of the waveguide metal
enclosure and the kind of plasma density radial profile on axial structure of the discharge sustained by the eigen
dipole (m = ±1) waves of the discharge structure.

2. TASK SETTINGS

Let us study the plasma density axial distribution in a long cylindrical discharge structure that consists of
non-uniform magnetized plasma column with radius Rp that surrounds by metal enclosure of radius Rm > Rp.
The thin dielectric tube that separates plasma region from metal enclosure is not presented in this model. It
is supposed that it’s influence on wave phase and attenuation properties is not very strong [11]. Plasma region
is separated form the waveguide metal wall by the vacuum (air) region with thickness (Rm − Rp). The metal
enclosure is supposed to be slightly varying in the axial direction. The studied discharge is sustained by the
eigen dipolar (m = ±1) wave of this discharge structure that propagates along the discharge. External steady

magnetic field B⃗0 is directed along the axis of waveguide structure.
Plasma is described according to the hydrodynamic approach as cold and weakly absorbing media. The

wave while propagating along the discharge damps due to the collisions in plasma. These collisions are char-
acterized by the effective electron collision rate ν. The collision rate is supposed to be small as compared
with wave frequency ω. It is also supposed that plasma density is non-uniform not only is axial, but also in
radial directions. In the gas discharge model the plasma density radial radial distribution n(r) models by the
Bessel-like profile of the form n(r) = n(0)J0(µr), where n(0) is plasma density at the axis of the plasma column
(r = 0), J0 is the Bessel function of the first kind and µ is the plasma density non-uniformity parameter. It’s
value can vary from µ = 0 for the case of radial uniform plasma up to the µ = 2.405 for the case of strong
radially non-uniform plasma that corresponds to the discharge in the ambipolar diffusion regime. Such choice
of plasma density radial profile give the possibility to model different gas discharge regimes [1, 9]. A detailed
description of the procedure for deriving the electrodynamic equations is given in the previous work [1, 9]. Here
we present the results that are important for the current study.

The dipolar wave (azimuth wave number m = ±1) propagates along the axis of the structure in the

direction of the external magnetic field B⃗0. It was supposed that wave damps slightly while propagates along
the discharge and sustains plasma column. So, as wave field, as plasma density also slightly varies in along
the discharge on the distances of wavelength order. Thus, the solutions of the Maxwell equations system that
governs the wave propagation along the discharge structure can be found according to the WKB approach [12]:

E,Hr,φ,z(r, φ, z) = E,H(r, z) exp

−iωt+ imφ+

z∫
z0

k3(z
′)dz′

 , (1)

here r, φ, z are coordinates in cylindrical coordinate system, k3 is the axial wavenumber, E and H are the
amplitudes of the electric and the magnetic wave field components, respectively. Let us suppose that changing
any quantity A value, that varies in the axial direction, along the discharge at the distances of the wavelength
order is small compared to the magnitude of this quantity ((A−1(∂A/∂z) ≪ k3), where symbol A denotes E,
H, k3, or n. Thus, in all further equations all terms of order O(k−1

3 (∂ ln(A)/∂z)) are neglected [12].
Taking in to the account the expression (1) the equations for radial wave components in plasma region

(r < Rp) can be obtained from the system of Maxwell equations [11] and can be written as:
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In the approximation of slight axial varying of the plasma density the system of ordinary differential
equations for tangential wave field components in plasma region (r < Rp) can be written as:
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where p (r) = ε1 (r)
(
k23 − k2ε1 (r)

)
+ k2ε22 (r), ε1,2,3 are the components of the dielectric tensor cold collisional

plasma [11].
It is possible to obtain analytic solutions for the wave field components in the vacuum region (Rp < r <

Rm): 

Ez (r) = A1Im (κr) +A2Km (κr) ,
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(4)

The expressions for A1−4 can be obtained from the boundary conditions at the plasma-vacuum interface
(3), that consists of the continuity of tangential electric and magnetic wave field components when r = Rp:
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(5)

here the quantities EP
z (Rp), E

P
φ (Rp), H

P
z (Rp), E

P
φ (Rp) are the appropriate electric and magnetic wave filed

components in plasma at plasma - vacuum interface r = Rp. These components are obtained by the numeric
solution of the system of ordinary differential equations (3).

The vanishing of the tangential electric wave field components at the waveguide metal wall (Ez(Rm) = 0,
Eφ(Rm) = 0) gives the following system that can be treated as local dispersion equation:{

A1Im (κRm) +A2Km (κRm) = 0,

A3I
′

m (κRm) +A4K
′

m (κRm) = 0.
(6)

The solution of the ordinary dispersion equation gives the relationship between the frequency ω of the
eigenwave of the structure and its axial wave number k3. When the analogue of the dispersion equation (so
called phase equation) (6) is studied for the discharge modelling it is necessary to mention that the wave
frequency ω is fixed and its value is set externally by the wave generator. This equation connects the local
plasma density value n(z) and the axial wave number k3. The eigen wave propagates along the structure and
sustains the discharge, the plasma density changes in axial direction, the wave frequency remains unchanged,
while the complex value of the axial wave number also changes along the discharge. The real part of the
normalized wave number x = Re(k3)Rp determines the wavelength, and its imaginary part α(n) = Im(k3)Rp

determines the spatial attenuation coefficient of the wave in the direction of its propagation. The dependence
α (n) can be used to determine the density axial gradient dn/dz for the discharges in the diffusion controlled
regime from the relation [2, 5, 6].

According to articled [2, 5, 6, 4], the dependence α(n) can be used to determine the axial gradient of
plasma density dn/dz in discharges in the diffusion mode, using the following ratio:

dn

dz
= − 2nα

1− n

α

dα

dn

. (7)

When studying the axial distribution of plasma density, it is important to control the conditions of gas
discharge stability for the diffusion control regime. Such criterion was presented in one of the previous works [6]:

n

α

dα

dn
< 1. (8)

It is necessary to check this Zakrzewski stability criterion because there are possible the situations when
the eigen wave has energy to sustain the discharge, but stability criterion is not fulfilled and the end of the
discharge is determined by the determined by the ending of the stability region [6, 2].
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3. BASIC RESULTS

The main aim of this work is to study the influence of the plasma density radial non-uniformity and
the slight axial variation of the waveguide metal wall radius on the plasma density axial distribution in the
discharge sustained by the eigen dipolar wave of the discharge structure. In the early work [6] it was noted
that the dispersion properties and spatial attenuation of the eigenwaves of the discharge structure strongly
determine both the axial distribution of the plasma density and the conditions for the stability of the discharge.
So, the first step in the research is the study the phase properties and the spatial attenuation of the eigen wave
considered [1, 2, 5, 8, 6, 9, 10]. The results of this step will help us to go to the next two steps: to determine the
region of the stability according to the Zakrzewski stability criterion (8) and to choose appropriate parameters
for axial plasma density profile calculation (7).

The dispersion equation (6) was solved with the help of numerical methods by introducing the following
dimensionless parameters: normalized wave frequency ω̃ = ω/ωp and the complex normalized axial wavevector
k3Rp, the real part of which x = Re(k3)Rp determines wavelength, and the imaginary part α = Im(k3)Rp

determines the normalized wave attenuation coefficient. The influence of the external magnetic field value on
the attenuation coefficient α and the normalized wave frequency ω̃ is taken into account by introducing the
dimensionless parameter Ω = ωCe/ω (ωCe is the electron cyclotron frequency). The geometrical parameters of
discharge structure is introduced into the model throw dimensionless plasma column radius σ = Rpω/c and
the dimensionless radius of the waveguide metal enclosure η = Rm/Rp. Such normalized parameters are very
convenient for gas discharge modeling, where wave frequency ω is fixed but plasma density n varies along the
discharge length. Thus let us determine such values of the parameters of the discharge structure for further gas
discharge axial structure investigation that give good axial uniformity and large area of stability.

The Figure 1 presents the influence of the normalized effective collision plasma electron frequency ν/ω on
the phase characteristics ω̃ (Figure 1a) and spatial attenuation α (Figure 1b) of the m = +1 mode for the case
of radially uniform plasma. The parameters of the discharge structure were chosen to be equal: normalized
plasma radius σ = 0.8, normalized external magnetic field Ω = 0.2. At a fixed frequency of the generator ω, an
increase in the frequency of collisions of electrons ν in the range from 0.001 up to 0.1 practically does not affect
the normalized frequency of the wave ω̃ = ω/ωp. A further increase of ν/ω from 0.1 to 0.4 leads to a slight
decrease in ω̃ in the range of axial wavenumbers x ≤ 0.6. The increasing of the normalize collisions frequency
leads to a significant increase in the spatial attenuation of the m = +1 mode in the entire range of axial numbers
both in the region of sufficiently small x and, especially, in the region of x ≥ 3.0 (Figure 1b). As a result, for
each studied value of ν/ω the dependence α(x) possesses some minimum value for some value of x.

(a) Phase properties ω̃(x) (b) Attenuation coefficient α(x)

Figure 1. The dependence of the dimensionless phase and attenuation properties of the m = +1 mode via
the dimensionless wavenumber x for different parameter ν/ω values. The numbers near the curves are the
parameter ν/ω values. Other parameters are equal: Ω = 0.2, σ = 0.3, η = 1.1, µ = 0.0

The influence of the normalized collision frequency ν/ω on the phase properties ω̃ (Figure 2a) and spatial
attenuation α (Figure 2b) of the eigen dipolarm = −1 mode of the discharge structure under the same parameter
set as for the Figure 1 is presented in the Figure 2. Let us note that the disensionless collision frequency ν has
a much smaller influence on the phase properties of the m = −1 eigen mode (Figure 2a) than on the m = +1
eigen mode ( 1a). At the same time, an increase in the dimensionlesss collision frequency ν/ω in the specified
range (from 0.01 up to 0.1) leads to a significant increase in the spatial attenuation of the m = −1 mode in the
entire range of x axial numbers (Figure 2b).

The influence of the normalized radius of the waveguide metal wall η on the phase properties ω̃ and spatial
attenuation coefficient α for the discharge structure with constant radius of metal enclosure for them = +1 eigen
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(a) Phase properties ω̃(x) (b) Attenuation coefficient α(x)

Figure 2. The dependence of the dimensionless phase and attenuation properties of the m = −1 mode via the
dimensionless wavenumber x for different parameter ν/ω values. Problem parameters and curve numbering are
the same as for the Figure 1

mode is presented in the Figure 3. The parameters of the calculations were chosen to be equal Ω = 0.2, σ = 0.3,
ν = 0.001, µ = 0.0. The modelling shows that the increase of the vacuum gap size between the plasma column
and the waveguide metal due to parameter η variation in the following interval of values η ≥ 1.1 and η ≤ 1.8
leads to the increase of the normalized wave frequency ω̃ in the entire range of axial wavenumbers x, especially
in the region when x ≤ 2. A further increase of the parameter η up to η ≥ 1.3 values leads to a weakening
of the parameter η influence on the phase characteristics of the dipole mode m = +1. The Figure 3b presents
the influence of the normalized radius of the waveguide metal wall η on the spatial attenuation coefficient α for
the m = +1 mode. The increase of the parameter η leads to the increase of the coefficient α, especially in the
wavenumber region x ≥ 3 for the following range of parameter η ≥ 1.4. It is necessary to mention the presence
of the small region where the attenuation coefficient α growth when wavenumber x decrease in the region of
small axial wavenumber values x < 0.7.

(a) Phase properties ω̃(x) (b) Attenuation coefficient α(x)

Figure 3. The dependence of the dimensionless phase and attenuation properties of the m = +1 mode via the
dimensionless wavenumber x for different parameter η values. The numbers near the curves are the parameter
η values. Other parameters are equal: Ω = 0.2, σ = 0.3, ν = 0.001, µ = 0.0

The Figure 4 shows the influence of the value of the normalized radius η of the waveguide metal wall on
the phase characteristics (Figure 4a) and spatial attenuation (Figure 4b) of the eigen dipolar mode m = −1 for
the waveguide with the constant radius of metal enclosure for the same parameters suite as for the Figure 3.
The parameter η that characterises the radius of the waveguide metal wall has the same influence of the on
the phase characteristics ω̃ and attenuation coefficient α for the m = −1 mode as for the m = +1 mode. It
should be noted that with the same parameters of the waveguide structure, the normalized wave frequency ω̃
of the m = −1 mode is somewhat lower than the normalized frequency of the m = +1 mode for the same axial
wavenuber x value (see Figure 4a and Figure 3a). At the same time the spatial attenuation coefficient α of the
m = −1 mode is approximately in 2 − 3 times smaller than attenuation coefficient of the m = +1 mode (see
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Figure 4b and Figure 3b). Let us mention that similar to the case of dipolar m = +1 mode the region where
the attenuation coefficient α growth with the axial wavenumber x decrease also exists for the dipolar m = −1
mode in the region of small axial wavenumber values x < 0.7 (Figure 4b).

(a) Phase properties ω̃(x) (b) Attenuation coefficient α(x)

Figure 4. The dependence of the dimensionless phase and attenuation properties of the m = −1 mode via the
dimensionless wavenumber x for different parameter η values. Problem parameters and curve numbering are
the same as for the Figure 3

For our further research, it is very important to determine the influence of the plasma column radius Rp

on the phase characteristics and spatial attenuation of the eigen dipolar waves of the waveguide structure. The
influence of the normalized parameter σ, that characterises the dimensionless plasma column radius, on the
eigen wave charcteristics is shown in the Figure 5 and Figure 6 for the dipoar modes m = +1 and m = −1,
respectively. It was obtained, that parameter σ has the same general influence on the phase characteristics
ω̃(x) and spatial attenuation α(x) of the m = +1 and m = −1 waves, respectively. At the same time, the
normalized frequency values ω̃ of eigen dipolar modes m = ±1 for a given value of the axial wavenumber are
quite close (see, Figure 5a and Figure 6a), but the ω̃ value of the m = −1 mode is somewhat lower than that of
the m = +1 mode. The spatial attenuation coefficient α of eigen modes m = +1 and m = −1 also possesses
similar behavior (see, Figure 5b and Figure 6b), but eigen mode with m = −1 is attenuates somewhat weaker
than the mode with m = +1, especially in the region of small axial wavenumbers x ≥ 3. It is also necessary
to mention the the existence of the region where attenuation coefficient α decreases with the axial wavenumber
x increase (x < 1.0) for small parameter σ values (σ ≤ 0.6). For the plasma columns with rather large radius
(σ > 1) such region is not present.

(a) Phase properties ω̃(x) (b) Attenuation coefficient α(x)

Figure 5. The dependence of the dimensionless phase and attenuation properties of the m = +1 mode via the
dimensionless wavenumber x for different parameter σ values. The numbers near the curves are the parameter
σ values. Other parameters are equal: Ω = 0.2, η = 1.1, ν = 0.001, µ = 0.0

After the detailed study of the phase and attenuation properties of the eigen dipolar waves of the discharge
structure (see results presented above in the Figures 1-6 and also in [10]) it is necessary to choose suitable
parameters for further research and to move to the next study step. It is obvious that to obtain rather long
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discharge sustained by the eigen dipole waves with a high degree of plasma density axial homogeneity it is
convenient to choose such parameters of the system, that give moderate values of the spatial attenuation
coefficient α together with rather big value of dimensionless plasma density N = ω2

p/ω
2 = 1/ω̃2. The analysis of

the previously obtained results shows that small parameter η values (η = 1.1, see Figures 3, 4) leads to the quite
small spatial attenuation coefficient value, but at the same time, in the future, it is quite possible to obtain the
problems associated with gas discharge modeling in the waveguide with metal enclosure with decreasing radius
along the discharge. The increase in the plasma column normalized radius σ leads to the decrease of the spatial
attenuation coefficient α (see Figures 5, 6), but at the same time the value of the minimum permissible axial
wave number x increases. In [10] it was shown that the decreasing of the external magnetic field value (the
decrease of the parameter Ω value) leads to the decrease of the normalized frequency ω̃ of the m = +1 wave
and to the increase of its spatial attenuation coefficient α. In [10] it was also shown that the decreasing of the
external magnetic field value leads to the increase of dimensionless frequency ω̃ in the region of small values of
the axial wave number x and to the decrease of ω̃ in the region of sufficiently large x values for the dipolar wave
m = −1. In contrast to the m = +1 dipolar wave, the attenuation coefficient α of the m = −1 dipolar mode
in the region of small x values increases but decreases in the region of sufficiently large axial wavenumbers x
with the decrease of the external magnetic field value Ω. As for the value of the parameter ν, the smaller is the
normalized effective collision frequency of ν/ω, the smaller is the attenuation coefficient α (see Figure 1, 2).

Thus, taking into account the above considerations, the following normalized parameters of the waveguide
structure were chosen for further gas discharge axial structure modeling: η = 1.3, σ = 0.8, Ω = 0.2, ν = 0.001.

(a) Phase properties ω̃ (b) Attenuation coefficient α

Figure 6. The dependence of the dimensionless phase and attenuation properties of the m = −1 mode via the
dimensionless wavenumber x for different parameter σ values. Problem parameters and curve numbering are
the same as for the Figure 5

(a) The dipolar mode m = +1 (b) The dipolar mode m = −1

Figure 7. The Zakrzewski stability criterion (8). The numbers near the curves are the non-uniformity param-
eter µ values. Other parameters are equal: ω = 0.2, σ = 0.8, η = 1.3, ν/ω = 0.001

The next step of the study is the determination of the ω̃ region where the discharge can be sustained
according to the Zakrzewski stability criterion (8). Some results of such study are presented in Figure 7. The
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Figure 7a and Figure 7b shows the influence of plasma density radial non-uniformity (parameter µ varies in
the range µ ∈ [0.0; 2.3]) on the stability criterion (8) for dipolar mode with m = +1 and m = −1, respectively.
Other parameters of calculations are equal to ω = 0.2, σ = 0.8, η = 1.3, ν/ω = 0.001. The criterion in the
Figure 7 is presented in the following equivalent to (8) form: Zcr = (n/α) · (dα/dn)− 1 < 0, so negative value
of Zcr corresponds to the regime of the stable gas discharge sustaining. When the parameter µ increases from
zero (radially homogeneous plasma) up to µ = 2.3 (the radial distribution of the plasma density is close to the
ambipolar diffusion regime profile), the maximum possible plasma density value N = ωp

2/ω2 in the discharge
that can be sustained by the dipolar mode m = ±1 becomes bigger and the corresponding density range becomes
larger (see Figure 7a, 7b).

The final step of our study is the finding the plasma density axial distribution in the discharge sustained by
the dipolar m = ±1 waves by solving ordinary differential equation (7). The Zakrzewski stability criterion (8)
was also under the control. The dimensionless plasma density N = ω2

p/ω
2 (ωp is the electron plasma frequency)

axial distributions in the discharge sustained by the eigen dipolar m = ±1 mode for different plasma density
radial profiles (non-uniformity parameter µ = 0.0, µ = 2.0, µ = 2.1, µ = 2.2, µ = 2.3) is presented in Figure 8.
The normalized normalized axial coordinate is equal to ξ = (νz)/(ωRp). At this modeling the radius of the
waveguide metal enclosure is considered to be constant along the discharge. Other parameters are equal to
Ω = 0.2, σ = 0.8, η = 1.3, ν = 0.001.

(a) The dipolar mode m = +1 (b) The dipolar mode m = −1

Figure 8. Plasma density axial distribution in dipolar mode sustained gas discharge. The numbers near the
curves are the non-uniformity parameter µ values. Other parameters are equal: Ω = 0.2, σ = 0.8, η = 1.3, ν =
0.001

The Figures 8a, 8b present the normalized plasma density axial distribution N = ω2/ω2 along the discharge
(normalized coordinate ξ) for a radially homogeneous plasma mu = 0 and for such values of nou-uniformity
parameter µ at which the effect of radial non-uniformity becomes significant. The discharges, sustained by the
m = ±1 waves in the considered discharge structure possesses the similar axial gradients and the discharge
lengths.

The Figure 9 presents the plasma density axial distribution in the discharge sustained by the eigen dipolar
mode in the case of radially uniform plasma for the metal waveguide with constant, increasing and decreasing
radius in the direction of wave propagation. The other parameters are the same as in the Figure 8. The
normalized plasma density value at the beginning of the discharge was chosen to be equal to N = 30. When
the discharge is sustained in the metal waveguide with increasing radius one can obtain the discharge length
approximately twice as long as for the discharge in a waveguide of constant radius. Besides one can obtain
significantly smaller axial gradients of density non-uniformity, especially at the end of the discharge. When the
discharge takes place in metal metal waveguide with the decreasing radius along the discharge the discharge
length decreases approximately in half, as compared with the discharge in the waveguide of constant radius.
At this case the axial gradients of density non-uniformity increases, especially at the end of the discharge. It is
necessary to note the similarity of the axial profiles of the discharges sustained by the dipolar mode m = ±1.

The Figure 10 shows the plasma density axial structure in the discharge sustained by the dipolar mode in
the case when the non-uniformity parameter is equal to µ = 2.0. The normalized plasma density value at the
beginning of the discharge was also chosen equal to N = 30. The increase of waveguide metal radius along the
discharge gives the possibility to obtain a longer discharge than in a waveguide of constant radius. In addition
let us note that the plasma density decreases along the discharge almost linearly. In a waveguide with the
decreasing radius along the discharge one can obtain a shorter discharge with a large axial density gradient at
the end of the discharge. The model with such non-uniformity parameter possesses the similarity of the plasma
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(a) The dipolar mode m = +1 (b) The dipolar mode m = −1

Figure 9. Plasma density axial distribution in dipolar mode sustained gas discharge for µ = 0.0, Ω = 0.2, σ =
0.8, η = 1.3, ν = 0.001

density axial profiles for the discharges sustained by the dipolar mode m = ±1.

(a) The dipolar mode m = +1 (b) The dipolar mode m = −1

Figure 10. Plasma density axial distribution in dipolar mode sustained gas discharge for µ = 2.0, Ω = 0.2,
σ = 0.8, η = 1.3, ν = 0.001

At the larger values of the non-uniformity parameter µ (µ = 2.1), such similarity of the plasma density
axial profiles in the discharges sustained by the dipolar mode m = ±1 starts to disappear (see Figure11). In
the discharges sustained by the m = +1 mode, the influence of the variable radius of the metal waveguide is
essential almost at the beginning of the discharge (Figure 11a). At the same time, in the discharges sustained
by the m = −1 mode, the plasma density decreases along the discharge practically according to a linear law
(Figure 11b). Besides the discharges length and the plasma density axial gradients for metal waveguides with
variable radius somewhat differ from such quantities for the discharges in waveguide structure with constant
radius η = 1.3. It is also should be noted that the length of discharge sustained by the mode m = −1 is slightly
smaller as compared to the length of the discharge in the mode m = +1.

When the non-uniformity parameter increases up to µ = 2.2, the axial profile of plasma density in the
discharges sustained by the m = ±1 dipolar modes (Figure 12) become again similar, but since the discharges
on the m = +1 mode are longer than the discharges on the mode m = −1, then the corresponding plasma
density axial gradient for the discharge on the mode m = +1 is somewhat smaller.

The further growth of the non-uniformity parameter µ up to µ = 2.1 leads to the further discharge decrease
and to the increase of plasma density axial gradient.

4. CONCLUSIONS

This article presents the results of the theoretical modelling of the axial structure of gas discharge sustained
by the eigen dipolar (m = ±1) wave of the discharge structure that consists of cylindrical magnetized slightly
collisional plasma column that surrounds by the vacuum region and enclosed by the metal wall of constant or
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(a) The dipolar mode m = +1 (b) The dipolar mode m = −1

Figure 11. Axial structure of gas discharge for µ = 2.1, Ω = 0.2, σ = 0.8, η = 1.3, ν = 0.001

(a) The dipolar mode m = +1 (b) The dipolar mode m = −1

Figure 12. Plasma density axial distribution in dipolar mode sustained gas discharge for µ = 2.2, Ω = 0.2,
σ = 0.8, η = 1.3, ν = 0.001

slightly varying along the discharge radius. The modelling was carried out in the framework of electrodynamics
approach taking into account slightly axial and strongly radial non-uniformity of plasma density.

For the discharge structure with a constant radius of metal enclosure it was shown that the increase of
the plasma density radial non-uniformity leads to the significant decrease of the discharge length and to the
increase of the plasma density axial gradients. It was also obtained that plasma density radial non-uniformity
has the essential influence on plasma density axial distribution starting from the non-uniformity parameter value
µ ≥ 2.0. This influence is getting stronger when µ → 2.3. It was also obtained that gas discharges sustained in
the waveguides with expanding along the discharge metal enclosure possesses a longer length with significantly
smaller axial density gradients at the end of the discharge as compared to a constant-radius discharge structure.
The use of a waveguide with narrowing along the discharge metal enclosure leads to the decrease of the discharge
length and to the increase of the plasma density axial gradient, especially at the end of the discharge. The study
of the simultaneous influence of the plasma density radial non-uniformity and the waveguide metal enclosure
axial inhomogeneity on the plasma density axial structure in the discharge have showed that in the discharge
structures with an expanding metal waveguide the length of the discharge sustained by the m = +1 mode is
slightly bigger than for the discharge sustained by the m = −1 mode. It was obtained that plasma density
decreases in the direction of wave propagation approximately according to a linear law when non-uniformity
parameter value µ ≥ 2.0. The carried out simulation have shown that when the non-uniformity parameter µ
increases from µ = 0.0 (radially uniform plasma) up to µ = 2.3 (the plasma density radial distribution that
is close to the profile of the ambipolar diffusion regime), the plasma density value increases and also increases
the corresponding density range of stable discharge that can be sustained by the m = ±1 dipolar modes. The
obtained results can be useful for various different applications.
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ÀÊÑIÀËÜÍÀ ÑÒÐÓÊÒÓÐÀ ÃÀÇÎÂÎÃÎ ÐÎÇÐßÄÓ, ÙÎ ÏIÄÒÐÈÌÓ�ÒÜÑß
ÂËÀÑÍÎÞ ÄÈÏÎËÜÍÎÞ ÕÂÈËÅÞ ÌÅÒÀËÅÂÎÃÎ ÕÂÈËÅÂÎÄÓ ÇÌIÍÍÎÃÎ

ÐÀÄIÓÑÓ, ÇÀÏÎÂÍÅÍÎÃÎ ÌÀÃÍIÒÎÀÊÒÈÂÍÎÞ ÍÅÎÄÍÎÐIÄÍÎÞ ÏËÀÇÌÎÞ
Âîëîäèìèð Îëåôiða,b, Îëåêñàíäð Ñïîðîâa, Ìèêîëà Àçàð¹íêîâa,b

aÕàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iì. Â.Í. Êàðàçiíà, ìàéäàí Ñâîáîäè, 4, 61022, Õàðêiâ, Óêðà¨íà
bÍàöiîíàëüíèé Íàóêîâèé Öåíòð �Õàðêiâñüêèé Ôiçèêî-Òåõíi÷íèé Iíñòèòóò�,

âóë. Àêàäåìi÷íà, 1, 61108, Õàðêiâ, Óêðà¨íà

Â ñòàòòi íàâåäåíî ðåçóëüòàòè òåîðåòè÷íîãî äîñëiäæåííÿ àêñiàëüíîãî ðîçïîäiëó ãóñòèíè ïëàçìè â ñòàöiîíàðíî-

ìó ãàçîâîìó ðîçðÿäi, ÿêèé ïiäòðèìó¹òüñÿ âëàñíîþ äèïîëüíîþ õâèëåþ, ùî ïîøèðþ¹òüñÿ â äîâãié öèëiíäðè÷íié

ïëàçìîâî-ìåòàëåâié ñòðóêòóði. Ñòðóêòóðà ñêëàäà¹òüñÿ çi ñòîâïà ìàãíiòîàêòèâíî¨ íåîäíîðiäíî¨ ïëàçìè, ùî çíàõî-

äèòüñÿ âñåðåäèíi ìåòàëåâîãî õâèëåâîäó çìiííîãî ðàäióñó. Äîñëiäæåííÿ ãàçîâîãî ðîçðÿäó ïðîâîäèòüñÿ â ðàìêàõ

åëåêòðîäèíàìi÷íî¨ ìîäåëi, â ÿêié îñíîâíà óâàãà ïðèäiëÿ¹òüñÿ åëåêòðîäèíàìi÷íié ÷àñòèíi. Äëÿ îïèñó ïðîöåñiâ, ùî

âiäáóâàþòüñÿ â ïëàçìi, âèêîðèñòîâóþòüñÿ ìîäåëüíi ðiâíÿííÿ. Âèçíà÷åíî âïëèâ íåîäíîðiäíîñòi ìåòàëåâîãî õâèëå-

âîäó âçäîâæ ñòðóêòóðè òà ðàäiàëüíî¨ íåîäíîðiäíîñòi ãóñòèíè ïëàçìè íà ôàçîâi õàðàêòåðèñòèêè äèïîëüíî¨ õâèëi,

¨¨ ïðîñòîðîâå çàãàñàííÿ, ðàäiàëüíèé ðîçïîäië êîìïîíåíò ïîëÿ, àêñiàëüíèé ðîçïîäië ãóñòèíè ïëàçìè, ùî ïiäòðèìó-

¹òüñÿ öi¹þ ìîäîþ, ïðîâåäåíî àíàëiç óìîâ ñòàöiîíàðíîñòi ïðîòiêàííÿ ðîçðÿäó. Îòðèìàíi ðåçóëüòàòè ìîæóòü áóòè

êîðèñíèìè äëÿ ðiçíèõ òåõíîëîãi÷íèõ çàñòîñóâàíü.
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