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In this paper, we investigate the effects of anisotropic parameters, topological defects, and magnetic flux on the dissociation energy
of bottomonium in an anisotropic quark-gluon plasma. We use the three-dimensional Schrodinger equation and derive the energy
eigenvalues. Our findings show that the dissociation energy decreases with increasing temperature, but there is a slight shift towards
higher values when the magnetic flux is increased. Furthermore, the inclusion of topological defects causes further shifts in the
dissociation energy at high temperatures. Additionally, we analyze the impact of anisotropic medium on dissociation energy, both
with and without considering topological defects. We observe that including topological defects results in higher values for the
dissociation energy across all temperatures, while ignoring them leads to lower values at all temperatures studied. Moreover, we
consider the baryonic chemical potential and find that its effect on dissociation is negligible compared to temperature variations.
These findings provide valuable insights into the behavior of heavy quarkonium systems under different physical conditions and
contribute to our understanding of topological effects in anisotropic media.
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1. INTRODUCTION

The study contributes to the understanding of heavy quarkonium systems, specifically bottomonium mesons, in a
hot and dense medium. It explores the effects of anisotropic parameters, topological defects, magnetic flux, and
baryonic chemical potential on dissociation energy. By investigating these factors and their impact on quarkonium
behavior, it adds valuable insights to this area of research. Dissociation of quarkonium in hot and dense media has been
a topic of significant interest in the field of in the quark-gluon plasma. Quarkonium refers to a bound state of a heavy
quark-antiquark pair, such as charm-anticharm (J/y) or bottom-antibottom (Y). In the non-relativistic quark model,
quarkonium are considered to be akin to a heavy particle moving in a Coulomb potential. When exposed to extremely
high temperatures and densities, as found in heavy-ion collision experiments, quarkonium states may undergo
dissociation due to the effects of the surrounding anisotropic plasma [1-4]. Further studies are extended to relativistic
quark models to study the properties of hadron in high temperature [5-10]

The presence of an anisotropic plasma plays a crucial role in the dissociation process. Anisotropy refers to a
situation in which the thermal motion of particles is not uniformly distributed in all directions. In the context of
quarkonium dissociation, the anisotropic plasma can affect the screening properties of the medium. The ability of the
plasma to screen the quark-antiquark potential depends on the direction of the motion of the heavy quark.
Consequently, the dissociation rates of quarkonium states can exhibit a dependence on the direction of their relative
motion through the anisotropic plasma [11].

Studying the dissociation of quarkonium in an anisotropic plasma requires theoretical frameworks that incorporate
both non-relativistic quark models and the effects of the plasma. This is known as the non-relativistic QCD (NRQCD)
framework. NRQCD provides a valuable tool to analyze the behavior of quarkonium in different plasma environments.
It allows for the calculation of dissociation rates and other properties relevant to the study of quarkonium suppression in
heavy-ion collisions. Understanding the dissociation of quarkonium in hot and dense media is crucial for unraveling the
nature of the quark-gluon plasma and the properties of QCD matter under extreme conditions [12-13].

The study of point-like global monopoles has attracted significant interest in various branches of theoretical
physics. These defects have implications in cosmology and astrophysics, as their existence could have left observable
imprints on the early universe. Furthermore, their properties and interactions are of utmost importance in understanding
the dynamics of field theories and the fundamental nature of particle physics. Experimental searches and theoretical
investigations continue to shed light on the intriguing properties and implications of point-like global monopoles. Point-
like global monopoles are hypothetical topological defects that may have formed during phase transitions in the early
universe such as [14-15].

One area where point-like global monopoles have important implications is in the study of cosmic strings. Cosmic
strings are linear topological defects that can form during phase transitions, and their interaction with point-like global
monopoles can lead to the creation of cosmic junctions. These junctions serve as sources of gravitational radiation and
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can potentially leave imprints in the cosmic microwave background, providing valuable insights into the early
universe's dynamics and supporting inflationary cosmology models [17].

Furthermore, the presence of point-like global monopoles can lead to the formation of cosmic texture. Cosmic
textures are two-dimensional tangled structures that arise due to the evolution of coupled fields with non-trivial
topology. The interaction between point-like global monopoles and cosmic textures can contribute to the generation of
anisotropies in the cosmic microwave background, which can be probed through experiments such as the Planck
satellite mission [18].

Beyond their impact on cosmic string evolution and cosmic texture formation, point-like global monopoles can
also have implications on the large-scale structure of the universe. The presence of these topological defects can affect
the distribution and clustering of matter over cosmological distances, potentially leaving detectable signatures in galaxy
surveys and cosmological observables [19]. Their influence on structure formation is highly dependent on their initial
conditions and properties, making their study crucial for understanding the dynamics of the universe at different scales.

The work explores the characteristics of heavy mesons in an anisotropic-plasma environment, paying attention to
the impact of topological effects in space. Novelty: The incorporation of anisotropic parameters and topological defects
in studying quarkonium dissociation energy sets this paper apart from previous works that primarily focus on classical
cases or neglect these factors altogether. This novel approach provides a more comprehensive understanding of how
different physical conditions affect heavy quarkonia.

The paper is structured as follows: Section 2 briefly describes the new method, Section 3 delves into the
computation of energy eigenvalues and wave functions, Section 4 discusses the results obtained, and finally, Section 5
provides a summary and conclusion of the findings.

2. THE SCHRODINGER EQUATION IN POINT-LIKE GLOBAL MONOPOLEWITH POTENTIAL
INTERACTION
In this section, we find the solution for the eigenvalues of non-relativistic particles in the presence of a quantum
flux field, considering a point-like global monopole with potential.
For a detailed explanation of the two-particle system interacting through an electromagnetic spherically symmetric
potential V' (7) in the framework of radial-Schrodinger equation, see Ref. [16].

a1 L'(L'+1
{W+?(2y(E—V(r))—%ﬂ‘l’(rbos (0

where L'=L-® and u are the angular momentum quantum number and the reduced mass for the quarkonium
particle (for charmonium g =m,/2 and for bottomonium z=m,/2), respectively, and 0<a <1 characterize the

topological defect parameter of point-like global monopole and @ is the amount of magnetic flux which is a positive
integer.

Real Part of The Potential in An Anisotropic Medium
Here, we aim to find the potential due to the presence of a dissipative anisotropic hot QCD medium. The in-
medium modification can be obtained in the Fourier space by dividing the heavy-quark potential by the medium

dielectric permittivity, £(K) as follows

~ V (k)
Vi(k)= , 2
=25) @
by taking the inverse Fourier transform, the modified potential is obtained as follows
k| 4, ~
V(r)=[—=(" =1)7 (k) (€)
(27)

where V (k) is the Fourier transform of Cornell potential V' (r)=—%+0r that gives as follows

V(k)=—\/%(l%+i—?j, )

S(K ) may be calculated which found from the self-energy using finite temperature QCD. By applying hard thermal

loop resummation technique as in Refs. [20, 21], the static gluon propagator which represents the inelastic scattering of
an off-shell gluon to a thermal gluon is defined as follows

A" (w k) =k g" — kK" + 1" (w, k), 5)
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the dielectric tensor can then be obtained in the static limit in Fourier space, from the temporal component of the
propagator as

e (K)=- hn% EAY (w,k), (6)
to calculate the real part of the inter-quark potential in the static limit, one can obtain first the temporal component of

real part of the retarded propagator in Fourier space at finite temperature and chemical potential as given in Ref. [20] as
follows

1 1 m (T, 1) (3cos20—1
Re[Aj’;’](w=0,k)=—k2 ; —¢| - (2 - ) 7
+mp(Top) "\ 3(K +mp(Top) ) 6(k% + i (T, )
the medium dielectric permittivity €(K) is then given
. K 1 mj, (3cos26—1
e‘(K):k2 e < |- D(z 22). ®)
+m;, 3(k +mD) 6(k +mD)

Substituting Eqs. (4) and (8) into Eqs. (2,3) and then taking its inverse Fourier transform, we can write the real

part of the potential for rm,, << 1 as follows

(Y el amy) ) (1 omy) (1 my) (1
V(r,f,T,ﬂb)—W(HJ F[H 5 ]+§[3+ " [3+ 6 (3+cos(2t9)jjj, ©)

where ¢ is the anisotropic parameter. T and g, are the temperature and the baryonic chemical potential, respectively.
In Eq. (9), the potential depends on € which is the angle between the particle momentum and the direction of
anisotropy. We note that the potential in Eq. (9) reduces to the Cornell potential for £=0 and m, =0 {For details, see

Ref. [20]}. In the present work, the Debye mass D(7T,4,) is given as in Refs. [22, 23] by

N, N ?
D(Talub):gT\/%J’__t—'—_f[&j 5 (10)

6 27°\ T

where, g is the coupling constant and g, is the quark chemical potential (,uq =%] , N, is number of flavors, and N,

is number of colors. The NU method [24] is briefly given here to solve the form of the following equation

7() gy O0) _
) W(s)+ pr Y(s)=0, (11)

where o(s) and 6(s) are polynomials of maximum second degree and 7(s) is a polynomial of maximum first degree

Y(s)+

with an appropriate s =s(7) coordinate transformation. We try to find a particular solution by separation of variables, if
one deals with the transformation

W(s)=D(s) x(s). (12)
Eq. (11) is written as
o ()" (s)+7(s) x(s) + Ax(s) =0, 13)
where
_ D(s)
o(s)=7(s) o(s)’ (14)
and
(s)=7(s)+27(s); 7'(s)<0, (15)
n(n-1)

A=2 =—nT'(s)—TO'”(S),n=0,1,2,..., (16)
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x(s)=x,(s) is a polynomial of degree n which satisfies the hypergeometric equation, taking the form

B d"
Zn(s) _p_n dS”

(0"(5)p(s)), a7

where B, is a normalization constant and p(s) is a weight function which satisfies the following equation

L) =) ats) = o(p(6), (18)
s o(s)
7(s) = ",(s)z" 7e) \/( 6’(”?)2" Ty _ 551+ Ko (s). (19)
and
A=K +7(s), (20)

7(s) is a polynomial of the first degree. The values of K in the square root of Eq. (19) is possible to calculate if the

function under the square is a square of a function. This is possible if its discriminant is zero. For r parallel to the
direction of n of anisotropy at 8 =0, the potential is given by

V(r):alr—ﬁ, 2}
r
where
P T
a1=0+§a§—5am[, —Eame, (22)
b1=a+%§. (23)

By applying the above method to the potential given in Eq. (21), we obtain the energy eigenvalues as follows

EH :%— 2#1(%+b])2 (23)
"8 [@nen IS DT

Similarly, for » perpendicular to the direction of n anisotropy at & =7/2 , the potential is given by

V(r)=a2r—b72, 24)
where
1 1, 1 )
a2=O'+50'§—5amD +£a§mD, (25)
b,=a+ %g. (26)
and the energy eigenvalues are given as follows
3a, 2

O [@n+D+ I+ (L + )T
where O is a parameter will be determined as in Ref. [2].

DISCUSSION OF RESULTS
In this section, we calculate spectra of the heavy quarkonium system such as bottomonium mesons in the hot and
dense medium. The mass of quarkonium is calculated in the 3-dimensional space. We apply the following relation as in

Ref. [2].
M =2m+E,, (28)
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where m is quarkonium bare mass for the charmonium or bottomonium mesons. By using Eq. (23), we write Eq. (28)
as follows:
24,4 + b, )
M — 2m + /’ll( 5 1) .
[(Qn+1)+ 1+ %8 4 1L+ DT

29

Eq. (29) represents the quarkonium masses in hot and dense medium with topological effects and magnetic flux in an
anisotropic plasma. By taking =1 and ® =0, we obtain
2uCa+b)
M=2m+ MG +h) )
[(Qn+1)+ 1+ 42 L(L+ D)

(30)

53

Eq. (30) coincides with Ref. [2]. We discuss the effect of the anisotropic parameter on the quarkonium dissociation
energy, specifically focusing on the bottomonium meson. The parameters used in this calculation are based on Ref. [2]
which sets the mass of the bottom quark to be 4.686 GeV. Furthermore, we are specifically considering the 1S state of
the bottomonium meson. The Eq. (23) is employed to calculate the dissociation energy, in which r parallel to the
direction of n of anisotropy at d=0. In Fig. (1), the dissociation energy is plotted against the temperature, ranging
from 0.17 to 0.35 GeV, which corresponds to the quark-gluon plasma phase. In this figure, the effect of topological
defect is ignored, and we observe that the dissociation energy decreases as the temperature increases. When we increase
the magnetic flux, the curves representing the dissociation energy slightly shift towards higher values at the starting
temperature. However, the effect of the temperature becomes more apparent at higher temperatures, indicating that the
magnetic flux has a stronger impact in very hot mediums. It is important to note that the medium in this context is
anisotropic, with a parameter value of { =0.3. Moving on to Fig. (2), we consider the incorporation of topological
defect in the anisotropic medium.
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Figure 1. The dissociation energy is plotted with temperature  Figure 2.The dissociation energy is plotted with temperature
for different values of magnetic flux at {=0.3, «= 1.0 and up=0  for different values of magnetic flux at {=0.3, «= 0.5and up="0

Here, we observe that the dissociation energy is shifted to larger values for all different magnetic flux values. This
effect becomes more prominent at very high temperatures, indicating that topological defect plays a crucial role in hot
anisotropic mediums. Now, if we turn our attention to Figures (3,4), we concentrate on the effect of anisotropic medium on
dissociation energy. In Fig. (3), with the inclusion of topological defect, the dissociation energy is shifted to higher values
in the anisotropic medium at every temperature. On the other hand, in Fig. (4), when the topological defect is ignored, we
observe that the dissociation energy decreases to lower values at all temperatures. It is worth noting that recent works have
not considered topological defect, as most of them focus on the study of quarkonium in the classical case, which refers to
zero temperature and chemical baryonic potential. In Ref. [16], a similar effect of the magnetic flux on the eigenvalue of
energy is observed, where the energy is shifted to higher values with increasing magnetic flux. The authors of the work
also investigated the potential interaction under different values of topological parameter and magnetic flux.

Also, in the present work, we considered the effect of a dense medium by including the baryonic chemical
potential in our study. In Figure 5 and Figure 6, we examined two cases: one where we ignored the topological defect
(as shown in Figure 5), and another where we considered it (as shown in Figure 6). We observed that without the
topological defect, the dissociation occurs more rapidly with increasing temperature and gradually very slightly
decreases with the baryonic chemical potential. However, when we include the topological defect, we see the same
behavior but with a shift towards higher energy values. Furthermore, in contour 7, we note that higher values of
dissociation are observed at lower temperature and lower chemical potential, and these values gradually decrease as the
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temperature increases. We also observe that the effect of the baryonic chemical potential is negligible at every
temperature point. A similar behavior is seen in contour 8 when the effect of the topological defect is considered.
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Figure 3. The dissociation energy is plotted with temperature for Figure 4. The dissociation energy is plotted with
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CONCLUSION
This study explores the effects of anisotropic parameters, topological defects, magnetic flux, and baryonic
chemical potential on the dissociation energy of bottomonium mesons in a hot and dense medium. The results
demonstrate that temperature plays a significant role in decreasing dissociation energy while magnetic flux slightly
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shifts it towards higher values. Incorporating topological defects further increases dissociation energy at high
temperatures. Additionally, considering anisotropic medium leads to higher dissociation energies compared to isotropic
conditions. The inclusion of baryonic chemical potential has negligible impact on dissociation compared to temperature
variations. These findings provide valuable insights into the behavior of heavy quarkonium systems under different
physical conditions and contribute to our understanding of topological effects in anisotropic mediums. We hope to
extend this work as future works relativistic quark model as in Ref. [25] with fractional derivative as in Ref. [26] or
extend to molecular structure as in Ref. [27].
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BILJIMB TOMOJIOTTYHHAX JEPEKTIB TA MATHITHOI'O IIOTOKY HA EHEPITIO TUCOIIIAIII KBAPKOHIIO B
AHI3OTPOITHIM TIJIA3MI
Moxamen A0y-Ilani®, Etixo IL. Iubsaur®
“Kagedpa mamemamurxu ma iHpopmamuxu, paxyivmem npupoOHusux Hayk, Yuieepcumem Menyis, Ll6ien Env-Kom, Ecunem
bKageopa ¢izuxu, Hayionanvuuii sioxpumuii ynieepcumem Hizepii, [icabi, Abyoaca, Hizepis

VYV wiit cTaTTi MM JOCHIZKYEMO BIUIMB aHi30TPOIHHUX MapaMeTpiB, TOMOJOTiYHUX Ae(eKTiB i MArHiTHOro MOTOKY Ha EHEpriio
aqucorianii O0TTOMOHIIO B aHI30TPOINHIN KBapK-TII0OHHIH mia3Mi. Mu BHKOpHCTOBYeMo TpuBuMipHe piBHsHHs Llpeninrepa ta
OTPUMYEMO BIIACHI 3HaueHHsA eHeprii. Hamr pe3ynmpTaTé MOKa3ylOTh, WO CHEPris AMcoLiamii 3MEHIIYETHCS 31 30UTBIICHHAM
TEMIIEpPaTypH, ajleé € HEBENUKHHA 3CyB y OiK BHIIMX 3HA4€Hb, KOMH 30UTBIIYE€ThCS MArHiTHHH mOTiK. Kpim Toro, BKIIOYEHHS
TONOJIOTIYHMX Je(eKTiB BUKIMKAE MOAAIBINI 3pYIICHHS B eHeprii aucomiamii mpum BHCOKHX Temmeparypax. Kpim Toro, mu
aHaJi3yeMO BIUIMB aHI30TPOITHOTO CEpeNIOBHUINA HA CHEprilo JUCOLialil, sK 3 ypaXyBaHHSIM, Tak i 0e3 ypaxyBaHHS TOIOJOTIYHHX
nedekTiB. Mu crioctepiraeMo, 10 BKIFOYCHHS TOMOJOTIYHUX Ie(EKTiB MPU3BOAUTE 0 OLIBIN BUCOKHX 3HAYCHBb CHEPTii TUCOIaIii
IPH BCiX TEMIIepaTypax, TOJi SIK iX irHOpyBaHHs HPHU3BOAWTH O HIDKYMX 3HAUCHBb MPH BCIX JOCIIDKYBaHHX Temieparypax. Kpim
TOT0, MU PO3IJIAAaEMO OapiOHHUI XIMIYHUI MOTEHIIaN i 3HAXOAMMO, L0 HOro BIUIMB HA JUCOLIALI0 € HE3HAYHUM Y MOPIBHSIHHI 31
3MiHamu Temreparypu. L{i BUCHOBKY AaioTh LiHHY iH(GOPMALI0 NPO MOBEAIHKY BaXKKUX KBapKOHIEBHX CHUCTEM 3a Pi3HHX (Pi3HYHHX
YMOB 1 COPUSIOTH HAIIOMY PO3YMiHHIO TOIMIOJIOTTYHHUX €()EKTIB B aHI30TPOIHUX CEPEIOBUIIAX.

KurouoBi cinoBa: mononociuni ecpexmu, pienanna Llpedincepa;, memoo Hixighoposa-Yeaposa,; xinyesa memnepamypa, 6apionHuil
XIMIYHUL NOMeHYIan





