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The combined effect of second sound and the viscoelasticity is examined using the classical stability analysis on the onset of rotating 
porous medium ferroconvection. Local thermal equilibrium is assumed between the solid matrix and fluid. Present problem is examined 
by an analytical approach by considering the pertinent boundary conditions. Normal mode analysis technique is utilized for obtaining 
the critical values for both instabilities namely stationary and oscillatory. We noticed that the oscillatory mode of instability is favored 
over the stationary mode of instability. We found that magnetic forces, second sound, nonlinearity in magnetization, Vadasz number, 
stress relaxation due to viscoelasticity and Taylor-Darcy number are in favour of advancing oscillatory porous medium ferroconvection 
whereas strain retardation postpone the outset of oscillatory porous medium ferroconvection. Convection cell size effects by different 
parameters and the oscillation’s frequency are also noted. This problem shall have significant feasible technological applications 
wherein viscoelastic magnetic fluids are involved. 
Keywords: Convection; Rotation; Viscoelastic fluids; Maxwell equations; Porous media; Navier-Stokes equations for incompressible 
viscous fluids 
AMS Classification: 76E06, 35Q61, 76A10, 76S05, 76D05. 
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1. INTRODUCTION
The dynamics of ferrofluids can be controlled by an externally acting applied magnetic field (Shliomis [1]). 

Rosensweig [2-4] was the first to synthesize ferrofluids. Considering both magnetic and buoyancy forces, a 
comprehensive analysis of RBC in ferrofluids was reported by Finlayson [5]. The findings of Finlayson [5] were examined 
both thereotically and experimentally by Schwab et al. [6] and Stiles and Kagan [7] respectively. Lalas and Carmi [8] 
reported the unique results on ferroconvection with energy stability approach. The impact of internal heating on the energy 
stability of magnetic fluids was documented by Mahajan and Sharma [9]. Nisha Mary and Maruthamanikandan [10] 
investigated a time-dependent body force effect on magnetic fluid convection. Soya Mathew et al. [11] studied porous 
medium ferroconvection with Maxwell-Cattaneo equation. Laroze and Pleiner [12] examined numerical and theoretical 
impact on ferroconvection in a viscoelastic carrier liquid. Recently Balaji et al. [13] worked on magnetic field modulation 
affected ferroconvection in a Brinkman porous medium. Vidyashree et al. [14] examined the combined effect of variable 
gravity and MFD viscosity on porous medium ferroconvection. Naseer et al. [15] analyzed the dual nature of Prandtl 
number in the presence and the absence of non-classical conduction. 

When it comes to instabilities in viscoelstic fluids, Oldroyd model [16] gives the fundamental rheological equation 
describing the properties of viscoelastic realistically. In comparison the relaxational time in normal liquids is very short 
as that of viscoelastic liquids. Green [17] examined that for viscoelastic liquids the principle of exchange of stabilities is 
invalid when the restoring force is large. Malashetty et al. [18] and Jianhong Kang et al. [19] studied the rotating RBC in 
viscoelastic fluids by means of both linear and weakly non-linear techniques. Laroze et al. [20] presented theoretical and 
numerical results on ferroconvection in a viscoelastic carrier liquid. Several other researchers contributed to addressing 
the problem of convective instability of viscoelastic fluids with a variety of constraints techniques (Bhadauria and 
Kiran [21], Alves et al. [22], Sohail Nadeem et al. [23], Mahmud et al. [24], Sharma and Mondal [25] and Kaiyao et al. 
[26], Dhiman et al. [27]).  

As for the convection due to porous medium, Saravanan and Sivakumar [28] made an investigation on the impact 
of vibrations on RBC in porous media with arbitrary amplitude and frequency. Very recently, Rudresha et al. [29] studied 
the theoretical influence of time-periodic electric field on electroconvection of Brinkman type. Malashetty and 
Mahantesh [30] investigated the linear stability of an Oldroyd type viscoelastic liquid filled horizontally asymmetric 
porous material warmed beneath and chilled from above. More recently, Rudresha et al. [31] reported a theoretical 
investigation of the combine effect of anisotropy and time-periodic electric field on Darcy-electroconvection. Lebon and 
Cloot [32] studied the effects of Maxwell-Cattaneo model in RBC and Marangoni instability. Maruthamanikandan and 
Smita [33] investigated Rayleigh-Benard instability taking into account second sound in a dielectric fluid. Soya and 
Maruthamanikandan [34] examined the porous medium ferroconvective instability subjected to the heat flux model. 
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Recently, Naseer Ahmed and Maruthamanikandan [35] analyzed anisotropic porous medium under Brinkman Model on 
viscoelastic ferroconvective instability due to Maxwell-Cattaneo.  

External rotation in regards with thermal convection has gained a high interest both theoretically and 
experimentally. Due to its general existence in oceanic flows and geophysical, it is crucial to realize how the Coriolis 
force ambience the transport properties and structure of thermal convection. The investigation on thermal convection 
stability in rotating porous media are done by many researchers. Friedrich [36] analyzed the porous layer stability with 
rotation warmed from underneath considering linear and a nonlinear numerical analysis. This problem with the variable 
viscosity impact has been addressed by Patil and Vaidyanathan [37]. A fascinating analogy have been well-established 
by Palm and Tyvand [38] among an anisotropic porous layer and a rotating porous layer. Various researchers have 
examined the rotation under different costraints as follows Jou and Liaw [39], Qin and Kaloni [40], Vadasz [41], 
Straughan [42], Govender [43,44], Desaive et al. [45], Straughan [46], Malashetty and Swamy [47], Dhiman and 
Sood [48] and Pulkit Kumar Nadian [49]. 

The present paper concentrates on examining the oscillatory convective instability of viscoelastic ferrofluid saturated 
in a rotating porous medium using extended Darcy model with second sound as we cannot find any study related to this 
from the literature review. 

 
Figure 1. Physical Configuration 

 
2. MATHEMATICAL FORMULATION 

Let us consider a Boussinesq viscoelastic ferromagnetic fluid saturated densely distributed porous layer rotating 

with angular velocity (0,0, )
→
Ω Ω restricted between two endless horizontal surfaces of height ‘d’. The viscoelastic 

behaviour is characterized by Oldroyd’s model (non-Newtonian). The above and bottom surface is maintained at UT and 

LT  where L UT T>  (see Fig. 1). Magnetic field 0H


 acts parallel in the z-axis vertically and the force of gravity assisting 
vertically descending. The governing equations aiding the Boussinesq approximation are recorded as follows. 

 0q→∇ =  (2.1) 

 0 0
1 0 22

21 1 fq q q p g H B q q
t t t k

μρ ρλ ρ ρ λ
ε εε

→
→ → →→ → → →→

      ∂ ∂ ∂      + + ∇ + ∇ − −∇ + Ω× = − +            ∂ ∂ ∂           
   (2.2) 

( ) ( )0 , 0 0 0

, ,

1V H s

V H V H

M T T M HC H q T C T q H Q
T t t T t

ε ρ μ ε ρ μ
→ → →

→→ →→ →
      ∂ ∂ ∂ ∂ ∂         − + ∇ + − + + ∇ = − ∇        ∂ ∂ ∂ ∂ ∂          

      (2.3) 

 1
Q q Q Q Q k T
t

τ ω
→

→ → →→→
 ∂   + ∇ + × = − − ∇  ∂  
 

  (2.4) 

 ( )0 1 aT Tρ ρ α = − −   (2.5) 

 ( ) ( )0 0m m aM M H H K T Tχ= + − − −  (2.6) 

All the terms above are defined in Naseer et al. [15]. 
Maxwell’s equations (Finlayson [5]). 
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 00 , 0 , .B H B H Mμ
→ → → →→ → ∇ = ∇ × = = + 

 
  (2.7) 

We notice that for 2 0λ =  the fluid scale down to Maxwell’s fluid and also if 2 0λ =  and 1 0λ =  then the fluid scale 
down to Newtonian fluid. 

The basic state equations are as follows 

 

1

0 , (0,0,0) , ( ) ,

( ) , ( ) , ( ) ,

( ) , ( ) , (0,0, )

b b

b b b

b b b

q T T z
t

p p z z H H z

M M z B B z Q Q k

ρ ρ

β

→

→

→ → → →

∂ = = = ∂ 
= = = 

= = =


 (2.8) 

where ( )1 0 2T Tβ = −  
The basic state solution reads as follows 
 [ ]0 1b zρ ρ αβ= +  (2.9) 

 ^
0 1

m
b

m

K zH H kβ
χ

→  
= − + 

 (2.10) 

 ^
0 1

m
b

m

K zM M kβ
χ

→  
= + + 

 (2.11) 

 ^
0B H M kμ→ → → = +  

 (2.12) 

 
3. STABILITY ANALYSIS 

Due to small perturbations, we obtain dimensionless equations for stability analysis embracing normal modes 
(Finlayson [5]). 

After an infinitesimally small perturbations the perturbed state equations are as follows 

 

' , ', ' ,

', ', ' ,

' , ' , '

b b b

b bb

b bb

q q q T T T p p p

H H H M M M

B B B Q Q Q

ρ ρ ρ

φ ϕ φ

→ →→

→ → → → → →

→ → → → → →

= + = + = + 


= + = + = + 

= + = + = +


 (3.1) 

where the perturbed quantities are indicated br primes. Therefore, the linearized equations due to small perturbed 
governing takes the form. 

( ) ( )
2 2

2 2 2 20 0 1 0
0 1 0 1 21

' 21 ' ' ' 1 '
1

m f
m

m

K Tw g T K w
t t z z t k

μρ μ β ρ ζλ α ρ μ β φ λ
ε χ ε

   ∇∂ ∂ ∂ ∂ ∂   + ∇ − ∇ + ∇ − + Ω = + − ∇      ∂ ∂ ∂ + ∂ ∂      
 (3.2) 

 0 0
21

2 '1 1 fw
t t z t k

μ ζρ ρζλ λ
ε ε

   Ω∂ ∂ ∂ ∂   + − = − +       ∂ ∂ ∂ ∂      
 (3.2) 

 ( ) ( )
2

0
0 0 01 2

' ' . ' '
1

a m
a m

m

T KTC T K Q C w
t t z

μφρ μ ρ β
χ

→  ∂ ∂ ∂ − = −∇ + −  ∂ ∂ ∂ +   
 (3.4) 

 1
1

'1 ' ' '
2
k qQ w k T

t z
τ βτ

→→
 ∂ ∂   + = − −∇ − ∇   ∂ ∂   

 (3.5) 

 ( )
2

20
12

0

' '1 1 ' 0m m
M TK

z H z
φχ φ

 ∂ ∂
+ + + ∇ − = ∂ ∂ 

 (3.6) 

Solving equations (3.4) and (3.5) to eliminate ' .Q
→  The linearized perturbed equations reduce to the following. 
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( ) ( )
2 2

2 2 2 20 0 1 0
0 1 0 1 21

' 21 ' ' ' 1 '
1

m f
m

m

K Tw g T K w
t t z z t k

μρ μ β ρ ζλ α ρ μ β φ λ
ε χ ε

   ∇∂ ∂ ∂ ∂ ∂   + ∇ − ∇ + ∇ − + Ω = + − ∇      ∂ ∂ ∂ + ∂ ∂      
 (3.7) 

 0 0
21

2 '1 1 fw
t t z t k

μ ζρ ρζλ λ
ε ε

  Ω∂ ∂ ∂ ∂   + − = + −     ∂ ∂ ∂ ∂      
 (3.8) 

 ( ) ( )
2

2 20 1
0 0 0 11 2

' '1 ' ' '
1 2

a m
a m

m

T KT kC T K C w k T w
t t t z

μφ τ βτ ρ μ ρ β
χ

  ∂ ∂ ∂ ∂   + − − − = − ∇ − ∇     ∂ ∂ ∂ ∂ +      
 (3.9) 

 ( )
2

20
12

0

' '1 1 ' 0m m
M TK

z H z
φχ φ

 ∂ ∂
+ + + ∇ − = ∂ ∂ 

 (3.10) 

where 

( ) ( ) ( )0 0 , 0 0 01 1V H m s
C C H K Cρ ερ εμ ε ρ= + + − , ( )0 0 , 0 02 V H mC C H Kρ ερ εμ= + , 

2 2 2
2 2 2
1 12 2 2,

x y z
∂ ∂ ∂

∇ = + ∇ =∇ +
∂ ∂ ∂

, 

,o a

m
H T

MK
T

∂ = −  ∂ 
 , 

,o a

m
H T

M
H

χ ∂ =  ∂ 
and ' 'v u

x y
ζ ∂ ∂= −

∂ ∂
 denotes the z-component of vorticity and 'φ  being magnetic 

potential. 
Considering the normal mode as follows 

 ( )

' ( )
' ( )
' ( )
' ( )

i l x m y t

w W z
T z

e
z
z

σ

φ
ζ ζ

+ +

   
   Θ   =
   Φ
   
   

 (3.11) 

along x and y directions wave numbers are l and m respectively and σ is the growth rate. Substitution of equation (3.11) 
into (3.7) to (3.10) leads to 

 
( ) ( )

( ) ( )

2 2
2 2 2 20 0 0

0 01

2 2
2

21
1

1

m h
h h m h

m

f
h

K K DD K W gK K K D

D K W
k

ρ μ β ρ ζλ σ σ αρ μ β
ε χ ε

μ
λ σ

 Θ Ω
+ − + Θ − Φ + + + 

 
= + − − 

 

 (3.12) 

 ( ) ( )0 0
21

21 1 fDW
k

μ ζρ ρλ σ σ ζ λ σ
ε ε

 Ω + − = + −     
 (3.13) 

 
( ) ( ) ( )

( ) ( )

2
0

0 0 01 2

2 2 2 21
1

1
1

2

a m
a m

m

h h

T KC T K D C W

kk D K D K W

μτσ ρ σ μ σ ρ β
χ

τ β

  
+ Θ − Φ − −  +  

= − Θ − −

 (3.14) 

 ( ) ( )2 20

0

1 1 0m h m
MD K z K D
H

χ
 

+ Φ − + Φ − Θ = 
 

 (3.15) 

where D d dz=  and 2 2 2
hK l m= + is the overall horizontal wave number. Considering the following scaling to non-

dimensionalize the equations (3.12) to (3.15) 

 

* * *
2

*

2 2

, , ,

1

, * , * ,

m

m

h

WdW
K dd

za K d z
d

d d

βκ β
χ

σ ζσ ζκ κ

Θ Φ = Θ = Φ = 

+

= = = = 


 (3.16) 
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we get the following non dimensionless equations (for simplicity asterisks are neglected) 

 ( ) ( ) ( )2 2 2 2
1 11 1 DF D a W M R a N a D Ta D

Va
σσ ζ + − + + Θ − Φ +  

( ) ( )2 2
21 F D a Wσ  = − + −   (3.17) 

 ( ) ( )1 21 1DF Ta DW F
Va
σσ ζ σ ζ + − = − +  

 (3.18) 

 ( ) ( ) ( ) ( )2 2 2 2
2 21 2 1G M D M W D a G D a Wσ λσ σ+  Θ − Φ − −  = − Θ − −   (3.19) 

 ( )2 2
3 0D M a D− Φ − Θ =  (3.20) 

where 
( )
( )

0

0

1

2

C

C

ρ
λ

ρ
= , ( ) ( )

2
0

2
0 21

m

m

K TaM
C

μ
χ ρ

=
+

 and 22
G

d
τ κ= . 

Eliminating ζ by substituting ζ from equation (3.18) in (3.17) and then equations (3.17) and (3.18) reduces to one 
equation as mentioned in equation (3.21), also neglecting 2M  from Finlayson [5] and assuming 1λ =  we have the 
following 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2
1 2 1 1 1

2 2 2 2
1 1 2 2

1 1 1 1

1 1 1 1D

F F F D a W M R a R M a D
Va Va

F Ta D W F F F D a W
Va

σ σσ σ σ

σσ σ σ σ

   + + + + − + + Θ− Φ      
   + + = − + + + + −    

 (3.21)  

 ( ) ( ) ( ) ( )2 2 2 21 2 0G W D a G D a Wσ σ+ Θ − − − Θ + − =  (3.22) 

 ( )2 2
3 0D M a D− Φ − Θ =  (3.23) 

where 1
1 2F

d
λ κ

= is the non-dimensional stress relaxation time, 2
2 2F

d
λ κ

=  is the non-dimensional strain retardation time, 

2

0

f d
Va

k
ε μ
ρ κ

=  is the Vadasz number, 
2

0
D

f

g d kR α ρ β
μ κ

=  is the Rayleigh-Darcy number, ( )
2

0
1

01
m

m

KM
g

μ β
χ α ρ

=
+

 is the 

Magnetic number, 22
G

d
τ κ

=  is the Cattaneo number, 
2

02
D

f

kTa ρ
μ ε

 Ω
=   
 

is the Taylor-Darcy number and 

0

0
3

1

1 m

M
HM
χ

 + 
 =

+ 
 
 

 

is the non-buoyancy-magnetization parameter. Appropriate boundary conditions are 0W D= Θ = Φ =  at 1 / 2z = ± . 
 

3.1. Stationary Instability 
For the stationary mode equations from (3.21) - (3.23) turn out to be the following 

 ( ) ( )2 2 2 2 2
1 11 0DM R a R M a D Ta D W D a W+ Θ − Φ + + − =  (3.24) 

 ( ) ( )2 2 2 21 0G D a W D a − − − − Θ =   (3.25) 

 ( )2 2
3 0D M a D− Φ − Θ =  (3.26) 

Equations (3.24) – (3.26) embracing an eigenvalue problem along with the boundary conditions with R being eigen value. 

The forthright solution ( )1 cos ,W A zπ= ( )2 cos ,A zπΘ = ( )3 sin ,A zπ
π

Φ =  where 1 2,A A and 3A
 
are constants. On 

solving we obtain 

 
( )( )

( ) ( )

2 2 2
3

2 2 2
1 31 1

st
D

DR
a

p a M p Ta

G p a M M

π π
π

+ +
=

 + + + 
 (3.27) 
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On substitution 0G = and 3 0M =  in equation (3.27) exactly coincides with Kang et al., [19] and Vadasz [41] and 
which is mentioned in equation (3.28). It should be noted that equation (3.27) is stationary Rayleigh-Darcy number is 
independent of viscoelastic parameters.  

 
2 2

2
st D
D

p p TaR
a
π+=  (3.28) 

where superscript ‘st’ represents stationary convection. 
 

3.2. Oscillatory Instability 

( ) ( )

( )( ) ( )

( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

22 2 2 2
1 2

2 2 2
1 2 1 1 1 1 2 2

2 2 2
2

2
1 1 1 2 3

1

21 1 1 1 1 1

1

1 1 1 0

DF a Ta
Va

F F a A F M R a F F A
Va Va

F a

F R M a F F A
Va

σσ π π

σ σσ σ π σ σ σ

σ π

σσ σ σ

  
+ − + −  

  
     + + + − + + + + + + +       
 

− + + 
  

 − + + + + =  

(3.29) 

 ( ) ( ) ( )2 2 2 2
1 21 2 1 2 0G G a A a G Aσ π π σ σ   + + + − + + + =     (3.30) 

 ( )2 2 2
2 3 3 0A M a Aπ π− + =  (3.31) 

On applying the solvability condition, we obtain 

 
( )( ) ( ) ( )

( )( )

( ) ( ) ( )
( ) ( )

2 22
12 2 2

3 2
2 1

22 2 2
1 3 1

1

1
2

1

1
1 1 1 2

1

DTa Va F
a M p G

p Va F Va F
R

Va F
a a M M Va F G p

F

π σ
π σ σ

σ σ
σ

π σ σ
σ σ

 +
 + + +
 + + + + =

+ 
 + + + + +      + +  

 (3.32) 

where 2 2p aπ= + . Let iσ ω=  where ω is frequency of oscillation and we retrieve R in the form 1 2R R i R= + , both 

1R  and 2R  are computed by MATHEMATICA SOFTWARE. 
 

4. RESULTS AND DISCUSSION 
The aim of the study is to uptight with rotating porous medium ferroconvection in a viscoelastic magnetic fluid with 

second sound. Conditions for the pair of the stationary as well as oscillatory convection utilizing linear theory, has been 
established by normal mode technique. Characterization of the system’s stability is taken into account by the thermal 
Rayleigh number R, which is obtained as a function of the various parameters. By utilizing MATHEMATICA software, 
Eigen value expression and the corresponding critical number are found. Newtonian behavior of viscoelastic fluid in 
stationary convection can be noticed. In oscillatory mode Rayleigh-Darcy number is derived as a function of Vadasz 
number, viscoelastic parameters namely strain retardation time and stress relaxation time, non-buoyancy magnetization 
parameter, Cattaneo number, Taylor-Darcy number and magnetization parameter. The values of the various parameters 
are fixed as follows 1 2 31.5, 2, 0.3, 0.06, 2 0.4DF Va F G M and Ta= = = = = = and from the Figs. (2-8) critical 

Rayleigh-Darcy number 
c

osc
DR is expressed as a function of magnetic number 1.M  

In Figure 2 as there is an increment in 1 ,M  
cDR  decreases and destabilizes the system. We notice that the exchange 

principle of instabilities is invalid as stationary convection is not preferred over oscillatory convection as 
c

st
DR is higher than 

the .
c

osc
DR As the certain ranges of the governing parameters the fluid layer becomes overstable, i.e. the thermal instability 

gives rise to an oscillatory convective motion. Overstability is possible in the presence of rotation or a magnetic field because 
they lend an elastic-like behaviour to the fluid thereby enabling it to sustain appropriate modes of wave propagation. It is 
therefore expected that a layer of viscoelastic fluid can become overstable due solely to heating from below. 

In Figure 3 we see that as and how 1F  and 1M  increases there is a decrement in 
c

osc
DR

 
which conveys that the system 

destabilizes as oscillatory convection is hasten by the stress relaxation parameter 1.F
 
It is due to the fact that the relaxation 

time parameter accelerates the convection flow and weakens the viscoelastic fluid elasticity. 



156
EEJP. 2 (2024) Naseer Ahmed, et al.

In Figure 4 as the the values of 2F  and 1M  increases we note that there is an increment in 
c

osc
DR which reveals that the 

retardation parameter 2F  halts the onset of oscillatory convection as it enhance the effect of elastic. Hence, the system stabilizes. 

   
Figure 2. Variation of R with 1M  for 

1 1.5,F =  2,Va =  2 0.3,F = 0.06,G =

3 2M = and 0.4DTa =  

Figure 3. Variation of 
c

osc
DR  with 1M  for 

2 30.3, 2, 0.06, 2F Va G M= = = =  and 
0.4DTa =  

Figure 4. Variation of of 
c

osc
DR  with 1M

 
for 1 31.5, 2, 0.06, 2F Va G M= = = =  

and 0.4DTa =  
In Figure 5 as Va  and 1M  increases there is a decrease in 

c

osc
DR

 
and hence system destabilizes. As Vadasz number is the 

ratio of porosity, Prandtl number and Darcy number. In Figure 6 as there is an increment in G and 1M  we observe that there is 

an decrement in 
c

osc
DR  due to the presence of dawn value of G and destabilizes the system. As parabolic equation is replaced by 

the hyperbolic equation in equation of temperature which guarantees the finite transmit of heat signals instead of infinite. 
In Figure 7 the magnetic equation linear departure is expressed by the parameter 3M . We observe from figure 7, as there 

is an increment in 1M  and 3M  then osc
cR  decreases monotonically which conveys that the magnetic equation of state grows 

larger and larger to nonlinear owed to which ferroconvection is threshold in porous layer with second sound is hastened.  

   
Figure 5. Variation of 

c

osc
DR  with 1M

 for 

1 21.5, 0.06, 0.3,F G F= = =  

3 2 0.4DM and Ta= =  

Figure 6. Variation of 
c

osc
DR  with 1M

 
for 1 21.5, 2, 0.3,F Va F= = =  

3 2 0.4DM and Ta= =  

Figure 7. Variation of 
c

osc
DR  with 1M

 for 

1 21.5, 2, 0.3,F Va F= = =  

0.06 0.4DG and Ta= =  
We notice from Figure 8, as 1M  and DTa  increases the 

c

osc
DR  monotonically decreases which implies that the system 

destabilizes as observed in Pérez et el. [50]. From Figure 9 through 13 we can observe that all parameters increase 2
cω  

also increases whereas noted from Fig. 14 as parameter increases 2
cω  decreases. Hence, we can conclude from 

Figs. (9-14) that for all parameter cω is sensitive. 

  
Figure 8. Variation of 

c

osc
DR  with 1M  for 

1 1.5, 2,F Va= = 2 0.3, 0.06F G= =  

and 3 2M =  

Figure 9. Variation of 2
cω  with 1M  for 

2 0.3, 2, 0.06,F Va G= = =

3 2 0.4DM and Ta= =  

Figure 10. Variation of 2
cω  with 

1M
 for 1 21.5, 0.06, 0.3,F G F= = =  

3 2 0.4DM and Ta= =  
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Figure 11. Variation of 2
cω  with 1M

 
for 

1 21.5, 2, 0.3,F Va F= = =  

3 2 0.4DM and Ta= =  

Figure 12. Variation of 2
cω  with 1M  

for 1 21.5, 2, 0.3,F Va F= = =

0.06 0.4DG and Ta= =  

Figure 13. Variation of 2
cω  with 1M  

for 1 21.5, 2, 0.3,F Va F= = =

30.06 2G and M= =  

 

Figure 14. Variation of 2
cω  with 1M  for 

1 31.5, 2, 0.06, 2 0.4DF Va G M and Ta= = = = =  

From Table 1 through 10, we can analyze the effect of 1 31 2, , , , ,M F F Va M G  and DTa on wave number which 
represents the shape and size of the convection cell. If we observe closely cα increases with an increase in 1,F ,Va  and 

DTa  which implies that the convection cell size is contracted and decrement of cα with an increment in 2F  and 3M
which implies that the convection cell size is enlarge. 

Table 1. Rayleigh-Darcy number and wavenumber critical values for 3 2, 0.06 0.4.DM G and Ta= = =  

1M  
Stationary Oscillatory ( )1 21.5, 0.3 2F F and Va= = =  

c

st
DR  st

cα  
c

osc
DR  osc

cα  
0 16.4701 10.37 10.6941 2.95604 

0.2 13.7853 11.8764 9.33656 2.95659 
0.4 11.8449 13.3015 8.30025 2.9467 
0.6 10.3798 14.6747 7.48287 2.93229 
0.8 9.23542 16.0167 6.82082 2.91624 
1.0 8.31733 17.3428 6.27287 2.89995 

Table 2. Rayleigh-Darcy number and wavenumber critical values with variation in 1F  by fixing 2 0.3, 2,F Va= =  

30.06, 2 0.4DG M and Ta= = =  

1M  
1 1F =  1 1.5F =  1 2F =  

c

osc
DR  cα  

c

osc
DR  cα  

c

osc
DR  cα  

0 66.0416 1.0 10.6941 2.95604 7.02019 4.08829 
0.2 63.0998 1.0 9.33656 2.95659 6.01014 4.23206 
0.4 60.4089 1.0 8.30025 2.9467 5.24903 4.33444 
0.6 57.9381 1.0 7.48287 2.93229 4.65661 4.41049 
0.8 55.6615 1.0 6.82082 2.91624 4.18356 4.41592 
1.0 53.557 1.0 6.27287 2.89995 3.79694 4.44985 
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Table 3. Rayleigh-Darcy number and wavenumber critical values with variation in 2F  by fixing 1 1.5, 2,F Va= =  
30.06, 2 0.4DG M and Ta= = =  

1M  
2 0.1F =  2 0.3F =  2 0.5F =  

c

osc
DR  cα  

c

osc
DR  cα  

c

osc
DR  cα  

0 5.28459 3.73769 10.6941 2.95604 21.7013 2.10033 
0.2 4.54376 3.88231 9.33656 2.95659 19.5045 2.09634 
0.4 3.98017 3.98809 8.30025 2.9467 17.7445 2.08973 
0.6 3.5386 4.06835 7.48287 2.93229 16.2999 2.08205 
0.8 3.18399 4.13112 6.82082 2.91624 15.0903 2.07412 
1.0 2.89327 4.18153 6.27287 2.89995 14.0605 2.06634 

Table 4. Rayleigh-Darcy number and wavenumber critical values with variation in Va by fixing 1 21.5, 0.3, 0.06,F F G= = =  
3 2 0.4DM and Ta= =  

1M  1Va =  2Va =  3Va =  

c

osc
DR  cα  

c

osc
DR  cα  

c

osc
DR  cα  

0 14.6089 2.86345 10.6941 2.95604 8.85992 3.42225 
0.2 12.7803 2.88742 9.33656 2.95659 7.6532 3.43747 
0.4 11.3542 2.90293 8.30025 2.9467 6.74327 3.43444 
0.6 10.2125 2.91381 7.48287 2.93229 5.83093 3.86296 
0.8 9.27831 2.92172 6.82082 2.91624 5.4638 3.40712 
1.0 8.50012 2.92776 6.27287 2.89995 4.99651 3.38998 

Table 5. Rayleigh-Darcy number and wavenumber critical values with variation in G by fixing 1 21.5, 0.3, 2,F F Va= = =  
3 2 0.4DM and Ta= =  

1M  
0.05G =  0.06G =  0.07G =  

c

osc
DR  cα  

c

osc
DR  cα  

c

osc
DR  cα  

0 11.9367 2.93641 10.6352 2.51388 10.6941 2.95604 
0.2 10.4218 2.93976 9.42077 2.5064 9.33656 2.95659 
0.4 9.26372 2.93204 8.47648 2.49413 8.30025 2.9467 
0.6 8.3496 2.91933 7.71939 2.48015 7.48287 2.93229 
0.8 7.60895 2.90462 7.09719 2.46593 6.82082 2.91624 
1.0 6.99591 2.8894 6.57551 2.45216 6.27287 2.89995 

Table 6. Rayleigh-Darcy number and wavenumber critical values with variation in 3M by fixing 1 21.5, 0.3, 2,F F Va= = =  
0.06 0.4DG and Ta= =  

1M  
3 1M =  3 2M =  3 3M =  

c

osc
DR  cα  

c

osc
DR  cα  

c

osc
DR  cα  

0 10.6941 2.95604 10.6941 2.95604 10.6941 2.95604 
0.2 9.45654 2.97246 9.33656 2.95659 9.26594 2.94614 
0.4 8.48826 2.97412 8.30025 2.9467 8.18962 2.92977 
0.6 7.71149 2.96775 7.48287 2.93229 7.34809 2.91153 
0.8 7.07459 2.95709 6.82082 2.91624 6.6709 2.89336 
1.0 6.54253 2.94429 6.27287 2.89995 6.11327 2.87608 

Table 7. Rayleigh-Darcy number and wavenumber critical values with variation in DTa by fixing 1 21.5, 0.3,F F= =  
32, 0.06 2Va G and M= = =  

1M  
0.3DTa =  0.4DTa =  0.5DTa =  

c

osc
DR  cα  

c

osc
DR  cα  

c

osc
DR  cα  

0 12.7272 2.4949 10.6941 2.95604 9.69108 3.39212 
0.2 11.2701 2.49011 9.33656 2.95659 8.37313 3.41198 
0.4 10.1351 2.47993 8.30025 2.9467 7.37744 3.4126 
0.6 9.22452 2.46759 7.48287 2.93229 6.59972 3.40376 
0.8 8.47612 2.45467 6.82082 2.91624 5.9755 3.3904 
1.0 7.84879 2.44195 6.27287 2.89995 5.46319 3.37507 
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CONCLUSIONS 
The onset of thermal ferro-convection in a viscoelastic fluid saturated rotating porous layer with second sound is 

examined analytically using linear stability analysis. The linear theory provides the onset criteria for both stationary and 
oscillatory convection. The following conclusions are drawn: 

• The most favorable mode of thermal instability is the oscillatory mode. 
• Ferro-convective viscoelastic fluid coincides with the ferro-convective Newtonian fluid saturated rotating porous 

layer with second sound in stationary case. It is due to the fact that the base state has no flow and any viscoelastic 
fluid of simple fluid type becomes Newtonian when the flow is steady and weak. 

• Magnetic parameters 1M  and 3M , viscoelastic stress relaxation parameter 1F , Vadasz number Va  and Cattaneo 
number G strengthens the destabilizing effect of Taylor-Darcy number DTa in the oscillatory mode. 

• Viscoelastic strain retardation parameter 2F , advances the oscillatory mode. 
• Critical frequency and wavenumber of oscillatory motions are determined as functions of all the parameters of the 

problem. For all the parameters they are sensitive. 
ORCID 

Naseer Ahmed, https://orcid.org/0000-0002-5327-9362; S. Maruthamanikandan, https://orcid.org/0000-0001-9811-0117 

REFERENCES 
[1] M.T. Shliomis, “Magnetic fluid,” Sov. Phys. Usp. 17, 53–169 (1974). https://doi.org/10.1070/PU1974v017n02ABEH004332 
[2] R.E. Rosensweig, Ferrohydrodynamics, (Cambridge University Press, Cambridge, 1985). 
[3] R.E. Rosensweig, J.W. Nestor, and R.S. Timmins, Ferrohydrodynamic Fluids for Direct Conversion of Heat Energy. Materials 

Associated with Direct Energy Conversion, (Avco Corporation, Wilmington, 1965). 
[4] R.E. Rosensweig, Ferrohydrodynamics, (Dover Publications, Courier Corporation, Mineola, New York, 1997). 
[5] B.A. Finlayson, “Convective instability of ferromagnetic fluids,” Journal of Fluid Mechanics, 40(4), 753–767 (1970). 

https://doi.org/10.1017/S0022112070000423 
[6] L. Schwab, U. Hildebrandt, and K. Stierstadt, “Magnetic Bénard convection,” Journal of Magnetism and Magnetic Materials, 

39(2), 113–124 (1983). https://doi.org/10.1016/0304-8853(83)90412-2 
[7] P.J. Stiles, and M. Kagan, “Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field,” 

Journal of magnetism and magnetic materials, 85(1), 196–198 (1990). https://doi.org/10.1016/0304-8853(90)90050-Z 
[8] D.P. Lalas, and S. Carmi, “Thermoconvective stability of ferrofluids”, Phys. Fluids, 14(2), 436-437 (1971). 

https://doi.org/10.1063/1.1693446 
[9] A. Mahajan, and M.K. Sharma, “Penetrative convection in magnetic nanofluids via internal heating”, Phys. Fluids, 29, 034101 

(2017). https://doi.org/10.1063/1.4977091 
[10] N.M. Thomas, and S. Maruthamanikandan, “Gravity modulation effect on ferromagnetic convection in a Darcy-Brinkman layer 

of porous medium,” J. Phys. Conf. Ser. 1139(1), 1–10 (2018). https://doi.org/10.1088/1742-6596/1139/1/012022 
[11] S. Mathew, S. Maruthamanikandan, and S.N. Smita, “Gravitational instability in a ferromagnetic fluid saturated porous medium 

with non-classical heat conduction”, IOSR Journal of Mathematics, 6, 7–18 (2013). https://doi.org/10.9790/5728-0610718 
[12] D. Laroze, and H. Pleiner, “Thermal convection in a nonlinear non-Newtonian magnetic fluid,” Communications in Nonlinear 

Science and Numerical Simulation, 26(3), 167–183 (2015). https://doi.org/10.1016/j.cnsns.2015.01.002 
[13] C. Balaji, C. Rudresha, V.V. Shree, and S. Maruthamanikandan, “Ferroconvection in a sparsely distributed porous medium with 

time-dependent sinusoidal magnetic field,” Journal of Mines, Metals and Fuels, 70(3A), 28-34 (2022). 
https://doi.org/10.18311/jmmf/2022/30664 

[14] V.V. Shree, C. Rudresha, C. Balaji, and S. Maruthamanikandan, “Effect of MFD viscosity on ferroconvection in a fluid saturated 
porous medium with variable gravity”, Journal of Mines, Metals and Fuels, 70(3A), 98-103 (2022). 
https://doi.org/10.18311/jmmf/2022/30675 

[15] N. Ahmed, S. Maruthamanikandan, and B.R. Nagasmitha, “Oscillatory porous medium ferroconvection in a viscoelastic magnetic 
fluid with non-classical heat conduction”, East Eur. J. Phys. 2, 296-309 (2023). https://doi.org/10.26565/2312-4334-2023-2-34 

[16] J.G. Oldroyd, “On the formulation of rheological equations of state,” Proc. R. Soc. Lond. A, 200, 523–541 (1950). 
https://doi.org/10.1098/rspa.1950.0035 

[17] T. Green, “Oscillating convection in an elasticoviscous liquid,” Phys. Fluids, 11, 1410–1414 (1968). 
https://doi.org/10.1063/1.1692123 

[18] M.S. Malashetty, M.S. Swamy, and W. Sidram, “Thermal convection in a rotating viscoelastic fluid saturated porous layer,” 
International Journal of Heat and Mass Transfer, 53(25), 5747–5756 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.08.008 

[19] J. Kang, C. Fu, and W. Tan, “Thermal convective instability of viscoelastic fluids in a rotating porous layer heated from below,” 
Journal of Non-Newtonian Fluid Mechanics, 166(1), 93–101 (2011). https://doi.org/10.1016/j.jnnfm.2010.10.008 

[20] D. Laroze, J. Martinez-Mardones, and H. Pleiner, “Bénard-Marangoni instability in a viscoelastic ferrofluid,” The European 
Physical Journal Special Topics, 219, 71–80 (2013). https://doi.org/10.1140/epjst/e2013-01782-6 

[21] B.S. Bhadauria, and P. Kiran, “Heat and mass transfer for oscillatory convection in a binary viscoelastic fluid layer subjected to 
temperature modulation at the boundaries,” International Communications in Heat and Mass Transfer, 58, 166–175 (2014). 
https://doi.org/10.1016/j.icheatmasstransfer.2014.08.031 

[22] L.S. de B. Alves, S.C. Hirata, and M.N. Ouarzazi, “Linear onset of convective instability for Rayleigh-Bénard-Couette flows of 
viscoelastic fluids,” Journal of Non-Newtonian Fluid Mechanics, 231, 79–90 (2016). https://doi.org/10.1016/j.jnnfm.2016.03.007 

[23] S. Nadeem, S. Ahmad, and N. Muhammad, “Cattaneo-Christov flux in the flow of a viscoelastic fluid in the presence of 
Newtonian heating,” Journal of Molecular liquids, 237, 180–184 (2017). https://doi.org/10.1016/j.molliq.2017.04.080 

[24] M.N. Mahmud, Z. Siri, J.A. Vélez, L.M. Pérez, and D. Laroze, “Chaotic convection in an Oldroyd viscoelastic fluid in saturated 
porous medium with feedback control,” Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(7), 73109–73121 (2020). 
https://doi.org/10.1063/5.0002846 

[25] R. Sharma, and P.K. Mondal, “Thermosolutal Marangoni instability in a viscoelastic liquid film: Effect of heating from the free 
surface,” Journal of Fluid Mechanics, 909, 1–24 (2021). https://doi.org/10.1017/jfm.2020.880 



160
EEJP. 2 (2024) Naseer Ahmed, et al.

[26] K. Song, G. Jin, D. Jia, R. Hua, T. Ye, Z. Sun, and Z. Liu, “Effects of viscoelastic fluid on noise reduction of the flow over a 
circular cylinder,” Journal of Fluids and Structures, 122, 103976 (2023). 

[27] J.S. Dhiman, P.M. Patil, and S. Sood, “Modified stability analysis of double-diffusive convection in viscoelastic fluid layer 
saturating porous media,” Heat Transfer, 52, 1497-1528 (2023). https://doi.org/10.1002/htj.22752 

[28] S. Saravanan, and T. Sivakumar, “Onset of filtration convection in a vibrating medium: The Brinkman model,” Physics of Fluids, 
22(3), 34104–34120 (2010). https://doi.org/10.1063/1.3358461 

[29] C. Rudresha, C. Balaji, V. Vidya Shree, and S. Maruthamanikandan, “Effect of electric field modulation on electroconvection in 
a dielectric fluid-saturated porous medium”, Journal of Mines, Metals and Fuels, 70(3A), 35–41 (2022). 
https://doi.org/10.18311/jmmf/2022/30665 

[30] M.S. Malashetty, and M. Swamy, “The onset of convection in a viscoelastic liquid saturated anisotropic porous layer,” Transport 
in Porous Media, 67(2), 203–218 (2007). htps://doi.org/10.1007/s11242-006-9001-7  

[31] C. Rudresha, C. Balaji, V.V. Shree, and S. Maruthamanikandan, “Effect of electric field modulation on the onset of 
electroconvection in a dielectric fluid in an anisotropic porous layer,”, Journal of Computational Applied Mechanics, 53(4), 
510-523 (2022). https://doi.org/10.22059/jcamech.2022.348183.753 

[32] G. Lebon, and A. Cloot, “Benard-Marangoni instability in a Maxwell-Cattaneo fluid,”, Physica A, 105, 361–364 (1984). 
https://doi.org/10.1016/0375-9601(84)90281-0 

[33] S. Maruthamanikandan, and S.S. Nagouda, “Convective heat transfer in Maxwell-Cattaneo dielectric fluids,” International 
Journal of Computational Engineering Research, 3(3), 347–355 (2013). 

[34] S. Mathew, and S. Maruthamanikandan, “Oscillatory porous medium ferroconvection with Maxwell-Cattaneo law of heat 
conduction”, J. Phys. Conf. Ser, 1850(1), 012024 (2021). https://doi.org/10.1088/1742-6596/1850/1/012024 

[35] N. Ahmed, and S. Maruthamanikandan, “Oscillatory Thermoconvective Instability in a Viscoelastic Magnetic Fluid Saturated 
Anisotropic Porous Medium with Second Sound,” Eur. Chem. Bull. 12(6), 899–928 (2023). 

[36] R. Friedrich, “Einflug der Prandtl-Zahl auf die Zellularkonvektion in einem rotierenden mit Fluid gesättigten porösen medium,” 
Z. Angew. Math. Mech. 63, 246–249 (1983). 

[37] P.R. Patil, and G. Vaidyanathan, “On setting up of convective currents in a rotating porous medium under the influence of variable 
viscosity,” Int. J. Eng. Sci. 21, 123–130 (1983). https://doi.org/10.1016/0020-7225(83)90004-6 

[38] E. Palm, and A. Tyvand, “Thermal convection in a rotating porous layer,” Z. Angew. Math. Phys. 35, 122–123 (1984). 
https://doi.org/10.1007/BF00945182 

[39] J.J. Jou, and J.S. Liaw, “Thermal convection in a porous medium subject to transient heating and rotating,” Int. J. Heat Mass 
Transfer, 30, 208–211 (1987). 

[40] Y. Qin, and P.N. Kaloni, “Nonlinear stability problem of a rotating porous layer,” Quart. Appl. Math. 53(1), 129–142 (1995). 
https://www.ams.org/journals/qam/1995-53-01/S0033-569X-1995-1315452-3/S0033-569X-1995-1315452-3.pdf 

[41] P. Vadasz, “Coriolis effect on gravity-driven convection in a rotating porous layer heated from below,” J. Fluid Mech. 376, 
351-375 (1998). https://doi.org/10.1017/S0022112098002961 

[42] B. Straughan, “A sharp nonlinear stability threshold in rotating porous convection,” Proc. Roy. Soc. Lond. A, 457, 87–93 (2001). 
https://doi.org/10.1098/rspa.2000.0657 

[43] S. Govender, “Oscillating convection induced by gravity and centrifugal forces in a rotating porous layer distant from the axis of 
rotation,” Int. J. Eng. Sci. 41, 539-545 (2003). https://doi.org/10.1016/S0020-7225(02)00182-9 

[44] S. Govender, “Coriolis effect on the linear stability of convection in a porous layer placed far away from the axis of rotation,” 
Transport Porous Media, Vol. 51, pp. 315–326, 2003. 

[45] Th. Desaive, M. Hennenberg, and G. Lebon, “Thermal instability of a rotating saturated porous medium heated from below and 
submitted to rotation,” Eur. Phys. J. B, 29, 641–647 (2002). https://doi.org/10.1140/epjb/e2002-00348-9 

[46] B. Straughan, “Global non-linear stability in porous convection with a thermal non-equilibrium model,” Proc. Roy. Soc. Lond. 
A, 462, 409-418 (2006). https://doi.org/10.1098/rspa.2005.1555 

[47] M.S. Malashetty, and M. Swamy, “The effect of rotation on the onset of convection in a horizontal anisotropic porous layer,” Int. 
J. Therm. Sci. 46, 1023–1032 (2007). https://doi.org/10.1016/j.ijthermalsci.2006.12.007 

[48] J.S. Dhiman, and S, Sood, “Linear and weakly non-linear stability analysis of oscillatory convection in rotating ferrofluid layer,” 
Applied Mathematics and Computation, 430, 127239 (2022). https://doi.org/10.1016/j.amc.2022.127239 

[49] P.K. Nadian, “Thermoconvection in a kuvshiniski ferrofluid in presence of rotation and varying gravitational field through a 
porous medium,” South East Asian Journal of Mathematics & Mathematical Sciences, 19(1), 433-446 (2023). 
https://doi.org/10.56827/SEAJMMS.2023.1901.33 

[50] L.M. Pérez, D. Laroze, P. Díaz, J. Martinez-Mardones, and H.L. Mancini, “Rotating convection in a viscoelastic magnetic fluid,” 
Journal of Magnetism and Magnetic Materials, 364, 98–105 (2014). https://doi.org/10.1016/j.jmmm.2014.04.027 

 
ОСЦИЛЯЦІЙНА ФЕРОКОНВЕКЦІЯ МАКСВЕЛЛА-КАТТАНЕО В ЩІЛЬНОУПАКОВАНОМУ ОБЕРТОВОМУ 

ПОРИСТОМУ СЕРЕДОВИЩІ, НАСИЧЕНОМУ В’ЯЗКОПРУЖНОЮ МАГНІТНОЮ РІДИНОЮ 
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За допомогою класичного аналізу стабільності на початку фероконвекції обертового пористого середовища досліджено 
комбінований ефект другого звуку та в’язкопружності. Передбачається локальна теплова рівновага між твердою матрицею та 
рідиною. Поточна проблема розглядається за допомогою аналітичного підходу з урахуванням відповідних граничних умов. 
Техніка аналізу нормального режиму використовується для отримання критичних значень для обох видів нестабільностей, а 
саме стаціонарної та коливальної. Ми помітили, що коливальний режим нестабільності має перевагу над стаціонарним 
режимом нестабільності. Ми виявили, що магнітні сили, другий звук, нелінійність намагніченості, число Вадаша, релаксація 
напруги через в’язкопружність і число Тейлора-Дарсі сприяють розвитку осцилюючої пористої фероконвекції середовища, 
тоді як затримка деформації відкладає початок коливальної пористої фероконвекції середовища. Також відзначено вплив 
розміру конвекційної комірки за різними параметрами та частотою коливань. Ця проблема матиме значні можливі 
технологічні застосування, у яких задіяні в’язкопружні магнітні рідини. 
Ключові слова: конвекція; обертання; в'язкопружні рідини; рівняння Максвелла; пористі середовища; рівняння Нав'є-
Стокса для нестисливих в'язких рідин 




