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The combined effect of second sound and the viscoelasticity is examined using the classical stability analysis on the onset of rotating
porous medium ferroconvection. Local thermal equilibrium is assumed between the solid matrix and fluid. Present problem is examined
by an analytical approach by considering the pertinent boundary conditions. Normal mode analysis technique is utilized for obtaining
the critical values for both instabilities namely stationary and oscillatory. We noticed that the oscillatory mode of instability is favored
over the stationary mode of instability. We found that magnetic forces, second sound, nonlinearity in magnetization, Vadasz number,
stress relaxation due to viscoelasticity and Taylor-Darcy number are in favour of advancing oscillatory porous medium ferroconvection
whereas strain retardation postpone the outset of oscillatory porous medium ferroconvection. Convection cell size effects by different
parameters and the oscillation’s frequency are also noted. This problem shall have significant feasible technological applications
wherein viscoelastic magnetic fluids are involved.
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1. INTRODUCTION

The dynamics of ferrofluids can be controlled by an externally acting applied magnetic field (Shliomis [1]).
Rosensweig [2-4] was the first to synthesize ferrofluids. Considering both magnetic and buoyancy forces, a
comprehensive analysis of RBC in ferrofluids was reported by Finlayson [5]. The findings of Finlayson [5] were examined
both thereotically and experimentally by Schwab et al. [6] and Stiles and Kagan [7] respectively. Lalas and Carmi [8]
reported the unique results on ferroconvection with energy stability approach. The impact of internal heating on the energy
stability of magnetic fluids was documented by Mahajan and Sharma [9]. Nisha Mary and Maruthamanikandan [10]
investigated a time-dependent body force effect on magnetic fluid convection. Soya Mathew et al. [11] studied porous
medium ferroconvection with Maxwell-Cattaneo equation. Laroze and Pleiner [12] examined numerical and theoretical
impact on ferroconvection in a viscoelastic carrier liquid. Recently Balaji et al. [13] worked on magnetic field modulation
affected ferroconvection in a Brinkman porous medium. Vidyashree et al. [14] examined the combined effect of variable
gravity and MFD viscosity on porous medium ferroconvection. Naseer et al. [15] analyzed the dual nature of Prandtl
number in the presence and the absence of non-classical conduction.

When it comes to instabilities in viscoelstic fluids, Oldroyd model [16] gives the fundamental rheological equation
describing the properties of viscoelastic realistically. In comparison the relaxational time in normal liquids is very short
as that of viscoelastic liquids. Green [17] examined that for viscoelastic liquids the principle of exchange of stabilities is
invalid when the restoring force is large. Malashetty et al. [18] and Jianhong Kang ez al. [19] studied the rotating RBC in
viscoelastic fluids by means of both linear and weakly non-linear techniques. Laroze et al. [20] presented theoretical and
numerical results on ferroconvection in a viscoelastic carrier liquid. Several other researchers contributed to addressing
the problem of convective instability of viscoelastic fluids with a variety of constraints techniques (Bhadauria and
Kiran [21], Alves et al. [22], Sohail Nadeem et al. [23], Mahmud ef al. [24], Sharma and Mondal [25] and Kaiyao et al.
[26], Dhiman et al. [27]).

As for the convection due to porous medium, Saravanan and Sivakumar [28] made an investigation on the impact
of vibrations on RBC in porous media with arbitrary amplitude and frequency. Very recently, Rudresha ef al. [29] studied
the theoretical influence of time-periodic electric field on electroconvection of Brinkman type. Malashetty and
Mahantesh [30] investigated the linear stability of an Oldroyd type viscoelastic liquid filled horizontally asymmetric
porous material warmed beneath and chilled from above. More recently, Rudresha et al. [31] reported a theoretical
investigation of the combine effect of anisotropy and time-periodic electric field on Darcy-electroconvection. Lebon and
Cloot [32] studied the effects of Maxwell-Cattaneo model in RBC and Marangoni instability. Maruthamanikandan and
Smita [33] investigated Rayleigh-Benard instability taking into account second sound in a dielectric fluid. Soya and
Maruthamanikandan [34] examined the porous medium ferroconvective instability subjected to the heat flux model.
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Recently, Naseer Ahmed and Maruthamanikandan [35] analyzed anisotropic porous medium under Brinkman Model on

viscoelastic ferroconvective instability due to Maxwell-Cattaneo.

External rotation in regards with thermal convection has gained a high interest both theoretically and
experimentally. Due to its general existence in oceanic flows and geophysical, it is crucial to realize how the Coriolis
force ambience the transport properties and structure of thermal convection. The investigation on thermal convection
stability in rotating porous media are done by many researchers. Friedrich [36] analyzed the porous layer stability with
rotation warmed from underneath considering linear and a nonlinear numerical analysis. This problem with the variable
viscosity impact has been addressed by Patil and Vaidyanathan [37]. A fascinating analogy have been well-established
by Palm and Tyvand [38] among an anisotropic porous layer and a rotating porous layer. Various researchers have
examined the rotation under different costraints as follows Jou and Liaw [39], Qin and Kaloni [40], Vadasz [41],
Straughan [42], Govender [43,44], Desaive et al. [45], Straughan [46], Malashetty and Swamy [47], Dhiman and

Sood [48] and Pulkit Kumar Nadian [49].

The present paper concentrates on examining the oscillatory convective instability of viscoelastic ferrofluid saturated
in a rotating porous medium using extended Darcy model with second sound as we cannot find any study related to this

from the literature review.
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Figure 1. Physical Configuration

2. MATHEMATICAL FORMULATION

Let us consider a Boussinesq viscoelastic ferromagnetic fluid saturated densely distributed porous layer rotating

with angular velocity ?2(0, 0,Q) restricted between two endless horizontal surfaces of height ‘d’. The viscoelastic

behaviour is characterized by Oldroyd’s model (non-Newtonian). The above and bottom surface is maintained at 7;, and

T, where T, > T, (see Fig. 1). Magnetic field Ijl0 acts parallel in the z-axis vertically and the force of gravity assisting

vertically descending. The governing equations aiding the Boussinesq approximation are recorded as follows.

Veg=0
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V,H V,H

(|21 (4.v)0+3xG|=-0 -k VT

p=p[1-a(T-T,)]

M =M0 +lm (H_HO)_Km (T_T)

a

All the terms above are defined in Naseer ef al. [15].
Maxwell’s equations (Finlayson [5]).

@.1)

(2.2)

2.3)

2.4)

2.5)
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We notice that for 4,=0 the fluid scale down to Maxwell’s fluid and also if 4,=0 and 4,=0 then the fluid scale

down to Newtonian fluid.
The basic state equations are as follows

%:0’ 7b:(09090)’ T:Tb(z)’

p=p,(2), p=p,(2), H=H,(2), (2.8)

M=M,(z), B=B,(z), 0=0,(0,0,k,3)

where f=(T,-T,)/2

The basic state solution reads as follows

Py =p0[1+a,Bz] (2.9)

H, {HO —K—ﬂz} k (2.10)
I+y,

Azbz[M0+K'”ﬂz}E @2.11)
I+y,

B=yu, {1—7+M}E (2.12)

3. STABILITY ANALYSIS
Due to small perturbations, we obtain dimensionless equations for stability analysis embracing normal modes
(Finlayson [5]).
After an infinitesimally small perturbations the perturbed state equations are as follows

9=q,+q" . T=T, +T', p=p,+p’',
pP=p,+p, H=H, +I-7',]V7=]\fb +j\/7‘, 3.D
B=Bb+B" §=QI7+§” ¢=¢b+¢’

where the perturbed quantities are indicated br primes. Therefore, the linearized equations due to small perturbed
governing takes the form.

2 2 [}
(1+,1 aj{poE(Vzw‘)—agpovlzT'+,uOKm,Bai(V12¢')—'u°K’"’BV1 T 28 Qﬂ}:@mz%){—%vzw} (3.2)
zZ

"9t )| € o 1+, £ dz
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Solving equations (3.4) and (3.5) to eliminate J'. The linearized perturbed equations reduce to the following.
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where
5 82 82 ) R 82
(po C)lzgpocv,ﬁ+8ﬂ0HoKm+(1_8)(po C)S , (po C)2 =ep,Cy y+ et H K, 'V, =§+ay_w V=V, +a7 >
K, =_[88_A7{JH&TE s K = (g—]‘;l{ ) and { = %—;—% denotes the z-component of vorticity and ¢' being magnetic
potential.
Considering the normal mode as follows
w' W(z)
T' ;
|= @(Z) ez(lx+my)+m (311)
¢ D(z)
'l L4

along x and y directions wave numbers are | and m respectively and ¢ is the growth rate. Substitution of equation (3.11)
into (3.7) to (3.10) leads to

2 2
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& (3.14)
= (D -KiJo- R (D ki)
(1+zm)D2‘D‘[H%]Kf‘D(z)—KmD@=o (3.15)
0

where D =d/dz and K, =[” +m’ is the overall horizontal wave number. Considering the following scaling to non-
dimensionalize the equations (3.12) to (3.15)

. wd . O . O

=" o= -2
K Bd K, pd’
1+, , (3.16)
— w2 =9 5
a=K,d, z k o P ¢ .
d* d*
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we get the following non dimensionless equations (for simplicity asterisks are neglected)

(1+F, o)[g(D2 ~a*)W+(1+M,)Ra*©-Na* DD +[Ta, D{} =-(1+F,0)[(D*=a*)W | 3.17)

Va
(1+Fl0')[%§— Ta, DW}z—(1+F20')§ (3.18)
2 2 2 2
M, —(1-M,)W ]| =(D*-a*)0-G(D*- :

(1+42G0)[A0©0-M,0DD—(1-M,)W | = (D’ -a*)©-G(D* -’ )W (3.19)

(D*-M,a’)®-DO =0 (3.20)

C 2
where /1=(p° )1,M2= # K, Ta and G=T—K2.
(p,€), (1+2,)(p,C), 2d

Eliminating ¢ by substituting ¢ from equation (3.18) in (3.17) and then equations (3.17) and (3.18) reduces to one
equation as mentioned in equation (3.21), also neglecting M, from Finlayson [5] and assuming A=1 we have the
following

[(1+F1 a)V£+(1+F2 a)}(mv1 a)[Vi(D2 ~a* )W +(1+M,)Ra* ©-R M, azDCI)}
a a

(3.21)
+(1+F,0) Ta, DW = —[(1+Fl O')V£+(1 +F, 0')}(1 +F, 0')[(D2 —az)WJ
a
(1+2Go) (0 ©-W)—(D* -a*)©+G(D* —a’ )W =0 (3.22)
(D*-M,a’)®-DO =0 (3.23)
where F,= ;212]( is the non-dimensional stress relaxation time, F, = ;ZK is the non-dimensional strain retardation time,
e, d’ agp,Bd’k K2
Va= Ay is the Vadasz number, R, :M is the Rayleigh-Darcy number, M, =M is the
Py Kk H K (1+Zm)agp0
20,02k ’ 1+%
Magnetic number, G = TdKZ is the Cattaneo number, Ta, = ( Po J is the Taylor-Darcy number and M, = . 2
U, € Xn

is the non-buoyancy-magnetization parameter. Appropriate boundary conditions are W =@ =D® =0 at z==%1/2.

3.1. Stationary Instability
For the stationary mode equations from (3.21) - (3.23) turn out to be the following

(1+M,)Ra* ©=RM,a*D® +Ta, DW +(D*~a*)W =0 (3.24)
[G(D*-a*)-1]w ~(D*-a’)0 =0 (3.25)
(D*-M,a’)®-DO =0 (3.26)

Equations (3.24) — (3.26) embracing an eigenvalue problem along with the boundary conditions with R being eigen value.
. . 4, .
The forthright solution W = 4, cos(7z), © = 4,cos(7rz), ®=—sin(7z), where 4, 4, and 4, are constants. On
V4
solving we obtain

. pl@M+7)(prrTa, )
P (1+Gp)[a* (14+M,) My + 7]

(3.27)
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On substitution G=0and M, =0 in equation (3.27) exactly coincides with Kang et al., [19] and Vadasz [41] and

which is mentioned in equation (3.28). It should be noted that equation (3.27) is stationary Rayleigh-Darcy number is
independent of viscoelastic parameters.

2 2
Ry = % (3.28)
a
where superscript ‘st’ represents stationary convection.
3.2. Oscillatory Instability
_ (o
(1+E0') {_ch (ﬂ-z +a2)—TaD ;;2}
+(1+Fla)(l+an)(—2—o_j(7r2 +a*) A +(1+F 0)(1+M,)Rd [(1+F1 o)L +(1+F, c;)}A2
Va Va
, (3.29)
~(1+F0) (7 +a*)
—(1+F,6)RM,d’ [(1+Fl O')V£+(1+FZ 0)}A3 =0
a
[142G0+G (2’ +a*) |4, - | (7" +a*)+(1+2G o )0 |4, = 0 (3.30)
A, —(r+M,a’ )4, =0 (3.31)

On applying the solvability condition, we obtain

°Ta, (Va)’ (1+ Fo)
(a’M,+7°)(p+0+2Go?) o (Va) (1+Fi0) ,
< +p(Va+o(1+F,Va+Fo)) 532)
- Va(1+F, o) '
2 [ (1+M )M, +7* [Va(1+F, & : 1+G(p+20
a [a ( )M, :| a(l+F, )|:+O'(1+FIO')}[ (p )]

where p =7’ +a’. Let 0 =i where o is frequency of oscillation and we retrieve R in the form R = R, + iR, , both
R, and R, are computed by MATHEMATICA SOFTWARE.

4. RESULTS AND DISCUSSION

The aim of the study is to uptight with rotating porous medium ferroconvection in a viscoelastic magnetic fluid with
second sound. Conditions for the pair of the stationary as well as oscillatory convection utilizing linear theory, has been
established by normal mode technique. Characterization of the system’s stability is taken into account by the thermal
Rayleigh number R, which is obtained as a function of the various parameters. By utilizing MATHEMATICA software,
Eigen value expression and the corresponding critical number are found. Newtonian behavior of viscoelastic fluid in
stationary convection can be noticed. In oscillatory mode Rayleigh-Darcy number is derived as a function of Vadasz
number, viscoelastic parameters namely strain retardation time and stress relaxation time, non-buoyancy magnetization
parameter, Cattaneo number, Taylor-Darcy number and magnetization parameter. The values of the various parameters
are fixed as follows F; =1.5,Va=2, F, =0.3, G=0.06, M,=2 and Ta,=0.4 and from the Figs. (2-8) ecritical

Rayleigh-Darcy number R} is expressed as a function of magnetic number M.
In Figure 2 as there is an increment in M|, R, decreases and destabilizes the system. We notice that the exchange
principle of instabilities is invalid as stationary convection is not preferred over oscillatory convection as R;, is higher than

the R;°. As the certain ranges of the governing parameters the fluid layer becomes overstable, i.e. the thermal instability

gives rise to an oscillatory convective motion. Overstability is possible in the presence of rotation or a magnetic field because
they lend an elastic-like behaviour to the fluid thereby enabling it to sustain appropriate modes of wave propagation. It is
therefore expected that a layer of viscoelastic fluid can become overstable due solely to heating from below.

In Figure 3 we see thatas and how £, and M, increases there is a decrement in R) which conveys that the system

destabilizes as oscillatory convection is hasten by the stress relaxation parameter F;. Itis due to the fact that the relaxation

time parameter accelerates the convection flow and weakens the viscoelastic fluid elasticity.
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In Figure 4 as the the values of F, and M| increases we note that there is an increment in R which reveals that the

retardation parameter £ halts the onset of oscillatory convection as it enhance the effect of elastic. Hence, the system stabilizes.

18 70 22

— —F,=01
6] — Stationary 60_\ 20 —F,=03
— Oscillatory 184 —F,=05
1 50+ | 164 :
" 40 —F; =1 14] I
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Ro. 10.\ De” 304 —F =2 v 10'\
20 81
84 6
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o] ! :
00 02 04 06 08 1.0 00 02 04 06 0.8 1.0 00 02 0.4 0.6 0.8 1.0
M1 M1 M1
Figure 2. Variation of R with M, for Figure 3. Variation of R with M, for  Figure 4. Variation of of R} with M,
F =15, Va=2, F,=03, G=0.06, F,=03,Va=2, G=0.06, M;=2 and for F, =1.5,Va=2, G=0.06, M, =2
M3=2 and TaD=0.4 TaD:0.4 and TaD =04

In Figure 5 as Va and M, increases there is a decrease in R} and hence system destabilizes. As Vadasz number is the

ratio of porosity, Prandtl number and Darcy number. In Figure 6 as there is an increment in G and M| we observe that there is

an decrement in R))“ due to the presence of dawn value of G and destabilizes the system. As parabolic equation is replaced by

the hyperbolic equation in equation of temperature which guarantees the finite transmit of heat signals instead of infinite.
In Figure 7 the magnetic equation linear departure is expressed by the parameter M, . We observe from figure 7, as there

is an increment in M, and M, then R* decreases monotonically which conveys that the magnetic equation of state grows

larger and larger to nonlinear owed to which ferroconvection is threshold in porous layer with second sound is hastened.
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Figure 5. Variation of R)" with M, for ~ Figure 6. Variation of R} with M, Figure 7. Variation of R} with M, for
F, =1.5,G=0.06, F,=023, for F, =1.5, Va=2, F,=0.23, F, =1.5,Va=2, F,=03,
M,=2 and Ta,=0.4 M,=2 and Ta, =04 G=0.06 and Ta,=0.4

We notice from Figure 8,as M, and Ta,, increases the R,° monotonically decreases which implies that the system

destabilizes as observed in Pérez et el. [50]. From Figure 9 through 13 we can observe that all parameters increase @

also increases whereas noted from Fig. 14 as parameter increases @ decreases. Hence, we can conclude from

Figs. (9-14) that for all parameter @), is sensitive.
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Figure 8. Variation of R with M, for Figure 9. Variation of a)f with M, for Figure 10. Variation of &f with
F, =1.5,Va=2, F,=0.3,G=0.06 F,=03,Va=2, G=0.06, M, for F, =1.5, G=0.06, F, =0.3,
and M,=2 M,=2 and Ta, =0.4 M,=2 and Ta, =04
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Figure 13. Variation of a)f with M,
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Figure 14. Variation of @ with M, for
F, =1.5,Va=2, G=0.06, M,=2 and Ta,=0.4

From Table 1 through 10, we can analyze the effect of M,,F|,F,,Va,M;,G and Ta, on wave number which

represents the shape and size of the convection cell. If we observe closely ¢, increases with an increase in

F

., Va, and

Ta, which implies that the convection cell size is contracted and decrement of ¢, with an increment in F, and M,

which implies that the convection cell size is enlarge.

Table 1. Rayleigh-Darcy number and wavenumber critical values for M;=2, G = 0.06 and Ta, =0.4.

Stationary Oscillatory (F; =1.5, F, =0.3 and Va=2)
M,
Rg agt Rg&(,‘ a:SC
0 16.4701 10.37 10.6941 2.95604
0.2 13.7853 11.8764 9.33656 2.95659
0.4 11.8449 13.3015 8.30025 2.9467
0.6 10.3798 14.6747 7.48287 2.93229
0.8 9.23542 16.0167 6.82082 2.91624
1.0 8.31733 17.3428 6.27287 2.89995
Table 2. Rayleigh-Darcy number and wavenumber critical values with variation in F by fixing F,=03,Va=2,
G=0.06, M,=2 and Ta,=0.4
F=1 F =15 F =2
Ml
Ry a, Ry a, Ry a,
0 66.0416 1.0 10.6941 2.95604 7.02019 4.08829
0.2 63.0998 1.0 9.33656 2.95659 6.01014 4.23206
0.4 60.4089 1.0 8.30025 2.9467 5.24903 4.33444
0.6 57.9381 1.0 7.48287 2.93229 4.65661 4.41049
0.8 55.6615 1.0 6.82082 2.91624 4.18356 441592
1.0 53.557 1.0 6.27287 2.89995 3.79694 4.44985
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Table 3. Rayleigh-Darcy number and wavenumber critical values with variation in F, by fixing F, =1.5, Va=2,

G=0.06, M,=2 and Ta,=0.4

F,=0.1 F,=03 F,=0.5
Ml osc osc osc
Ry a, Ry a, Re a,
0 5.28459 3.73769 10.6941 2.95604 21.7013 2.10033
0.2 4.54376 3.88231 9.33656 2.95659 19.5045 2.09634
0.4 3.98017 3.98809 8.30025 2.9467 17.7445 2.08973
0.6 3.5386 4.06835 7.48287 2.93229 16.2999 2.08205
0.8 3.18399 4.13112 6.82082 2.91624 15.0903 2.07412
1.0 2.89327 4.18153 6.27287 2.89995 14.0605 2.06634
Table 4. Rayleigh-Darcy number and wavenumber critical values with variation in Va by fixing F =1.5, F,=0.3, G=0.06,
M, =2 and Ta,=0.4
M, Va=1 Va=2 Va=3
Ry a R’ a R a
0 14.6089 2.86345 10.6941 2.95604 8.85992 3.42225
0.2 12.7803 2.88742 9.33656 2.95659 7.6532 3.43747
0.4 11.3542 2.90293 8.30025 2.9467 6.74327 3.43444
0.6 10.2125 2.91381 7.48287 2.93229 5.83093 3.86296
0.8 9.27831 292172 6.82082 2.91624 5.4638 3.40712
1.0 8.50012 2.92776 6.27287 2.89995 4.99651 3.38998

Table 5. Rayleigh-Darcy number and wavenumber critical values with variation in G by fixing F, =1.5, F,=0.3, Va=2,

M, =2 and Ta,=0.4

G=0.05 G=0.06 G=0.07
M »
! Ry . Ry a, Ry a,

0 11.9367 2.93641 10.6352 2.51388 10.6941 2.95604
0.2 10.4218 2.93976 9.42077 2.5064 9.33656 2.95659
0.4 9.26372 2.93204 8.47648 2.49413 8.30025 2.9467
0.6 8.3496 2.91933 7.71939 2.48015 7.48287 2.93229
0.8 7.60895 2.90462 7.09719 2.46593 6.82082 2.91624
1.0 6.99591 2.8894 6.57551 2.45216 6.27287 2.89995

Table 6.

G=0.06 and Ta,=0.4

Rayleigh-Darcy number and wavenumber critical values with variation in M, by fixing F, =1.5, F,=0.3, Va=2,

M, =1 M,=2 M,=3
Ml s¢ s¢ ¢
Ry" a, Ry o, Ry a,

0 10.6941 2.95604 10.6941 2.95604 10.6941 2.95604
0.2 9.45654 2.97246 9.33656 2.95659 9.26594 2.94614
0.4 8.48826 2.97412 8.30025 2.9467 8.18962 2.92977
0.6 7.71149 2.96775 7.48287 2.93229 7.34809 291153
0.8 7.07459 2.95709 6.82082 2.91624 6.6709 2.89336
1.0 6.54253 2.94429 6.27287 2.89995 6.11327 2.87608

Table 7.

Va=2, G=0.06 and M,=2

Rayleigh-Darcy number and wavenumber

critical values with variation in 7q, by fixing F, =1.5, F,=0.3,

Ta,=0.3 Ta,=04 Ta,=0.5
M
‘ Ry o, Ry @, Ry a,

0 12.7272 2.4949 10.6941 2.95604 9.69108 3.39212
0.2 11.2701 2.49011 9.33656 2.95659 8.37313 341198
0.4 10.1351 2.47993 8.30025 2.9467 7.37744 3.4126
0.6 9.22452 2.46759 7.48287 2.93229 6.59972 3.40376
0.8 8.47612 2.45467 6.82082 2.91624 5.9755 3.3904
1.0 7.84879 2.44195 6.27287 2.89995 5.46319 3.37507
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CONCLUSIONS
The onset of thermal ferro-convection in a viscoelastic fluid saturated rotating porous layer with second sound is
examined analytically using linear stability analysis. The linear theory provides the onset criteria for both stationary and
oscillatory convection. The following conclusions are drawn:

e  The most favorable mode of thermal instability is the oscillatory mode.

e  Ferro-convective viscoelastic fluid coincides with the ferro-convective Newtonian fluid saturated rotating porous
layer with second sound in stationary case. It is due to the fact that the base state has no flow and any viscoelastic
fluid of simple fluid type becomes Newtonian when the flow is steady and weak.

e  Magnetic parameters M, and M, viscoelastic stress relaxation parameter F,, Vadasz number Va and Cattaneo

number G strengthens the destabilizing effect of Taylor-Darcy number 74, in the oscillatory mode.
e  Viscoelastic strain retardation parameter F, , advances the oscillatory mode.

e  Critical frequency and wavenumber of oscillatory motions are determined as functions of all the parameters of the
problem. For all the parameters they are sensitive.
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OCLHUJIALIIMHA ®EPOKOHBEKIISI MAKCBEJLJIA-KATTAHEO B IILIbBHOYIAKOBAHOMY OBEPTOBOMY
MOPUCTOMY CEPEJOBHUIII, HACUYEHOMY B’SA3KOIIPYKHOIO MATHITHOIO PIITMHOIO
Hacip Axmen?, C. Mapyramanikangan®
“Department of Mathematics, Presidency College, Kempapura, Hebbal, Bangalore 560024, India

b lenapmamenm mamemamuru, Inocenepna wixona, Ilpesudenmeviuil ynicepcumem, benzanyp, 560064, Inoia
3a J0MOMOror KJIaCHYHOrO aHallidy CTaOLIbHOCTI Ha Mo4yatky ()epOKOHBEKLii 0OEPTOBOrO MOPHUCTOTO CEPEIOBHUINA TOCIIIKEHO
KOMOiHOBaHHMH eeKT APyroro 3ByKy Ta B’si3konpykHocTi. [lepenbadaeThbes 0OKalIbHA TEIUIOBA PIBHOBAra Mi>k TBEpIOI0 MaTPULICIO Ta
pinunoro. [ToTouna mpoGieMa po3IIISIAETHCS 3a JOMOMOIOI0 aHAIITHYHOIO MiAX0AY 3 YpaXyBaHHSIM BiAMOBIJHUX IPAHUYHHUX YMOB.
TexHika aHaTi3y HOPMAJILHOTO PEXHUMY BUKOPUCTOBYETHCS JJI1 OTPUMAHHS KPUTHYHUX 3HAUCHb IS 000X BUJIIB HECTAOLIBHOCTEIH, a
caMme CTauioHapHOI Ta KOJHMBAJIBHOI. MU MOMITHIH, 110 KOJMBAJIBHUI PEeXUM HecTabiTbHOCTI Mae mepeBary Haj CTalliOHAPHUM
pexuMoM HecTabiIbHOCTI. M BUSBIIIH, 1[0 MATHITHI CHITH, APYTUil 3BYK, HEJIIHIHHICTh HAMArHi4eHoCTi, yncio Banaia, penakcartis
HalpyTH Yepe3 B’I3KONpPYXHIcTh 1 uncio Teittopa-/lapci cnpysiioTh pO3BUTKY OCIIMIIIOIYO] ITOPHCTOT (PepOKOHBEKIIT CepeIOBHIIA,
TOJI sIK 3aTpHMKa JedopMallii BigkiIagae Mo4aTok KOJIUBAIBHOI NOPHCTOI (hepoKoHBeKLil cepenoBuina. Takox BiJ3HAYCHO BILIUB
PO3MIpy KOHBEKIIHHOT KOMIPKM 3a PI3HUMH MapaMeTpaMyd Ta YacTOTOK KoyiuBaHb. Il mpobiema MaThMe 3HAYHI MOMKJIMBI
TEXHOJIOT14YHI 3aCTOCYBaHHS, Y SKUX 3aJisIHI B’I3KOINPYKHI MarHiTHI piiuHU.
KurwouoBi cioBa: xousexyis, obepmanns, 6's3xonpyoicui piounu; pienanus Makceenna; nopucmi cepedosuwya; pienanns Hag'e-
Cmokca 015 HeCMUCAUBUX 'S13KUX PIOUH





