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This paper presents the analysis and implementation of the least-squares method based on the Gauss-Seidel scheme
for solving nuclear mass formulas. The least-squares method leads to the solution of the system by iterations. The
main advantages of the discussed method are simplicity and high accuracy. Moreover, the method enables us to process
large data quickly in practice. To demonstrate the effectiveness of the method, implementation using the FORTRAN
language is carried out. The steps of the algorithm are detailed. Using 2331 nuclear masses with Z ≥ 8 and N ≥ 8, it
was shown that the performance of the liquid drop mass formula with six parameters improved in terms of root mean
square (r.m.s. deviation equals 1.28 MeV), compared to the formula of liquid drop mass with six parameters without
microscopic energy, deformation energy and congruence energy (r.m.s. deviation equals 2.65 MeV). The nuclear liquid
drop model is revisited to make explicit the role of the microscopic corrections (shell and pairing). Deformation energy
and the congruence energy estimate have been used to obtain the best fit. It is shown that the performance of the new
approach is improved by a model of eight parameters, compared to the previous model of six parameters. The obtained
r.m.s. result for the new liquid drop model in terms of masses is equal to 1.05 MeV.
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1. INTRODUCTION

The determination of nuclear masses is one of the most crucial tools for accessing the binding energy within
the nucleus, and therefore the total of all forces affecting the interior of the nucleus. Experimentally, there are
a number of techniques for measuring masses in the fundamental as well as the excited state. When discussing
the mass models, we’re interested exclusively in theoretical models intended to calculate the nuclear masses
of all bonded nuclei. At different levels, these models require experimental values for their calculations. The
purpose of these models is to predict all quantities related to the nucleus: mass, binding energy or deformation
energy, separation energy....etc. The three most common categories of existing models are: semi-empirical,
macroscopic-microscopic and microscopic, plus two models of a different type [1]. These models have a property
that applies to all nuclei globally with Z, N ≥ 8. Among the models there are: SEMF: The Semi-Empirical
Mass Formula and the LDM: Liquid-Drop Model. The macroscopic-microscopic models include the MS-LD:
Myers and Świa̧tecki model [2], a Strutinsky-type approach [3], the FRDM: Finite-Range Droplet Model, the
FRLDM: Möller’s Finite-Range Liquid-Drop Model [4], the TF: Thomas-Fermi nuclear model [5] or the ETFSI:
Extended Thomas-Fermi plus Strutinsky Integral [6], and the LSDM: Lublin-Strasbourg Drop Model [7]. The
models that are only microscopic are: Hartree-Fock-Bogoliubov (HFB21) approach [8], that employs Skyrme
interactions, and the HFB strategy, utilizing the advantage of Gogny forces (GHFB) [9]. With the existence of
two other models proving its effectiveness in nuclear mass calculations: the model of DZ: Duflo and Zuker [10]
and that of KTUY: Koura et al. [11].

In nuclear physics, the first SEMF, known as the Weizsäcker formula or the Bethe-Weizsäcker formula [12],
is used to estimate atomic mass in relation to mass number A and atomic number Z. The SEMF was proposed
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by Carl Friedrich Von Weizsäcker, in 1935 [13], [14], where the nucleus is seen as a liquid droplet containing
protons and neutrons moving in a disorderly fashion. SEMF’s reference formula for all macroscopic approaches
has been able to retrieve a large number of nucleus properties such as nuclear masses, binding energies, separa-
tion energies, nuclear fission, although it does not provide for magic numbers. Next, a significant improvement
in the LDM liquid droplet model was made after the incorporation of phenomenological microscopic corrections
to the macroscopic terms. In fact, Myers and Świa̧tecki took (made) the first step in this approach in 1966,
who added layer correction and pairing corrections to the binding energy of the liquid drop [2]. This new
microscopic-macroscopic model was very successful in reproducing nuclear data (masses, quadrupole moments,
heights of fission barriers, . . . etc.), when the layer corrections were more precisely evaluated using a method
proposed by Strutinsky [15], [16], and the matching correction obtained in the Bardeen-Cooper-Schrieffer (BCS)
approximation [2], [17], this introduced a simple algebraic layer correction, plus an attribution to a ”clustering”
effect of the novel equidistant distribution of individual particle levels, subsequently generating a series of gap
band intervals at the observed magic numbers. In addition to this microscopic addition, Myers-Świa̧tecki’s final
mass formula featured an empirical odd-even correction (pairing coefficient), and diverged from spherical sym-
metry through the incorporation of a shape dependence into the surface and Coulomb terms of Von Weizsäcker’s
semi-empirical equation.

Later, Strutinsky’s theorem [3] appeared, that can be seen as an approximation of the Hartree-Fock (HF)
approach [18], which offers an even more stringent microscopic formulation of Strutinsky’s layer correction
method [19]. Total binding energy is now decomposed into a macroscopic term and a microscopic term (denoting
the layer and the pairing corrections), both of which are a function not only of A and Z, it also depends on
a set of deformation parameters β, featuring the shape of the core. The significance of these upgrades was
astonishing since the squared deviation (r.m.s) between theory and experiment decreased [20].

Recently years, a significant number of studies have been published on the subject of nuclear masses such
as the published papers [21]–[27]. Interestingly, to date no researcher has discussed the proposed LDM formula
of eight parameters with making a comparison between three models. Hence this work aim to presents the
LDM formula of six parameters, the LDM formula of six parameters without (microscopic energy, deformation
energy, and congruence energy), and the proposed LDM formula of eight parameters. The idea is based on
adding two coefficients to the six-parameter LDM formula, which are the shell correction coefficient and the
pairing correction coefficient. Correction coefficients are added to improve the root mean square value. Then,
the Least Squares Method (LSM) is implemented to determine the parameters of the theoretical formulas. LSM
is one of the widely employed methods for data fitting [24], where the method for different experimental cases is
detailed in [28]. Two categories of least-squares problems can be distinguished: linear and non-linear, based on
whether all unknown residuals are linear or non-linear. In statistical regression analysis, the linear least-squares
problem has a closed-form solution.

The non-linear problem is generally solved by iterative refinement, where each iteration approximating the
system by a linear system, so the basic calculation is similar in both cases [29]. This work is very significant con-
sidering the following merits: (1) an improved LDM formula of eight parameters is proposed. (2) A comparison
between three liquid-drop models and comparison with other previous works are discussed. (3) A step-by-step
tutorial for determining the parameters of nuclear masses formulas is presented using the least squares method.
This paper will add to the information contained in the previous studies and give a new perspective about the
application of the LSM with improved nuclear masses formulas.

This paper is divided into five sections, the second of which describes the implemented three liquid drop
mass formulas. Next, principle of the least squares method is presented. In the fourth section, the theoretical
and experimental results are shown and compared. Finally, the fifth section provides the conclusions of the
study.

2. DESCRIPTION OF THE LIQUID DROP MASS MODELS

In this section, three LDM models are detailed; the six parameters LDM formula, the six parameters LDM
formula without (microscopic energy, deformation energy, and congruence energy), and the proposed eight
parameters LDM formula.

2.1. The six parameters liquid drop mass formula

In nuclear physics, the liquid drop mass formula is well known. LDM sometimes called the Liquid Drop
Model, or Myers-Świa̧tecki Liquid Drop (MS-LD) formula, it was developed by Von Weizsäcker [12], [30]. In
accordance with the usual rules of the liquid drop model approaches, the mass of an atom with Z protons and
N neutrons is described by the following relation [2], [5].
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Mtheo(Z,N, def) = ZMH +NMn − 0.00001433Z2.39

+ bvol
(
1− kvolI

2
)
A

+ bsurf
(
1− ksurfI

2
)
A2/3

+ bcoul Z
2/A1/3 − fpZ

2/A
+Eshell(Z,N) + Epair(Z,N) + Edef (Z,N) + Econg(Z,N)

(1)

Where:
A, Z and N: are the numbers of atoms, protons and neutrons, respectively (A = Z + N).
MH is the hydrogen-atom mass excess, MH = 7.288970613 MeV
Mn is the neutron mass excess, Mn = 8.071317133 MeV.
Z2.39: is the binding energy of electrons.
bvol(1− kvolI

2)A: is the volume energy term.
bsurf (1− ksurfI

2)A2/3: is the surface energy term.

bcoul(Z
2/A1/3): is the Coulomb energy term.

fp(Z
2/A): is the Proton form-factor correction to the Coulomb energy term.

bcoul, R0, e
2: are quantities defined by:

bcoul =
3

5

e2

R0
(2)

R0: is the nuclear-radius constant, its value R0 = 1.16 fm.
e2: electronic charge squared, its value e2= 1.4399764 MeV.fm.
I: is the relative neutron excess, defined by:

I =
N − Z

N + Z
(3)

Edef (Z,N): is the deformation energy, the difference between a nucleus’s macroscopic energy at equilibrium
deformation and its energy if it were spherical [7]. The deformation energy is given by:

Edef (Z,N) = E(β) − E(β = 0) (4)

β: is a set of parameters defining the deformation of the nucleus, β = 0 representing the spherical defor-
mation (undeformed nucleus).

Econg(Z,N): is the congruence energy is described as:

Econg(Z,N) = −10 exp (− 4.2 |I|) (5)

Eshell(Z,N) , and Epair(Z,N) : are the corrections of shell and pairing, respectively.
The microscopic energy is given by:

Emicro(Z,N) = Eshell(Z,N) + Epair(Z,N) (6)

Emicro containing the contributions from shell and paring effects coming from the protons and neutrons.
For simplifying the calculation, we put:

U(Z,N, def) = Eshell(Z,N) + Epair(Z,N) + Edef (Z,N) + Econg(Z,N)
+ZMH +NMn − 0.00001433Z2.39 (7)

So, the model of the standard liquid drop can be expressed as follows:

Mtheo(Z,N, def) = bvol
(
1− kvolI

2
)
A

+ bsurf
(
1− ksurfI

2
)
A2/3

+ bcoul Z
2/A1/3 − fpZ

2/A
+U(Z,N, def)

(8)

In literature, the least squares method is one of the best methods for solving the liquid drop model Eq. (1)
in order to find the six parameters (bvol , kvol, bsurf , ksurf , bcoul, fp), the steps of the method are illustrated in
the next section, and results are discussed in the 4th section.
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2.2. The six parameters liquid drop mass formula without (microscopic energy, deformation
energy, and congruence energy)

In this part, we eliminate microscopic energy (the corrections of shell and pairing), deformation energy,
and congruence energy to observe their impact on the root-mean-square value. So, the new liquid drop model
can be expressed as follows:

Mtheo(Z,N, def) = ZMH +NMn − 0.00001433Z2.39

+ bvol
(
1− kvolI

2
)
A

+ bsurf
(
1− ksurfI

2
)
A2/3

+ bcoul Z
2/A1/3 − fpZ

2/A

(9)

In order to find the six parameters (bvol , kvol, bsurf , ksurf , bcoul, fp), the Least Squares Method (LSM) is
used. The steps of the method are illustrated in the next section, and results are discussed in the 4th section.

2.3. The proposed eight parameters liquid drop mass formula

In this part, we add two coefficients to the previous equation Eq.1, which are the shell correction coefficient
bsh and the pairing correction coefficient bpa. The microscopic corrections for pairing and shell effects treated
as in Ref. [23]. Correction coefficients are added to improve the root mean square value. So, the new liquid
drop model is described by the following relation:

Mtheo(Z,N, def) = ZMH +NMn − 0.00001433Z2.39

+ bvol
(
1− kvolI

2
)
A

+ bsurf
(
1− ksurfI

2
)
A2/3

+ bcoul Z
2/A1/3 − fpZ

2/A
+ bsh Eshell(Z,N) + bpa Epair(Z,N) + Edef (Z,N) + Econg(Z,N)

(10)

The Least Squares Method (LSM) is used to find the eight parameters (bvol , kvol, bsurf , ksurf , bcoul, fp,
bsh, bpa). The steps of the method are illustrated in the next section, and results are discussed in the 4th
section.

3. THE LEAST SQUARES METHOD

The Least Squares Method is traditionally credited to Carl Friedrich Gauss, with origins dating back to
1795 [31], [32]. LSM finds utility across a range of scientific disciplines including statistics, geodesy, economics,
optimization and more. The current study suggests utilizing LSM for optimizing the semi-empirical mass for-
mula, or formulas with similar characteristics. Examples of models in this category include: (a) The FRDM and
the FRLDM, which involve comprehensive calculations of shell and pairing corrections, along with consideration
of various nuclear deformations [33], (b) The ”Pomorski-Dudek Model” with shell and pairing corrections [7],
(c) The ”Royer Model” with shell and pairing corrections but no nuclear deformation [34], and (d) The ”Myers
Droplet Model based on the Thomas-Fermi Approximation” with or without shell correction [35]. These nuclear
mass formulas play a vital role in assessing certain ground-state properties, nuclear reactions, and predicting
the neutron/proton drip lines. All these formulas can be optimized using the same method, which is described
by the following procedure.

A) Define the root mean square deviation (R.M.S).
The root mean square deviation (R.M.S) is defined by:

R.M.S = err(bvol, kvol, bsurf , ksurf , bcoul, fp) =
1

n

imax∑
i=1

[Mexp(i)−Mtheo(i)]
2

(11)

where:
n: is the total number of nuclides.
Mtheo(i): are the mass computed at a specific value of Z and N.
Mexp(i): are experimental values of nuclear mass that calculated using the mass excess values found in

on the recent updated Atomic Mass Evaluation, i.e. AME table, published in [36]. Mexp(i) are given with
MeV by the following formula:

Mexp(i) = Mass excess + A . u (12)

u: The atomic mass unit, 1u = 931.49410242 MeV.
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B) Replacing the Mtheo(i) by its expression in the RMS deviation formula.
In this step, we calculate Mtheo(i) by the given Eq.8, and replace results in Eq. 11. So, the root mean

square deviation is described by:

R.M.S =
1

n

imax∑
i=1

(
Mexp(i)− bvol

(
1− kvolI

2
i

)
Ai − bsurf

(
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2
i

)
A

2/3
i −

bcoul Z
2
i /A

1/3
i + fpZ

2
i /Ai − Ui (Zi, Ni, def)

)2

(13)

C) Define the objective.
According to LSM, the goal is to reduce the error in Eq. 11 to a minimum, thus:

∂err (bvol, kvol, bsurf , ksurf , bcoul, fp)

∂χ|χ= bvol, ··· ,fp
= 0 (14)

D) Construction of the model.
The equations of model are given by:
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Where: 
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E) Solve the equations of model.
Solutions of the model given by Eq. (15) are determined as follow:

bvol =
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bsurf =
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The Gauss-Seidel approach involves performing successive calculations of (bvol, kvol, bsurf , ksurf , bcoul, fp).
At each iteration, the new value supersedes the previous one. Use Eq. (17) to determine the unknowns by
an iterating sequence, where we choose the initial values (b0vol, k

0
vol, b

0
surf , k

0
surf , b

0
coul, f

0
p ) appropriately, the
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F) Update the values.
The process is repeated till convergence is reached, i.e. until a stable set (bkvol, k

k
vol, b

k
surf , k

k
surf , b

k
coul, f

k
p )

after a sufficient number k of rounds, where k is a whole number.

4. RESULTS AND DISCUSSION

The LSM is made with FORTRAN code to solve the equations systems Eq. 8, Eq. 9, and Eq. 10 for 2331
nuclides. The achieved results are discussed in this section. Table 1 demonstrates the coefficients obtained using
LSM for the discussed three models. (SP − LDM)1: The Six Parameters LDM formula. (SP − LDM)2: The
Six Parameters LDM formula without (microscopic energy, deformation energy, and congruence energy. (EP −
LDM): The proposed Eight Parameters LDM formula.

Table 1. The coefficients obtained using LSM for the discussed three models.

Coefficients (MeV) (SP − LDM)1 (SP − LDM)2 (EP − LDM)

bvol -15.9727 -15.5986 -16.0498

kvol 1.8397 1.6954 1.8272

bsurf 19.8832 18.9262 20.3437

ksurf 1.9206 1.5061 1.8925

bcoul 0.7327 0.7231 0.7390

fp 1.2344 2.0543 1.4446

bsh - - 0.7275

bpa - - 0.6637

RMS 1.28 2.65 1.05

Table 2 demonstrates the obtained values versus iterations for the proposed eight parameters LDM
Formula. Figures 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b depict the convergence of the eight coefficients
bvol, kvol, bsurf , ksurf , bcoul, fp, bsh, bpa, respectively.

Table 2. Iterations and convergence of the eight coefficients formula.

Iterations bvol kvol bsurf ksurf bcoul fp bsh bpa

50 -14.641376 1.428979 11.660317 -1.163253 0.615636 -3.215885 1.174006 1.226985

100 -14.644251 1.483173 11.849770 -0.891092 0.600652 -3.450187 1.040020 0.985133

150 -14.644095 1.523160 11.929214 -0.605908 0.598580 -3.431418 1.030725 0.960194

300 -14.643833 1.613897 12.185625 0.088771 0.596867 -3.240858 1.021870 0.929168

500 -14.647650 1.689492 12.587653 0.723691 0.598327 -2.852138 1.005048 0.896717

700 -14.658353 1.733695 13.025564 1.143882 0.602349 -2.394916 0.985021 0.870226

1000 -14.688660 1.768886 13.703765 1.541319 0.610902 -1.689191 0.953279 0.837541

1500 -14.773100 1.792807 14.806025 1.893609 0.627683 -0.629695 0.903030 0.794445

4000 -15.410877 1.818667 18.649300 2.180657 0.698445 1.792211 0.757456 0.683832

7000 -15.896930 1.826270 20.206447 2.018919 0.733131 1.874165 0.720209 0.657450

10000 -16.040475 1.827507 20.432650 1.922742 0.740038 1.596387 0.721804 0.659292

50000 -16.049779 1.827150 20.343749 1.892542 0.739009 1.444598 0.727491 0.663692

100000 -16.049779 1.827150 20.343749 1.892542 0.739009 1.444598 0.727491 0.663692

500000 -16.049779 1.827150 20.343749 1.892542 0.739009 1.444598 0.727491 0.663692

1000000 -16.049779 1.827150 20.343749 1.892542 0.739009 1.444598 0.727491 0.663692

10000000 -16.049779 1.827150 20.343749 1.892542 0.739009 1.444598 0.727491 0.663692

50000000 -16.049779 1.827150 20.343749 1.892542 0.739009 1.444598 0.727491 0.663692

100000000 -16.049779 1.827150 20.343749 1.892542 0.739009 1.444598 0.727491 0.663692

The experimental values of nuclear mass are calculated using the mass excess equation given by Eq. 12.
The experimental masses values are taken from the recently updated Atomic Mass Evaluation, i.e. AME table,
published in [36]. The number of total iterations was set at 100,000,000 (100 million of iterations) to illustrates
the convergence of parameters. However, despite the number of iterations, the execution time is of the order
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(a) (b)

Figure 1. Convergence of bvol, and kvol coefficients versus iterations.

(a) (b)

Figure 2. Convergence of bsurf , and ksurf coefficients versus iterations.

of a few seconds for this case where only eight quantities varied. Coefficient values were recorded for a certain
number of iterations (see Table 1). Results for all the eight coefficients are stable from 50,000 iterations onwards.
Here, stability is defined by requiring that the 6 digits after the decimal point no longer change. With these
stabilized values, we obtain a root-mean-square deviation given by Eq. 11, i.e. 1.05 MeV in the nuclear mass.
As a result, shell and pairing corrections are necessary in these kinds of formulas. Root mean square deviation of
0.864 MeV has been achieved in our improved equation, published in [27], (which is not the subject of our study
in this paper). On the other part, it should be pointed out that the direct comparison between the different
types of mass formulas proposed in the literature is only a relative significance, as very often the ”basis”, i.e.
the set and number of nuclei aren’t the same. Other factors come into consideration, such as the fact that
microscopic corrections are model-dependent. What’s more, in some serious calculations, the root mean square
deviation is weighted by a measurement error,. . . etc. The root mean square deviation can be improved by
increasing the number of corrective terms and the introduction of the shell and pairing corrections.

5. CONCLUSION

A new liquid drop model of eight parameters has been proposed in this paper. The main advantage of
this proposed model is adding only two coefficients to the common six parameters model to improve the root
mean square value. A comparative analysis of the proposed model with some proposed models in literature
have been presented. A simple and fast algorithm based on the least squares method is used to find the eight
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(a) (b)

Figure 3. Convergence of bcoul, and fp coefficients versus iterations.

(a) (b)

Figure 4. Convergence of bsh, and bpa coefficients versus iterations.

parameters. The steps of the method are described in detail, where it is characterized by the maximum of
simplicity in the procedure. The performance of the proposed model was verified using developed FORTRON
program and checked with experimental nuclear DATA from Atomic Mass Data Center. A close concordance
between theoretical and experimental values has been obtained. The results demonstrate that r.m.s. value for
the new liquid drop model in terms of masses is equal to 1.05 MeV. Also, finding a mathematical formula for a
liquid drop model that is close to reality is still a good problem for research because this will open way to new
perspectives in the study of nuclei. The results of the present work join a growing body of literature in the field
of theoretical physics, and the information presented opens new avenues for further studies on other models.
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[4] P. Möller, J.R. Nix, W.D. Myers, and W.J. Świa̧tecki, “Nuclear Ground-State Masses and Deformations,” Atomic
Data Nucl. Data Tables, 185-381, 59 (1995).
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ÎÖIÍÊÀ ÊÎÅÔIÖI�ÍÒIÂ ßÄÅÐÍÎ� ÌÀÑÈ ÇÀ ÄÎÏÎÌÎÃÎÞ ÌÅÒÎÄÓ
ÍÀÉÌÅÍØÈÕ ÊÂÀÄÐÀÒIÂ ÍÀ ÎÑÍÎÂI ÑÕÅÌÈ ÃÀÓÑÑÀ-ÇÅÉÄÅËß:

ÏÎÐIÂÍßËÜÍÅ ÄÎÑËIÄÆÅÍÍß ÌIÆ ÒÐÜÎÌÀ ÌÎÄÅËßÌÈ
Õàäæ Ìóëóäæa,b, Áåíþñåô Ìîõàììåä-Àçiçia,c, Óñàìà Çåããàéd,e, Àáäåëüêàäåð Ãàëåìb,f,

Àëëà Åääií Òóáàë Ìààìàðg

aËàáîðàòîðiÿ ôiçèêè åëåìåíòàðíèõ ÷àñòèíîê i ñòàòèñòè÷íî¨ ôiçèêè, Âèùà ïåäàãîãi÷íà øêîëà Êîóáè,

Ñòàðà-Êîóáà 16050, Àëæèð
bÔàêóëüòåò ôiçèêè, ôàêóëüòåò òî÷íèõ íàóê òà iíôîðìàòèêè, Óíiâåðñèòåò Õàñiáà Áåíáóàëi, Øëåô, Àëæèð

cÓíiâåðñèòåò Áåøàð, Áåøàð 08000, Àëæèð
dÂiääië çàãàëüíîãî ÿäðà, ôàêóëüòåò òî÷íèõ íàóê òà iíôîðìàòèêè, Óíiâåðñèòåò Õàñiáà Áåíáóàëi,

Øëåô, Àëæèð
eÄîñëiäíèöüêèé âiääië ìàòåðiàëiâ i âiäíîâëþâàíèõ äæåðåë åíåðãi¨ (URMER), Óíiâåðñèòåò Àáó Áåêð Áåëêàéä,

Òëåìñåí 13000, Àëæèð
fËàáîðàòîðiÿ ìåõàíiêè òà åíåðãåòèêè, Øëåô 02100, Àëæèð

gÊàôåäðà iíæåíåði¨ åëåêòðè÷íèõ ñèñòåì, òåõíîëîãi÷íèé ôàêóëüòåò, Óíiâåðñèòåò Ì'õàìåäà Áóãàðà â

Áóìåðäåñi, Áóìåðäåñ 35000, Àëæèð

Ó öié ñòàòòi ïðåäñòàâëåíî àíàëiç òà ðåàëiçàöiþ ìåòîäó íàéìåíøèõ êâàäðàòiâ íà îñíîâi ñõåìè Ãàóññà-Çåéäåëÿ äëÿ
ðîçâ'ÿçóâàííÿ ôîðìóë ÿäåðíî¨ ìàñè. Ìåòîä íàéìåíøèõ êâàäðàòiâ ïðèâîäèòü äî ðîçâ'ÿçêó ñèñòåìè øëÿõîì iòå-
ðàöié. Îñíîâíèìè ïåðåâàãàìè ðîçãëÿíóòîãî ìåòîäó ¹ ïðîñòîòà i âèñîêà òî÷íiñòü. Êðiì òîãî, ìåòîä äîçâîëÿ¹ íàì
øâèäêî îáðîáëÿòè âåëèêi äàíi íà ïðàêòèöi. Äëÿ äåìîíñòðàöi¨ åôåêòèâíîñòi ìåòîäó âèêîíàíî ðåàëiçàöiþ íà ìîâi
FORTRAN. Äåòàëiçîâàíî êðîêè àëãîðèòìó. Âèêîðèñòîâóþ÷è 2331 ÿäåðíó ìàñó ç Z ≥ 8 i N ≥ 8, áóëî ïîêàçàíî, ùî
ïðîäóêòèâíiñòü ôîðìóëè ìàñè ðiäêî¨ êðàïëi ç øiñòüìà ïàðàìåòðàìè ïîêðàùèëàñÿ â òåðìiíàõ ñåðåäíüîêâàäðàòè-
÷íîãî êîðåíÿ (ñåðåäíüîêâàäðàòè÷íå âiäõèëåííÿ äîðiâíþ¹ 1,28 ÌåÂ), ïîðiâíÿíî ç ôîðìóëîþ ìàñè êðàïëi ðiäèíè ç
øiñòüìà ïàðàìåòðàìè áåç ìiêðîñêîïi÷íî¨ åíåðãi¨, åíåðãi¨ äåôîðìàöi¨ òà åíåðãi¨ êîíãðóåíòíîñòi (ñåðåäíüîêâàäðàòè-
÷íå âiäõèëåííÿ äîðiâíþ¹ 2,65 ÌåÂ). Ìîäåëü êðàïëi ÿäåðíî¨ ðiäèíè ïåðåãëÿíóòî, ùîá ÷iòêî âèÿñíèòè ðîëü ìiêðî-
ñêîïi÷íèõ ïîïðàâîê (îáîëîíêà òà ñïàðåííÿ). Åíåðãiÿ äåôîðìàöi¨ òà îöiíêà åíåðãi¨ êîíãðóåíòíîñòi áóëè âèêîðèñòàíi
äëÿ îòðèìàííÿ íàéêðàùî¨ âiäïîâiäíîñòi. Ïîêàçàíî, ùî åôåêòèâíiñòü íîâîãî ïiäõîäó ïîêðàùó¹òüñÿ çà äîïîìîãîþ
ìîäåëi âîñüìè ïàðàìåòðiâ ïîðiâíÿíî ç ïîïåðåäíüîþ ìîäåëëþ øåñòè ïàðàìåòðiâ. Îòðèìàíå ñåðåäíüîêâàäðàòè÷íå
çíà÷åííÿ Ðåçóëüòàò äëÿ íîâî¨ ìîäåëi ðiäêî¨ êðàïëi â òåðìiíàõ ìàñ äîðiâíþ¹ 1,05 ÌåÂ.
Êëþ÷îâi ñëîâà: ÿäåðíi ìàñè; ÷èñåëüíi ìåòîäè; åíåðãiÿ çâ'ÿçêó; êîðåêöiÿ îáîëîíêè; âèïðàâëåííÿ ïàð
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