INSTABILITY OF ION CYCLOTRON WAVES (ICWS) AT THE EXPENSE OF LOWER HYBRID DRIFT WAVES (LHDWS) TURBULENCE ENERGY

© Raksha Mundhra*, P.N. Deka
Department of Mathematics, Dibrugarh University, Assam, India
*Corresponding Author e-mail: rakshamundra0308@gmail.com
Received September 6, 2023; revised October 6, 2023; accepted October 24, 2023

Instability of ion cyclotron waves (ICWs) is investigated in presence of lower hybrid drift waves (LHDWs) turbulence. Plasma inhomogeneity in the Earth’s magnetopause region supports a range of low frequency drift wave turbulent fields due to gradients in density in different regions of the media. One of these drift phenomena is identified as lower hybrid drift waves (LHDWs) which satisfies resonant conditions $\omega - \mathbf{k} \cdot \mathbf{v} = 0$. We have considered a nonlinear wave-particle interaction model where the resonant wave that accelerates the particle in magnetopause may transfer its energy to ion cyclotron waves through a modulated field. In spite of the frequency gaps between the two waves, energy can be transferred nonlinearly to generate unstable ion cyclotron waves which always do not satisfy the resonant condition $\Omega - \mathbf{k} \cdot \mathbf{v} \neq 0$ and the nonlinear scattering condition $\Omega - \omega - (\mathbf{K} - \mathbf{k}) \cdot \mathbf{v} \neq 0$. Here, ω and Ω are frequencies of the resonant and the nonresonant waves respectively and \mathbf{k} and \mathbf{K} are the corresponding wave numbers. We have obtained a nonlinear dispersion relation for ion cyclotron waves (ICWs) in presence of lower hybrid drift waves (LHDWs) turbulence. The growth rate of the ion cyclotron waves using space observational data in the magnetopause region has been estimated.

Keywords: Ion Cyclotron Waves; Lower Hybrid Drift Waves; Wave Amplification; Density Gradient; Nonlinear wave-particle interaction

PACS: 52.35.Hr, 52.35.Qz, 52.35.Kt, 05.45.-a, 52.35.-g

1. INTRODUCTION

Plasma covers nearly 99.9% of the universe. A wide range of electrostatic waves and electromagnetic waves dominate the nature of plasma. But, in general a real plasma can never be entirely homogeneous. Plasma is made up of different boundary layers which are very dynamical and active regions comprising many waves. One of them is the LHDWs which are supported by the free energy reserved in density gradients. The LHDWs are strong plasma waves found in Earth’s Magnetosphere. According to some scientists, LHDWs cause anomalous resistivity and thus initiate magnetic reconnection (MR). It transfers the energy stored in the magnetic field to particles, further heating and accelerating them [1]. Many observations of the LHDWs have been made in the magnetosphere [2, 3] as well as in laboratory plasmas [4, 5].

For many decades, electrostatic and electromagnetic ion cyclotron waves have been observed, [cf. Gurnett and Frank, 1972; Kintner et al., 1978] in the terrestrial auroral zones. Recently from the data, [cf. McFadden et al., 1998; Carlson et al., 1998; Lund et al., 1998; Cattell et al., 1998; Chaston et al., 1998] it was found that these waves are the source ion heating (conics) and parallel electron acceleration in the auroral zone. Ion cyclotron frequency is common in the terrestrial magnetosphere. Broughton et al., has also reported the observation of ion cyclotron harmonically related waves in the vicinity of the plasma sheet boundary layer [6].

In Tokamak, LHDWs heating has attracted maximum attention for heating and toroidal current drive efficiency. Here, the ions are directly heated at the lower hybrid resonance layer where they can convert the ion waves into fast ion waves and the latter are strongly Landau damped on ions. Several experiments of tokamaks have disclosed that LHDWs give rise to parametric excitation of ion cyclotron modes [7].

Huba et al., [2] proposed that in various confinement systems of magnetic fusion [e.g., Davidson et al., 1976; Comnissin and Griem, 1976], the lower hybrid-drift instability [Krall and Liewer, 1971], operates over a large area of magnetotail. Furthermore, it plays a significant role in the development of field line reconnection as a source of anomalous resistivity. Gurnett et al., carried out some experimental observations [1976] considering the theoretical studies of the lower-hybrid-drift instabilities. He found some strong evidence for the existence of lower hybrid drift instability in terms of existence criteria, spectral characteristics, and amplitude of fluctuations.

In the magnetosphere and plasmasphere very often different wave modes are observed at the same time. For example, in the Freja mission, the data analysis of the waves shows a close relationship between Alfvén wave activity and ion acoustic wave activity within auroral energization regions [Wahlund et al., 1994]; similarly, lower hybrid wave (LHW) activity has been observed at the same time with ultralow-frequency waves [Olsen et al.,]
1987; LaBelle and Treumann, 1988; Pottlette et al., 1990]. Again, simultaneous wave activity has also been observed in the active ionospheric sounding rocket experiments [Arnoldy, 1993; Bale et al., 1998]. Colpitts [2015] reported that the Van Allen Probes observations show very strong modulation of whistler, magnetosonic, and lower hybrid waves by EMIC or ultra low-frequency waves. He relates this modulation to wave-wave and/or wave-particle interactions [8].

The inhomogeneous plasmas like the solar corona or planetary magnetospheres one can observe drift waves to propagate extensively. The electrostatic drift waves propagate perpendicular both to the ambient magnetic field and to the gradient due to density gradients or temperature gradients. But, they become unstable during collisions or electron Landau damping. Hence these waves may play an important role in the destabilization process of the magnetotail before a substorm. Fruit et al., 2017 proposed a kinetic model with trapped bouncing electrons for the electrostatic instabilities in the resonant interactions. Thus, in the period of electron bounce period a linearized Vlasov equation is solved for electrostatic fluctuations and through the quasineutrality condition, a dispersion relation is obtained [9].

Singh and Deka (2005) studied the plasma maser effect in inhomogeneous plasma in the presence of drift wave turbulence. Here, they studied the growth rate of the high frequency Bernstein mode in presence of the spatial density gradient parameter [10].

Borgohain and Deka (2010) studied the instability of electrostatic waves in inhomogeneous plasma in presence of drift wave turbulence. Here, they studied the interaction of ion acoustic waves with drift waves [11]. Deka and Senapati (2018) studied the amplification of upper hybrid waves in presence of lower hybrid waves in an inhomogeneous plasma through a nonlinear wave-particle interaction. Here, they studied the energy transfer from the accelerated electrons which are in phase relation with the LHDWs turbulent field to the unstable upper hybrid through a modulated field nonlinearly. On the other hand, dissipation of unstable upper hybrid wave energy is possible through radiation phenomenon after conversion while propagating through inhomogeneous plasma [12].

Deka and Deka (2022) studied the growth rate of whistler mode in presence of kinetic alfvén wave turbulence through nonlinear wave–particle interaction. Here, in this model he considered an external force F which helps to create a drifting motion.

Kumar et al., (2022) studied the effect of dust charge fluctuations on the parametric upconversion of a lower hybrid wave into an ion cyclotron wave and a side band wave in a two-ion species tokamak plasma. Here, the lower hybrid wave becomes unstable and decays into two modes: an ion cyclotron wave mode and a low frequency lower hybrid side band wave. Here, the growth rate decreases with the increase in the size of dust grains and electron cyclotron frequency.

Our present investigation is based on the lowest order mode–mode coupling process in a turbulent plasma which was proposed by Nambu [19]. This mode–mode coupling and wave energy conversion process was also suggested by Tsytovich [16] simultaneously. This process suggests that even though there is a large frequency difference, wave energy exchange may be possible. Nambu and Tsytovich proposed that if in a plasma both resonant and non-resonant waves are present, wave energy from resonant mode may be transferred to non-resonant waves. By resonant wave, we mean that the Cherenkov resonant condition $\omega - k \cdot v = 0$ is satisfied whereas for non-resonant waves both the resonant condition and nonlinear scattering conditions are not satisfied, i.e. $\Omega - K \cdot v \neq 0$ and $\Omega - \omega - (K - k) \cdot v \neq 0$. Here, ω and Ω are frequencies of the resonant and the nonresonant waves respectively and k and K are the corresponding wave numbers. The LHDWs operates in the frequency range[1] where both ion and electron dynamics play a crucial role: $\omega_{ci} \ll \omega \ll \omega_{ce}$. The wave oscillate at a frequency in between the ion and electron gyroradius.

In this present paper we have studied the interaction of high frequency ICWs with low frequency LHDWs turbulence. Here, we have used a zeroth-order distribution function that satisfies the time independent Vlasov equation. There is a non zero current associated with the drifts; this current represents a free energy that can drive instabilities and further we obtain the dispersion relation as well as estimate the growth rate of ICWs.

2. FORMULATION

We consider a non-uniform electrostatic LHDWs turbulence to be present in the system with propagation vector $k = (k_{\perp}, 0, k_{||})$. We consider a weak density gradient perpendicular to B_0 of the form [17]

$$n_j^{(0)}(y) = n_j(1 + \epsilon_n y)$$

So, the density gradient is taken along the y–direction and the external magnetic field $B = B_0(y)$ is taken in the z–direction. ϵ_n is the density gradient scale length n.

The particle distribution function is considered as

$$f_{0j}(y, v) = \frac{n_j}{(2\pi v_0^2)^{3/2}} \left[1 + \epsilon_n \left(y + \frac{v_z}{\Omega_j} \right) \right] \exp\left(-\frac{v_x^2}{2v_0^2} \right)$$

(2)
The first and second velocity moment of the above distribution are

\[\Gamma_j^{(0)} = n_j v_{nj} \hat{y} \]

\[n_j T_j = n_j T_j (1 + \epsilon_n y) + o(\epsilon_n^2) \]

Where the density gradient drift speed of the \(j \)th species [17] is

\[v_{nj} = \frac{\epsilon_n v_j^2}{\Omega_j} \]

Here, \(\Omega_j = \frac{eB_0}{mc} \) is the cyclotron frequency. Here the subscript \(j \) refers to \(j = i \) for ions and \(j = e \) for electrons.

Now, the interaction of the high frequency ICWs with low frequency LHDWs turbulence is well explained by the Vlasov-Poisson’s equation

\[\frac{\partial}{\partial t} + v \cdot \frac{\partial}{\partial r} - e \frac{v \times B}{c} \cdot \frac{\partial}{\partial v} \] \(F_{0i}(r, v, t) = 0 \)

\[\nabla \cdot E = -4\pi n_i \int f_{0i}(r, v, t) dv \]

The non-perturbed distribution function and fields are considered according to the linear response theory of the plasma.

\[F_{0i} = f_{0i} + \epsilon f_{1i} + \epsilon^2 f_{2i} \]

\[E_{0i} = \epsilon E_i + \epsilon^2 E_2 \]

\[B_i = B_0 \]

where \(\epsilon \) is a small parameter associated with LHDWs turbulence field \(E_i = (E_{i\perp}, 0, E_{ij}) \). \(f_{0i} \) is the space and time average parts, \(f_{1i}, f_{2i} \) are the fluctuating parts of the distribution function. \(E_2 \) is the second order electric field. \(B_i \) is the total magnetic field in the system in presence of LHDWs turbulence. But LHDWs is an electrostatic turbulent that does not contribute turbulent to the system.

From eq.(6), we have

\[\left[\frac{\partial}{\partial t} + v \cdot \frac{\partial}{\partial r} - e \frac{v \times B_0}{c} \cdot \frac{\partial}{\partial v} \right] \left[f_{0i}(r, v, t) + \epsilon f_{1i}(r, v, t) + \epsilon^2 f_{2i}(r, v, t) \right] = 0 \]

To the order of \(\epsilon \), we have

\[\left[\frac{\partial}{\partial t} + v \cdot \frac{\partial}{\partial r} - e \frac{v \times B_0}{c} \cdot \frac{\partial}{\partial v} \right] f_{1i}(r, v, t) = \frac{e}{m} E_i \cdot \frac{\partial}{\partial v} f_{0i}(r, v, t) \]

To find \(f_{1i} \), we use Fourier transforms of the form

\[H(r, v, t) = \sum_{k, \omega} H(k, \omega, v)exp[i(k \cdot r - \omega t)] \]
The Fourier component of \(f_{ih}(k, \omega) \) is given by-

\[
f_{ih}(k, \omega) = \left(\frac{ie}{m} \right) \left[\frac{m}{T_i k^2} E_{i \perp} \left\{ 1 + \left(\omega - k_{i//} v_{i//} \right) \frac{e_n T_i k_{i\perp}}{m \Omega_i} \right\} P_{a,b} \right] f_{0i} - E_{i//} \frac{\partial f_{0i}}{\partial v_{i//}} P_{a,b} \tag{14}
\]

where

\[
P_{a,b} = \sum_{a,b} \frac{J_a(\alpha') J_b(\alpha') \exp[i(b-a)\theta]}{\omega - k_{i//} v_{i//} - a \Omega_i}
\]

\[
\alpha' = \frac{k_{i\perp} v_{i\perp}}{\Omega_i}
\]

To this quasi-steady state, we consider high frequency electrostatic ICWs with propagating vector \(K = (K_{\perp}, 0, 0) \) with electric field \(\delta E = (\delta E_h, 0, 0) \) and a frequency \(\Omega \). So, we have \(\Omega \approx \Omega_i \) This high frequency non resonant ICWs acts as the perturbation to the system.

Thus the total perturbed electric field and the distribution function are

\[
\delta f = \mu \delta f_h + \mu \epsilon \delta f_{ih} + \mu^2 \Delta f
\]

\[
\delta E = \mu \delta E_h + \mu \epsilon \delta E_{ih} + \mu^2 \Delta E
\]

\[
\delta E = 0
\]

where \(\delta E_h, \Delta E \) are the modulation fields, \(\delta f_h \) is the fluctuating part, \(\delta f_{ih}, \Delta f \) are the particle distribution function due to modulating field and \(\mu \) is the smallest parameter for the perturbed field, which is also smaller in compared to \(\epsilon \).

Linearizing the Vlasov-Poisson equation to the order \(\mu, \mu \epsilon, \mu^2 \), we have

\[
P \delta f_h = \frac{e}{m} \delta E_h \frac{\partial}{\partial v} f_{0i}
\]

\[
P \delta f_{ih} = \frac{e}{m} \delta E_{ih} \frac{\partial}{\partial v} f_{0i} + \frac{e}{m} \delta E_h \frac{\partial}{\partial v} f_{ih} + \frac{e}{m} E_{ih} \frac{\partial}{\partial v} \delta f_h
\]

\[
P \Delta f = \frac{e}{m} E_i \frac{\partial}{\partial v} \delta f_{ih} + \frac{e}{m} \delta E_{ih} \frac{\partial}{\partial v} f_{ih}
\]

where the operation \(P \) is given by-

\[
P \equiv \left[\frac{\partial}{\partial t} + \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{r}} - \frac{e}{m} \left(\frac{\mathbf{v} \times \mathbf{B}_0}{c} \right) \frac{\partial}{\partial \mathbf{v}} \right]
\]

Now, we evaluate the various fluctuating parts of the perturbed distribution function using the Fourier transform and integrating along the unperturbed orbits to obtain the nonlinear dielectric function of ICWs in presence of the LHDWs turbulence.

Now,

\[
\delta f_h = \frac{ie}{m} \delta E_h \sum_a \sum_b \frac{J_a(\alpha) J_b(\alpha) \exp[i(b-a)\theta]}{\Omega - a \Omega_i} \frac{\partial}{\partial v_{\perp}} f_{0i}
\]

where \(\alpha = \frac{K_{\perp} v_{\perp}}{\Omega_i} \)

Again

\[
\delta f_{ih} = I_{ih}^1 + I_{ih}^2 + I_{ih}^3
\]

where

\[
I_{ih} = \left(\frac{ie}{m} \right) \sum_a \sum_b \frac{J_a(\alpha') J_b(\alpha') \exp[i(b-a)\theta]}{k_{i//} v_{i//} - (\Omega - \omega) - a \Omega_i} \left[E_{i\perp} \left(\frac{a \Omega_i}{(K_{\perp} - k_{\perp}) v_{\perp}} \right) \frac{\partial \delta f_h}{\partial v_{\perp}} + E_{i//} \frac{\partial \delta f_h}{\partial v_{i//}} \right]
\]
The dispersion relation we have part. where

Again, using the Poisson equation we obtain the dielectric response function:

Here, from Poisson’s equation we find the modulated field $\delta E_{ih}(K-k)$,

Again,

Here, $\alpha'' = \frac{(K - k)_{l\perp}v_{\perp}}{m}$, $\alpha = \frac{K_{\perp}v_{\perp}}{m}$

where

Again, using the Poisson equation we obtain the dielectric response function:

we have

The dispersion relation $\epsilon_h(K, \Omega)$ of ion cyclotron wave is evaluated using the equation given as:

where $\epsilon_0(K, \Omega)$ is the linear part, $\epsilon_d(K, \Omega)$ is the direct coupling part and $\epsilon_p(K, \Omega)$ is the polarization coupling part.
So, we have

\[\epsilon_0(K, \Omega) = 1 + \frac{\omega_{pi}^2}{|K_\perp|^2} \int \frac{n_j}{v_j^2}[1 + (\Omega - \frac{v_{nj}K_\perp}{n_j})f_{oi}] \sum_a \sum_b \frac{J_a(\alpha)J_b(\alpha)\exp\{i(b-a)\theta\}}{\Omega - a\Omega_i}d\mathbf{v} \]

(36)

Here, \(v_{nj} = \frac{e\omega_{pi}^2}{m} \) is the density gradient drift speed of the \(j^{th} \) species. The subscript \(j \) represents ions, \(j = i \). \(v_{nj} \) bears the sign of \(\epsilon_j \), there is a non-zero current \(J_0 \) associated with these drifts; this current represents a free energy that can drive instabilities.

\[\epsilon_d(K, \Omega) = -\frac{\omega_{pi}^2}{|K_\perp|^2} \left(\frac{e}{m} \right)^2 |E_{l\perp}|^2 P_{a,b} \left(\frac{\alpha\Omega_i}{(K_\perp - k_\perp)|v_\perp|} \frac{\partial}{\partial v_\perp} \left[Q_{s,t}\left(\frac{\partial}{\partial v_\perp} \left[R_{a,v}\left(\frac{n_j}{v_j} [1 + (\Omega - \frac{v_{nj}K_\perp}{n_j})f_{oi}] \right) \right] \right) \right] d\mathbf{v} - \frac{\omega_{pi}^2}{|K_\perp|^2} \left(\frac{e}{m} \right)^2 |E_{l\perp}|^2 P_{a,b} \frac{\partial}{\partial v_{ij}} \left[Q_{s,t}\frac{\partial}{\partial v_\perp} \left(R_{a,v}\left(\frac{n_j}{v_j} [1 + (\Omega - \frac{v_{nj}K_\perp}{n_j})f_{oi}] \right) \right) \right] d\mathbf{v} \]

(37)

where

\[P_{a,b} = \sum_a \sum_b \frac{J_a(\alpha')J_b(\alpha')\exp\{i(b-a)\theta\}}{k_{ij}/v_{ij} - a\Omega_i - \Omega} \]

(38)

\[Q_{s,t} = \sum_s \sum_t \frac{J_s(\alpha')J_t(\alpha')\exp\{i(t-s)\theta\}}{k_{ij}/v_{ij} - s\Omega_i - (\Omega - \omega)} \]

(39)

\[P_{a,v} = \sum_a \sum_v \frac{J_a(\alpha)J_v(\alpha)\exp\{i(v-u)\theta\}}{\Omega - u\Omega_i} \]

(40)

\[S_{a,b} = \sum_a \sum_b \frac{J_a(\alpha)J_b(\alpha)\exp\{i(b-a)\theta\}}{(\Omega - \omega) - a\Omega_i} \]

(41)

\[T_{p,q} = \sum_p \sum_q \frac{J_p(\alpha)J_q(\alpha)\exp\{i(q-p)\theta\}}{\omega - k_{ij}/v_{ij} - a\Omega_i} \]

(42)

Again

\[\epsilon_p = -\frac{\omega_{pi}^4}{K_\perp^2} \left(\frac{e}{m} \right)^2 |E_{l\perp}|^2 [(A + B) \times (C + D)] \]

(43)

where

\[A = |E_{l\perp}|^2 \int \sum_a \sum_b \frac{J_a(\alpha')J_b(\alpha')\exp\{i(b-a)\theta\}}{k_{ij}/v_{ij} - a\Omega_i - \Omega} \times \frac{\partial}{\partial v_{ij}} \left[\frac{J_s(\alpha')J_t(\alpha')\exp\{i(t-s)\theta\}}{k_{ij}/v_{ij} - s\Omega_i - (\Omega - \omega)} \right] d\mathbf{v} \]

(44)

\[B = |E_{l\perp}|^2 \int \sum_a \sum_b \frac{J_a(\alpha')J_b(\alpha')\exp\{i(b-a)\theta\}}{k_{ij}/v_{ij} - a\Omega_i - \Omega} \times \frac{\partial}{\partial v_{ij}} \left[\frac{J_s(\alpha')J_t(\alpha')\exp\{i(t-s)\theta\}}{k_{ij}/v_{ij} - s\Omega_i - (\Omega - \omega)} \right] d\mathbf{v} \]
\[\frac{\partial}{\partial v_\perp} \left\{ \frac{m}{T_i k_\perp} \left[(\omega - k_\parallel v_\parallel) - \frac{\epsilon_p T_i K_\perp}{m \Omega_i} \right] \sum_{p} \sum_{q} J_p(\alpha) J_q(\alpha) \exp\{i(q - p)\theta\} f_{0i} \right\} \]

\[+ |E_{i}|^2 \frac{\partial}{\partial v_\perp} \left(\sum_{p} \sum_{q} J_p(\alpha) J_q(\alpha) \exp\{i(q - p)\theta\} \frac{\partial f_{0i}}{\partial v_\parallel} \right) \]

\(45\)

\[C = \int \sum_{s} \sum_{t} J_s(\alpha) J_t(\alpha) \exp\{i(\omega - s)\theta\} \left[\left(\frac{s \Omega_i}{(K_\perp - k_\parallel v_\parallel) v_\parallel} \right) \frac{\partial}{\partial v_\parallel} + \frac{\partial}{\partial v_\parallel} \right] \]

\[\sum_{u} \sum_{v} J_u(\alpha) J_v(\alpha) \exp\{i(v - u)\theta\} \frac{\partial f_{0i}}{\partial v_\parallel} + K_\perp \int \sum_{s} \sum_{t} J_s(\alpha) J_t(\alpha) \exp\{i(b - a)\theta\} \]

\[\frac{\partial}{\partial v_\perp} \left(\sum_{p} \sum_{q} J_p(\alpha) J_q(\alpha) \exp\{i(q - p)\theta\} \frac{\partial f_{0i}}{\partial v_\parallel} \right) \]

\(46\)

\[D = \int \sum_{a} \sum_{b} J_a(\alpha) J_b(\alpha) \exp\{i(b - a)\theta\} \frac{\partial}{\partial v_\parallel} \left[\frac{m}{T_i K_\perp} \left[(\omega - k_\parallel v_\parallel) - \frac{\epsilon_p T_i K_\perp}{m \Omega_i} \right] \sum_{p} \sum_{q} J_p(\alpha) J_q(\alpha) \exp\{i(q - p)\theta\} f_{0i} \right] \]

\[+ \int \sum_{a} \sum_{b} J_a(\alpha) J_b(\alpha) \exp\{i(b - a)\theta\} \left[\frac{K_\perp \frac{a \Omega_i}{(K_\perp - k_\parallel v_\parallel) v_\parallel} \frac{\partial}{\partial v_\parallel} + k_\parallel \frac{\partial}{\partial v_\parallel} \right] \]

\[\frac{m}{T_i k_\perp} \left[(\omega - k_\parallel v_\parallel) - \frac{\epsilon_p T_i K_\perp}{m \Omega_i} \right] \sum_{p} \sum_{q} J_p(\alpha) J_q(\alpha) \exp\{i(q - p)\theta\} f_{0i} \]

\(47\)

3. GROWTH RATE

We have obtained the growth rate by using the formula:

\[\gamma_h = -\left[\frac{Im \epsilon_p + \frac{1}{2} \frac{\partial^2 \epsilon_0}{\partial \Omega^2}}{\Omega \left(\frac{\partial \epsilon_0}{\partial \Omega} \right)^2} \right]_{\Omega = \Omega_i} \]

\(48\)

The second part of the expression of the growth rate is due to the reverse absorption effect, which in our case is given by:

\[\frac{\partial^2 \epsilon_0}{\partial \Omega^2} = \frac{\omega_0^2}{K_\perp} \sum_{j} \int \left[\sum_{a} \sum_{b} J_a(\alpha) J_b(\alpha) \exp\{i(b - a)\theta\} \frac{1}{\Omega - a \Omega_i} x \right] \left(\frac{1}{\Omega - a \Omega_i} \right) \frac{\partial f_{0i}}{\partial \Omega} \]

\(49\)

After partial integration, we find that the contribution of \(\frac{\partial^2 \epsilon_0}{\partial \Omega^2}\) in the growth rate becomes zero due to the reverse absorption effect.

Now, we consider the plasma maser interaction between the ICWs and LHDWs turbulence. The condition for the plasma maser is \(\omega = k_\parallel v_\parallel\) and assuming \(\Omega < K v_\parallel\). Here, firstly we estimate the linear part of the dielectric function of the ICWs from eq(36). Considering the fact that for the ICWs, the most dominant contribution to Bessel sums come from the term \(a = b = 1, s = t = u = v = p = q = 1\).

We have evaluated the linear part of the dispersion relation of the ion cyclotron wave as:

\[\epsilon_0 = 1 + \frac{\omega_{pi}^2}{K_\perp} \frac{\Omega \Lambda_1}{\Omega - \Omega_i} \]

\(50\)

So, we have

\[\frac{\partial \epsilon_0}{\partial \Omega} = \frac{\omega_{pi}^2}{K_\perp} \frac{\Lambda_1 \Omega_i}{(\Omega - \Omega_i)^2} \]

\(51\)
The imaginary part of the direct coupling term after partial integration, we have obtained-

\[Im\epsilon_d(k, \Omega) = 0 \]

(52)

Again,

For evaluating the imaginary part of the polarization coupling term, we have-

\[Im\epsilon_p(K, \Omega) = -\frac{\omega_{pi}^4}{k_i^2} \left(\frac{\pi}{m} \right)^2 \int [A \times ImD + C \times ImB] dv \]

(53)

Now,

\[
A = \left| E_{i//} \right|^2 \int P_{a,b}(\frac{2\Omega_i}{(K_i - k_i)\nu_i}) \frac{\partial}{\partial v_{i//}} \left[Q_{s,t} \left\{ K_i^2 - \frac{2\Omega_i}{(K_i - k_i)\nu_i} \right\} \frac{n_e}{n_j} \left[1 + \frac{(\nu_n - K_i)}{n_j} f_{0i} \right] + \frac{\partial f_{0i}}{\partial v_{j//}} \right] \\
+ \int Q_{s,t} \frac{n_e}{n_j} \left[1 + \frac{(\nu_n - K_i)}{n_j} \right] \left\{ \left| E_{i//} \right|^2 \left[\frac{\partial R_{u,w}}{\partial v_{j//}} + |E_{i//}|^2 \frac{\partial R_{u,w}}{\partial v_{j//}} \right] \right\} 2\pi dv_{i//} dv_{j//}
\]

(54)

Here, after partial integration the first part of the product is contributing zero. So, we have-

\[A = 0 \]

(55)

Again,

\[
ImB = \left| E_{i//} \right|^2 \frac{\lambda_2 n_j}{(K_i - k_i)\nu_i} \frac{\sqrt{\pi}}{v_e^2} \left[\left\{ K_i^2 + k_{i//} \left(\frac{v_{i//}}{v_e^2} \right) \left[1 + \frac{(K_i - k_i)^2 v_e^2}{4\Omega_i^2 (\Omega_i - (K_i - k_i))(\Omega - \frac{n_j K_i}{n_j})} \right] \right\} \right] \\
exp\left\{ -\frac{v_{i//}^2}{v_e^2} \right\} - \frac{\sqrt{\pi}}{v_e^2} \frac{\lambda_2}{v_{i//}^2} \frac{k_{i//} v_{i//} - \Omega}{(k_{i//} v_{i//} - \Omega)^2 - \lambda_2} \left(\left| E_{i//} \right|^2 + \left| E_{i//} \right|^2 \frac{\epsilon}{\Omega_i} + 2|E_{i//}|^2 \right)
\]

(56)

\[
C = \frac{4k_{i//}}{K_i v_i^2} \frac{\Omega_i^2}{(K_i - k_i) (\Omega_i^2 - \Omega_i^2)} \frac{\lambda_2 n_j}{v_{i//}^2} (\Omega - \frac{v_{i//}^2 K_i}{n_j}) + \frac{\sqrt{\pi}}{v_{i//}^2} \frac{4K_i}{(k_{i//} v_{i//} - \Omega)^2 - \Omega_i^2}
\]

(57)

Where,

\[\lambda_1 = \int_0^\infty 2\pi v_{i//} j_0^2(\alpha_i) f_{0e}(v_{i//}) dv_{i//}, \quad \lambda_2 = \int_0^\infty 2\pi v_{i//}^2 j_0^2(\alpha_i) f_{0e}(v_{i//}) dv_{i//} \]

\[v_{i//} = \frac{\omega}{\kappa_{i//}} \]

is the phase velocity.

\[v_e \]

is the electron thermal velocity.

\[
Im \int_{-\infty}^{\infty} \frac{\delta f_{0e}(\nu_{i//})}{\delta v_{i//}} dv_{i//} = -\int_{-\infty}^{\infty} \pi \delta(\nu - k_{i//} v_{i//}) \frac{\partial f_{0e}(\nu_{i//})}{\partial v_{i//}} = 2\sqrt{\pi} \frac{\omega}{v_e^2} \frac{k_{i//} v_{i//} - \Omega}{(k_{i//} v_{i//} - \Omega)^2 - \Omega_i^2} \]

(58)

So, we have the growth rate as-

\[
\frac{\gamma_p}{\Omega} = \frac{a}{b}
\]

(58)

where

\[
a = -\frac{\omega_{pi}^4}{K_i^2} \left(\frac{\pi}{m} \right)^2 \left(ImB \times C \right)
\]

(59)

\[
b = \Omega \frac{\partial v_{0e}}{\partial \Omega} = \frac{\omega_{pi}^2}{K_i^2} \left(\frac{-\lambda_1 \Omega_i}{(\Omega - \Omega_i)^2} \right)
\]

(60)

\[
L|K - k|^2 \sim k_{i//}^2
\]

(61)
4. DISCUSSIONS AND CONCLUSIONS

In earlier studies, Tang et al., (2015) [28] in the THEMIS observation of electrostatic ion cyclotron (EIC) waves and associated ion heating found that the gradient in plasma density are the possible sources of free energy for the EIC waves. Rosenberg et al., (2009) [29], in his paper discussed that wave frequency increases, the growth rate of higher harmonic EIC waves tends to increase within certain parameter ranges. Khaira et al., (2015) [30], considered the Kappa distribution function and discussed the growth rate with respect to wave vector and its effects.

Here, we have considered the inhomogeneous plasma model for which the particle distribution function is constructed on a zeroth order distribution function that satisfies the time independent Vlasov equation. We assume a weak density gradient perpendicular to B_0 and we may take the magnetic field to be uniform. Here, we have considered v_{nj} is independent of m_j. We have considered the instabilities driven by the ion density drift. v_{nj} carries a nonzero current J_0 which represents free energy that can drive instabilities. The ion density drift wave satisfies $\omega_r \approx k_y v_{ni}$ at $k_y a_i \leq 1$ and ω_r remains less than Ω_i. At perpendicular propagation, we have ICWs at $\omega_r > \Omega_i$.

Here, we have the effect of density gradient parameter in all the fluctuating parts of the particle distribution function. The study have been performed space plasma and investigated the amplification process of the non-resonant wave by estimating the growth rate considering only the dominant terms, neglecting other terms. Though the wave amplification process is mostly affected by the dominant term but we cannot neglect the influence of other terms involved in the calculation of growth rate.

Now, we consider the observational data in magnetopause of magnetosphere [32], [33].

\[
\begin{align*}
K_i &= 1.71m^{-1}, \quad \omega_{pi} = 1.32 \times 10^4Hz, \quad \omega_i = 2.1 \times 10^6Hz, \quad v_d \sim 10^6 ms^{-1}, \quad E_{i\perp} = 1.4 \times 10^{-4} eV m^{-1}, \\
E_{i\parallel} &= 10^5 eV m^{-1}, \quad \frac{m}{m_e} = 1.75 \times 10^{11} C kg^{-1}, \quad k_i = 2 \pi \times 10^{-5} m^{-1}, \quad k_\perp \sim 10^{-3} m^{-1}, \quad v_e = 4.19 \times 10^5 ms^{-1}, \\
\Omega &= 5 \times 10^6 Hz, \quad \Omega_i = 5.6 \times 10^6 Hz, \quad \Lambda_1 = 1, \quad \Lambda_2 = \frac{k_\perp}{k_i} v_e.
\end{align*}
\]

For the regions of plasma with very weak density gradient ($\epsilon_n = 0$) as-

\[
\frac{\gamma_p}{\Omega} \sim 10^{-6}. \quad (63)
\]

The growth rate with a gradient ($\epsilon_n \neq 0$), we have

For ($\epsilon_n = 0.1$),

\[
\frac{\gamma_p}{\Omega} \sim 10^{-3}. \quad (64)
\]

So, this shows that due to the presence of density gradient, free energy become apparent and thus influences the amplification process of ICWs in presence of LHDWs turbulence.

Now, we have plotted the graph of $\frac{\gamma_p}{\Omega} \times \frac{\omega_i}{\Omega_i}$ for ICWs with different values of the density gradient parameter.

![Fig.A.1: Growth Rate](image)

Again, we have plotted the graph of $\frac{\gamma_p}{\Omega} \times \frac{\omega_i}{\Omega_i}$ for ICWs with different values of the density gradient parameter.
Fig.A.2: Growth Rate vs density drift speed

So, it has been clear from the Fig.A.1, that for different values of ϵ_n, we have growth rate increases with the increase in the value of the density gradient parameter. The growth rate is faster with the increase in value of ϵ_n. We can also say from Fig.A.2, that the growth rate increases for different density drift speed. Here, drift speed increases, frequency of the drift wave increases with successively higher ICWs and thus yields larger growth rate with the help of non-linear approach and these agrees with the earlier results of Gary in terms of linear approach [31]. Thus, we can say that there is an amplification of waves due to the interaction of ICWs and LHDWs. So, for the study of ICWs instability, we have identified that the density gradient and the density drift speed may play a significant role.

Acknowledgments

The authors are grateful to the unknown reviewer for their valuable suggestions, which helped us to improve the quality of the manuscript.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

ORCID

© Raksha Mundhra, https://orcid.org/0000-0002-7486-9759; © P.N. Deka, https://orcid.org/0000-0001-9485-9294

REFERENCES

[1] Cecilia Norgren, Swedish Institute of Space Physics and Department of Physics and Astronomy, Uppsala University, Sweden, ISSN: 1401-5757, UPTEC F 11 057 (2011)

NESTABLENNOST' IONNYH CIKLOTRONNYH XVIL' (ICW) ZA RAHUNOK ENERGIY TURBULENTNOSTI NIZHNYH GIBRIDNYH DREJFOWYH XVIL' (LHDW)

Raksha Mundhra, P.N. Decka

Факультет математики, Университет Дебрагарте, Асам, Индия

Досліджено нестабільність іонних циклотронних хвиль (ICW) за наявності турбулентності нижньогібридних дрейфових хвиль (LHGW). Неоднорідність плазми в області магнітонауки Землі підтримує діапазон низькочастотних хвиль дрейфових турбулентних полів через градієнти густины в різних областях середовища. Однак цих явця дрейфу ідентифіковано як нижні гібридні дрейфові хвилі (LHGWs), які задовольняють умови резонансу \(\omega - k \cdot v = 0 \). Ми розглядали неелінійну взаємодію хвиль та частинок моделю, де резонансна хвиля, яка присковорює частинки в магнітонауці, може передавати свою енергію іонним циклотронним хвиллям через модулювання поле. Незважаючи на частотні проміжки між двома хвиллями, енергія може передаватися неелінійно для генерації нестабільних іонних циклотронних хвиль, які завдяки це не задовольняють умови резонансу \(\omega - k \cdot v \neq 0 \) та умови неелінійного резонансу \(\Omega - \omega - (K - k) \cdot v = 0 \). Тут \(\omega \) і \(\Omega \) — це частоти резонанської та перезонанської хвиль відповідно, а \(k \) та \(K \) — відповідні хвильові числа. Отримано неелінійне дисперсійне співвідношення для іонних циклотронних хвиль (ICW) за наявності турбулентності нижніх гібридних дрейфових хвиль (LHGWs). Оціною швидкість зростання іонних циклотронних хвиль з використанням даних космічних спостережень в області магнітонауки.

Ключові слова: іонні циклотронні хвилі; нижні гібридні дрейфові хвилі; посилення хвиль; градієнт густини; неелінійна взаємодія хвилі-частина