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The mathematical model to inspect the effects of changeable thermo-physical properties such as thermal conduction, slip effects and
viscosity on Maxwellian nanofluid is proposed. The thermal conductivity increases rapidly due to presence of nanoparticles such as
metals, carbides, oxides etc. in base fluid. The flow occurs from the stagnated point pass a stretched sheet with slipped conditions. The
characteristics of the Brownian motion as well as the thermophoresis processes are also taken into consideration. By means of similarity
transformations, the ODEs are reduced from the equations influencing the fluid flow. A built-in solver of MATLAB namely bvp4c
which is a collocation formula implementing the Lobatto IIla finite difference numerical method is applied to solve these transformed
equations numerically. The graphs of the numerical outcomes representing impacts of variations in different parameters on the fluid
movement, transfer of heat along with mass are analyzed. This investigation leads to an important aspect that as the thermal
conductivity in the flow is intensified, the temperature of the fluid reduces with high aggregation of the nanoparticles near the sheet’s
surface. Also, the rates of heat and mass transferral depletes due to the relaxation of Maxwellian fluid. Furthermore, the effectiveness
of the present numerical computations is determined by carrying out comparisons of heat and mass transferred rates against the previous
analytical results for several values of thermophoresis and Prandtl parameters. The effectiveness of its outcomes can be applied in
nanoscience technology and polymeric industries for their developments.
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Nomenclature
Tw  Temperature on the sheet T Fluid temperature
Cy  Nanoparticle fraction on the wall T Ratio of heat capacity of a nanoparticle to heat capacity of
an ordinary liquid/gas
T,  Free stream temperature c Rate at which the sheet is stretched
C, Free stream Nanoparticles concentration v =a(Ty — T,) Dimensionless reference temperature
corresponding to viscosity
u velocity along xaxis B =kyc  Maxwell parameter known as Deborah number
v velocity along yaxis € = b(Ty —T,) Dimensionless reference temperature
corresponding to thermal conductivity
Pe  density of the base fluid A= % Ratio of rates of velocities
. . [ . C
v(T) = ? fluid kinematic viscosity Pr = ‘%;—wp = %o Prandtl number
0 ©0
Cp  specific heat at constant pressure Nt = VTDTT (Tw — Ts) Thermophoresis parameter
o0 {00
Dy Brownian diffusion coefficient Nb = Tvﬁ (Cw — C»)  Brownian motion parameter
o0
Dy Thermophoresis diffusion coefficient Le =% = K= | owis number

Dp  peoCpDp

Ko  relaxation time of the upper-convected Maxwell fluid S="_ guction parameter
Voo
K(T) variable thermal conductivity 1=F , VL Velocity slip parameter

C Nanoparticles volume fraction S=0G Vi Thermal slip parameter

P Pressure ¥y = H [= Solutal slip parameter

Voo
P Stream function n Similarity variable
INTRODUCTION

Over the past few decades, inspection of nonnewtonian fluids flow passing a stretched sheet is a topic of immense
curiosity amongst researchers, engineers and scientists because of its vast utilizations in biomechanics and engineering
fields such as in extrusion process, annealing, extraction of metals, etc. Changes in shear stress and some properties of
fluid lead to further classification of non-Newtonian fluids into Bingham plastic, Pseudoplastic, Viscoelastic. Poisson [1]
and Maxwell [2] gave rigorous arguments and stated that all fluids must have some degree of elasticity. In fact,
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constitutive theories such as Maxwell and Boltzmann [3] were based on the thoughts that there will be momentary elastic
responses in fluids. This concept includes the idea that fluids such as water and glycerin have viscous response while
others (like less strong solutions) are somewhat elastic and some viscous. Viscoelastic fluid has both the property of
viscosity and elasticity. On sudden removal of stress of viscoelastic fluid, the fluid strain doesn't disappear at once but
relaxes quite slowly. The simplest model of viscoelastic fluids is the Maxwell model which has very small dimensionless
relaxation time. In order to investigate the role of the parameters such as electrical conductivity in heterogeneous solid
particles, J. C. Maxwell proposed a model in 1867. Wide range of applications of Maxwell fluid in technical, engineering
and industrial areas has fascinated many researchers.

In 1989, Barnes et al. [4] in their research had conferred that in rheology even a solid-like material would start flowing
after a given large amount of time. Keeping this in mind, a nondimensional number is required which is associated with both
viscosity and elasticity of material. Thus, a non-dimensional number named as Deborah number was introduced which was
well described by Poole [5]. Sadeghy et al. [6] in their work have investigated numerically the stagnated point flow of
Maxwellian fluid. Wang and Tan [7] analysed the Maxwellian flow in a porous media. The wide utilizations of stagnated
point flow in industrial and engineering applications such as electrochemical engineering, storage devices, waste water
management, paper production, acro-engineering, etc. have embarked the interests of numerous investigators. Hiemenz [8]
was the first researcher to model the stagnated point flow problem. He used similarity variables to obtain its solution in a
precise manner. Chiam [9], [10] followed his work and continued the study under the consideration of the geometry as the
stretchable sheet. Later on, Ahmad et al. [11] utilized Buongiorno model of nanofluid to carry on his investigation on
stagnated flow of Maxwell nanofluid past a disk. Recently, various researchers such as Sunder Ram et al. [12], Reddy
et al. [13], Dessie [14], Reddy and Mangamma [15] and so on, investigated the porosity effects on stagnated point flow of
convective magnetized flow of microfluids, Casson fluids and Newtonian fluids. They used several numerical methods such
as Shooting method, Runge kutta fourth order method and Keller box method to obtain the numerical solutions.

Recently, a current topic of heat transfer medium has emerged named as Nanofluid coined by Choi [16] which
contains nanoparticles of size 01 — 100 nm. These nanoparticles, generally a metal or metal oxide, are stably and
uniformly distributed over base fluid which tremendously intensifies the nanofluid thermal conduction, enhances
coefficients of conduction and convection thereby favouring more heat transfer. Compared with millimeters and
micrometers, Nanoparticles have great potential for enlarging thermal transport facilities. Nanofluids have an extensive
applicability for engineering in heat transfer systems, automotive applications, electronic systems and biomedical
applications etc. Buongiorno [17] examined various theories explaining the advanced features of heat transfer of
nanofluids. He proposed an analytical solution of convection in nanofluids that looked at thermophoresis and Brownian
propagation. Kuznetsov and Nield [18] extended the study of Boungiorno and researched on the nanofluid flow passed a
vertical surface. Khan & Pop [19] followed them to explore thoroughly the nanofluid flow across an expanded surface
with a surface temperature. Makinde and Aziz [20] investigated the condition of the transmission limit to assess the
nanofluid flow over the expandable surface. An investigation on the flow over an extended sheet of Oldroyd-B fluid was
accomplished by Sajid et al. [21] taking magnetic effects into consideration. Assuming geometry as a sheet with tendency
to stretch, the flow of the nanofluid from a stagnated point is investigated numerically by Yasin Abdela et al. [22]. Ramesh
et al. [23] inquired on flow of Maxwell fluid from a stagnated point in the existence of nanoparticles. Under various
physical conditions, researchers such as Mishra [24] and El-Aziz and Afify [25] investigated the effects of slipped
conditions on MHD flow in various non-Newtonian models such as Casson fluid and Jeffrey fluid. Ibrahim and Negera
[26] have investigated the stagnation point flows and slip effects of MHD Maxwell nanofluid past a stretched sheet.

Factors of variation in viscosity and thermal conductivity in liquid flow have the use of geothermal energy, the
underground storage system and many other areas. Changes in viscosity in liquid or gas flows help predict flow patterns
and heat transfer rates, while in heat transfer problems, changes in thermal conductivity help communicate the accuracy
of the energy transfer. Makinde et al. [27, 28] and Ali et al. [29] investigated the impacts of variation in viscosity on the
stable and unstable flow of nanofluid by assuming different conditions and different geometries. For MHD flow of fluid
containing dust particles, the change in fluid viscosity and thermal conduction was inspected by Manjunatha and
Gireesha [30]. In their work they inferred that a reduction in the fluid velocities and dust phase occur due to the increased
viscousness parameter of the fluid. Borgohain [31] in her work investigated on the radiative Maxwell Nanofluid and
numerically forecast the flow rate, temperature and concentration features of the flow. Iranian et al. [32] inspected on
impacts of suction/ injection and slip conditions on flow of Maxwell fluid number and concluded that heat transferral rate
is boosted by thermal and momentum slip conditions.

In earlier problems of upper-convected Maxwell fluid flow from the stagnation point, the effects of changeable
thermal conduction and viscosity were not discussed in the presence of nanoparticles under the slip effects. Owing to the
importance of variation in thermal conduction and viscosity in the thermal engineering works of insulation, energy
production, devices enhancing thermal power, computer storage devices, cooling systems and polymeric industries, study
on this topic has become relevant. The originality of this study is therefore, the modelling of the UCM flow problem
under the constraint of changing thermal conduction and viscousness of the fluid along with the slip conditions and
presence of nanoparticles in the fluid from a stagnated point.

The central objective of the current article is to investigate the effects of variation in viscousness, slip effects and
thermal conduction on the flow of Maxwell fluid past a stretchable surface along with nanoparticles present in the fluid
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via programming in MATLAB. Present study can be helpful in the processes that involve engineering, polymeric,
insulations and nanofluid operations involving the works of storage systems, extrusion processes, cooling systems, paper
production, thermal power generation, etc.

FORMULATION OF THE PROBLEM

The problem is considered as a slip flow problem of an upperconvected Maxwell (UCM) fluid in positive y-axis
region. At x-axis, a stretching surface is placed with stagnation point fixed at x = 0. Towards its perpendicular direction,
the y-axis is assumed. This flow model of the assumed problem is physically illustrated in Figure 01. The fluid containing
nanoparticles passes over this stretched surface. From the stagnation point, the free stream velocity U(x) and fluid
velocity on stretched/ shrinked velocity Uy, (x) are considered to vary linearly i.e. the free stream velocity is taken as
U(x) = kx and fluid velocity on the stretched/ shrinked sheet is taken as U, (x) = cx where ¢ > 0 is the stretching sheet
velocity, ¢ < 0 is the shrinking sheet velocity and k > Oare constants. The two-dimensional laminar fluid flow is
considered to be incompressible and steady. The thermal conduction and viscousness of the fluid, being dependent on
temperature, are taken into account as variables. All the other thermophysical properties of the fluid are considered to be
constant.

Y
F 3
v
1]
Ulx)
» X
+— — — — —_ — — —

Un(x)

Figure 1. Physical illustration

Taking all these factors into account the Maxwell nanofluid flow governing boundary layer equations [27] over
stretched sheet with changeable fluid viscousness and thermal conduction takes the following forms:

61;

ay 5_0 (M
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The boundary conditions (bcs) suggested by Ibrahim et al. [26] are
u=cx+F v—VW(x)T TW+G C CW+H— aty =0,

u-kx,T > T, C— Cyxpasy — o, (%)

where ¢ > 0 for the stretched sheet and ¢ < 0 for the shrinking sheet.
Introduce the similarity transformations as follows:

Cw—Coo

’ T-Teo C—Coo
77: —vc y}]}b:,[cvmxfjng T ’(l): . (6)
oo W=l

The dynamic viscosity of Maxwell nanofluid is taken as an exponential decreasing function of temperature [28]
defined as

W(T) = pooe ™8T Te), @)
where po,signifies fluid viscosity at free stream and a signifies viscosity variation exponent.
Similarly, the Maxwell nanofluid thermal conductivity [31] is taken as
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K(T) = Kepe™?(7Te), (8)

where K, signifies ambient fluid conductivity and b signifies thermal dependence conductivity constant.
Using equations (6) - (8), equations (2) - (4) reduce to

(1= BefAOf" —vl'f" + e (ff" — f> + 2Bff'f" + A*) = 0, ©)
0" — €0’ + Pre®(NbO'¢’ + Nt02 + f6') = 0, (10)
Nbg" + Nt@" = —LePrNbfe'. (11

The corresponding non-dimensional bcs are

n=0: f=Sf"=3(f'~1),0=1+80"¢'= (¢~ 1.

n—-oo:f 54,6 -50,¢-0. (12)
The other important physical quantities are the Sherwood (Sh) and Nusselt (Nu) numbers which are given as
sh= 2Crb=0 u= D=0,
(CW - COO) ' (TW - oo)

These are dimensionless numbers representing the effectiveness of heat and mass convection at the surface,
respectively. Sherwood number represents the ratio of convective mass transfer rate to the mass diffusivity whereas
Nusselt number represents the ratio of convective heat transfer to conductive heat transfer coefficient across the boundary
layer. Thus, reduced Sherwood number signifies the mass transferral rate and reduced Nusselt number signifies the heat
transferral rate for the convective flows at the surface.

These physical quantities under the similarity transformations can be written as:

Nu = —/Re,0'(0),Sh = —,/Re,¢'(0),

where Re, = x:_w is localised Reynolds number.

Thus, the reduced Sherwood and Nusselt numbers are given by
Sh, = Re; "*Sh = —¢/(0), Nu, = Re; "/*Nu = —6'(0). (13)

METHODOLOGY
BVP4C of MATLAB is used as the numerical technique to get the outcomes of the present model. Bvp4c is a built-
in solver of MATLAB which is a collocation formula used to solve a global system of algebraic equations imposing
collocation conditions on the subintervals over the boundary. This formula implements the three stage Lobatto Illa finite
difference numerical method [33]. The equations (9) - (11) under the bes (12) are first reduced to first order equations as
shown below.
Take

yl=f,y2=f,y3=f",y4=0,y5=0",y6 = ¢,y7 = ¢’

Then the first order differential matrix is obtained as

yz;
y3
vy5y3 — eV*(yly3 — y22 + 2B8y1y2y3 + A?)
dy 1 — Bevrty1?
ax ys
€y5 — PreY*(Nby5y7 + Nty4? + y1y5)
y7
Nt
| Pry7(—Leyl + Nte*y5 + m{—eyS + Pre*(yly5 + Nty4?)}

RESULTS AND DISCUSSIONS
Reduced system of governing ODEs (9) — (11) so obtained are highly coupled and nonlinear, and cannot be solved
analytically. Hence the equations under the bces (12) are first reduced to first order equations as shown in section
methodology and are solved by coding to create appropriate programming in MATLAB by making use of the solver
bvp4c and implementing the Lobatto IIla finite difference numerical method. Finally, the numerical computations for
nanoparticles concentration, fluid temperature and its velocity profiles for distinct values of the influencing variables are
carried out and the outcomes are displayed graphically in Figures (2) - (14).
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To check the effectiveness of the present numerical computations, comparisons with the prior analytical outcomes
of Khan and Pop [19] under the absence of slip effects, conductivity and viscosity parameters are carried out and shown
in Table 1 and Table 2. It is evident from the tables that the two results are exact upto 3 decimal places showing the
relevancy of the present study.

Table 1. Comparison table taking variation in thermophoresis parameter

Nt —¢'(0) —¢'(0) —-0'(0) —0'(0)
Previous [19] Present Previous [19] Present
0.2 2.2740 2.2740 0.6932 0.6932
0.3 2.5286 2.5286 0.5201 0.5201
0.4 2.7952 2.7951 0.4026 0.4026
0.5 3.0351 3.0351 0.3211 0.3210
Table 2. Comparison table for rates of heat transfer with variation in Prandtl number
-6'(0 Present -6'(0
Pr Pl‘eViOlES )[19] results Pr PFeViOlES )[19] Present results
0.07 0.0663 0.0663 0.70 0.4539 0.4539
0.20 0.1691 0.1691 2.00 0.9113 09113

The range of controlling parameters in plotting the Figures 02 — 14 are takenas 0 < 5 < 1,01 < Nb <1.2,0.1 <
Nt<050<e<2,Pr=4001<y<250<v<150<A4<1501<5<3,Le=1001<1<15001<
6 < 0.35. The Figures 02 — 14 yield that the temperature and velocity of Maxwellian fluid and nanoparticles concentration
in the nanofluid decrease monotonically across the boundary. At the surface, the value of the fluid property is maximum
with a monotonic fall in the property by the end of boundary.

The effects of the variation of dimensionless viscosity parameter v on the nanoparticles volume fraction, fluid
temperature and fluid motion are depicted in Figures 2-4. From the figures, it is evident that the growth in viscosity slows
down the fluidic motion. The nanoparticles concentration and the fluid temperature upsurge with the hike in viscosity
parameter. Increase in viscosity parameter results in greater temperature contrast between the surface and encompassing
fluid which diminishes the hydrodynamic boundary layer thereby conferring the depicted results.
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Figure 4. Changing viscosity on fluid velocity Figure 5. Changing thermal conduction on nanoparticles
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The effects of various values of thermal conductivity € on the concentration and temperature distributions are plotted

in Figures 5 and 6. The growth in thermal conductivity cools down the fluid temperature thereby thinning down the
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diameter of thermal boundary layer. The nanoparticles volumetric content enhances near the surface but far away from
the sheet it gets reversed giving a point of inflexion P where no change in concentration is observed with the rise in

thermal conductivity.

In Figures 7 and 8, the distribution of nanoparticles concentration and fluid temperature for variation in nanofluid
parameters are shown. The nanofluid parameters Nb and Nt have positive effects on the fluid temperature. This is due to
the generation of irregular motion known as Brownian motion by the nanoparticles and the thermophoretic force creating
fast flow away from the sheet. Also, these lead to the decline in concentration of the nanoparticles by the Brownian motion
parameter Nb but reverse result for thermophoresis parameter Nt.
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Figure 11. Nusselt number variation with Deborah number and

velocity ratio

Figures 9 and 10 present the concentration and temperature distributions for distinct values of slip parameters. It’s
ascertained that the slip velocity 4 enhances the thermal and concentration boundary layer but reverse are the results for
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thermal slip 6 and solutal slip y parameters. At the occurrence of slip, the velocity of fluid near the plate is not equal to
the contraction rate of the plate. So as the slip velocity rises up, the fluid velocity decelerates. These further results in
intensification of the fluid temperature and also movement of the nanoparticles, existing in fluid, closer towards each
other thereby making the fluid more concentrated.

Finally, the mass transferring and heat transferring rates proportional to —¢'(0) and —6'(0), respectively, are
shown in the Figures 11-14 for variation in different parameters. The nanofluid parameters (Nt, Nb) boost the frequency
of mass transfer but restrict the frequency of heat transfer. The increasing values of Nt and Nb result in the rising of the
surface temperature thickening the thermal boundary layer and thereby reducing the Nusselt number. The elasticity and
viscosity of the Maxwell fluid led to the reduction in the mass and heat transferring rates with the hike in Deborah number
B while the ratio of velocities enhances these rates.
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CONCLUSIONS
The cumulative impacts of changeable thermal conduction, slip effects, viscosity and suction on the movement of
Maxwellian fluid past a stretchable surface are investigated from the stagnation point along with nanoparticles present in
the fluid. The results are precised as follows:

. The variation in thermal conductivity results in cooling down of the fluid and makes the fluid more
concentrated near the surface of the sheet but decreases the nanoparticles volumetric content distant from the sheet.

. The velocity slips, viscosity and thermophoresis parameters favored the fluid temperature and nanoparticle
concentration, whereas the thermal and solutal slips reduced the diameter of thermal and concentration boundary layers.

. The presence of nanoparticles in the fluid retards the fluidic motion.

. The upsurge in Brownian motion parameter results in heating up of the fluid and thinning down the
concentration boundary layer.

. The rate of heat transfer depletes on upsurge of Deborah number and nanofluid parameters but enhances for
higher ratio of velocities.

. The rate of mass transfer is favored by the nanofluid parameters and velocity ratio but is opposed by the rise

in Maxwell parameter.
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BIUINB TEMIIEPATYPHO-3AJIEXKHUX TEIUIOITPOBITHOCTI TA B'SI3KOCTI
HA KOB3AIOUYMM ITOTIK HAHOPIJUHU MAKCBEJLJIA
Jed6o3ani Boproxaiin
Dakyremem mamemamuxu, Ynieepcumem [fiopyeapx, ibpyeapx, 786004, Accam, Inois

3amnpornoHOBaHO MaTeMaTHYHY MOJICITb JIJIS IEPEBIPKH BIUTMBY MIHJIMBHUX TEIIO(I3MUHUX BIACTUBOCTEH, TAKHUX K TEIUIOMPOBIIHICTD,
e(eKTH KOB3aHHS Ta B’S3KiCTh, HA HAaHOPiAMHY MakcBeia. TemmonpoBiAHICTh MBUAKO 3pOCTaE Yepe3 HasABHICTh y 0a30Bill piamHi
HAHOYACTHHOK, TAKUX SIK METaJH, KapOiau, okcuan Toulo. [1oTik BiIOyBaeThCS Bl 3aCTIHHOT TOUKU MPOXOPKEHHS PO3TATHYTOTO JICTA
3 YMOBaMH KOB3aHHS. TakoX BpaxOBYIOTBCS OCOOIHMBOCTI OpOYHIBCHKOTO PyXy, a TakOX HpolecH TepModopesy. 3a JOIMOMOTor
nepetBopeHb noaioHocti ODE BuBOAsATHCS 3 piBHSHB, IO BIUIMBAIOTH HA NOTIK pianHu. BOynoBauuii po3s’s3yBad MATLAB, a came
bvp4c, sxuii € GopMyII0I0 CIIJIBHOTO PO3TAIlyBaHHS, 1110 peasli3ye YUCeIbHUI MeTO/I KiHIleBUX pi3HUIlb Lobattollla, 3acTtocoByeThes
JUTS YACEIILHOTO PO3B’SI3aHHs KX MEPETBOPEHUX PIBHAHB. [IpoaHanizoBaHo rpadikd YUCEIbHUX PE3YJIbTATIB, IO MPEACTABIAIOTH
BIUTUB Bapiamiil pi3HUX MapaMeTpiB Ha pyX PiAMHH, epelady Teria pa3oM 3 Macor. Lle JociimKeHHs MPU3BOAUTD 10 BaXKITHBOTO
ACIEKTY, 110, OCKUIbKHM TEIUIONPOBIAHICTh y TOTOIIl MOCHJIIOETHCS, TEMIIEpaTypa PiAMHHA 3HUXKYETHCS 3 BHUCOKOIO arperariero
HAHOYACTHHOK Oins moBepxHi jmcra. KpiM TOro, MIBHAKICTH TEIUIO- Ta MAacOOOMiHY 3MCEHIIYETHCS depe3 peNlakcalilo piauHU
Makcgemia. KpiM Toro, epeKTHBHICTD MPEICTABICHUX YHCEIBPHHX PO3PaXyHKIB BHU3HAYAETHCS IMUITXOM IPOBEACHHS IOpPIBHSHBb
MIBUIIKOCTEH TEIIO- Ta Macollepeiai 3 HONepeIHIMH aHATITHIHUME Pe3yIbTaTaMH JJIsl KITBKOX 3Ha4eHb TePMOOpE3y Ta ImapaMeTpiB
Ipauaras. E¢exTuBHicTh HOro pesyibTaTiB MOKke OyTH 3aCTOCOBaHA B HAHOHAYKOBUX TEXHOJIOTISAX 1 HOJIMEPHUX Taly3sx M iX
PpOo3po6oK.

KuarouoBi ciioBa: menioobmin; 3sminna 6'sa3kicme piounu; egpexmu Ko83aHHs, 3MIHHA Menaonposionicms, piouna Maxceenna





