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In this work we analyze the effective evolution of a one dimensional Bose-Einstein Condensate (BEC) within a semi-
classical description of quantum systems based on expectation values of quantum dispersions and physical observables,
known as momentous quantum mechanics. We show that the most prominent features and physical parameters of the
system can be determined from the dynamics of the corresponding semiclassical system, consisting of an extended phase
space including original classical observables and quantum dispersions, and we also show that particle trajectories for
expectation values of observables are a particular characteristic in this framework. We also demonstrate that interactions
with several potentials can be implemented in an intuitive way.
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1. INTRODUCTION

Around 100 years ago, Einstein and Bose made a groundbreaking prediction that a system of noninteracting
bosons, under certain conditions, would undergo a phase transition to a state with a macroscopic population in
the ground state, even at finite (low) temperatures [1]. This remarkable phenomenon, known as Bose-Einstein
condensation (BEC), has since captured the attention of the physics community, and has laid the foundation
for exploring the quantum world on a macroscopic scale. However, it was only in recent years that experimental
techniques, such as laser and evaporative cooling [2], and the development of novel traps [3], have allowed for
the unambiguous observation of BEC in weakly interacting atomic Bose gases within laboratory settings [4].

On the theoretical front, the dynamics of dilute trapped Bose-Einstein gases have been effectively described
by mean-field theories, with the Gross-Pitaevskii equation (GPE), a nonlinear Schrödinger equation (NLSE),
proving to be a highly accurate representation of the BEC ground state and its excitation spectrum at or near
absolute zero temperature [5]. Most theoretical work has primarily focused on the Thomas-Fermi limit, where
the nonlinearity of the GPE dominates the bare trap excitation energies, corresponding to situations with a
large number of particles [6]. Yet, the NLSE and GPE have also found applications beyond the realm of BEC,
with the NLSE appearing in various fields such as optics, acoustics, and materials science [5]. In particular, the
NLSE serves as a universal equation in three-dimensional problems, where analytical solutions are challenging,
and numerical simulations typically demand substantial computational resources. An effective approach to the
study of such systems could offer a powerful method for gaining valuable insights into the behavior of BEC
models.

Effective techniques in quantum mechanics enable us to approximate solutions for complex systems. No-
tably, the momentous quantum mechanics formulation transforms a quantum system into a semiclassical coun-
terpart, where the system’s dynamics are determined via an effective-semiclassical Hamiltonian [7]. This method
reintroduces the concept of particle trajectories, which is absent in traditional quantum mechanics. These tra-
jectories depict the evolution of expectation values of position and momentum operators, and of quantum
dispersions as well, obtained as an average of these values across an infinite number of quantum ensembles.
This interpretation is akin to the evolution obtained in the Bohm description of quantum mechanics [9]. The
versatility of this approach has made it applicable to the study of a wide range of quantum systems, spanning
from relatively simple models such as quantum tunneling [10] to more intricate models within the domain of
quantum cosmology.

In this work we explore a semiclassical analysis of a Bose-Einstein condensate in one dimension, attempting
to bridge the gap between the theoretical foundations of BEC, the NLSE, and the practical applications of these
principles in quantum physics and beyond.

As experimental advances continue to unlock new possibilities for the study of BEC, it is crucial to inves-
tigate the collective dynamics of these macroscopic ensembles, particularly in the context of one-dimensional
systems. Our analysis aims to provide valuable insights and analytical solutions that complement numerical
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studies, further enhancing our understanding of BEC and its broader implications in various domains of physics
and engineering.

2. THE GROSS-PITAEVSKII EQUATION AS A NLSE

In this first approach we analyze a one dimensional BEC as a semiclassical system, for which we ob-
tain its dynamical evolution, displaying the effectiveness of the method, and discuss the broad spectrum of
generalizations to more complex systems, including higher dimensional ones. This section follows closely [11].

We start considering a gas of bosons with a fixed average number of particles, N , confined by a potential
well trap. The ground state of N noninteracting bosons confined by the potential is obtained by putting all the
particles in their lowest energy state, its normalized single-particle wave function is

ψ0 =
(mω
πℏ

)1/4
e

−mω
2ℏ x2

. (1)

The density distribution is n(x) = N |ψo|2. At finite temperatures, there are particles occupying the lowest
energy level (condensate), for which we require their occupation number to be large and close to the total
number N , and others occupying higher levels (thermal component) NT , so the condition for BEC occurrence
is then NT < N , satisfied for T sufficiently small. The critical temperature at which this happens is

kBTc = 0.94ℏωn1/3. (2)

Typical values of these parameters in available experiments are N ∼ 104 − 107, and Tc ∼ (102 − 103)nK,
values very well in agreement with experimental results.

Non-interacting boson particles are well described by the expressions above, and have also been corrobo-
rated by experiments [12]. However, this non-interacting picture is simplistic: the gas in this case has infinite
compressibility, and one would expect interaction between the particles to drastically change its behavior, even
for very dilute samples. Therefore, and interacting system should be considered, and the conditions under which
Bose-Einstein condensation is attained further studied.

The dynamic of a gas of interacting boson particles is well described by the NLSE, the Gross-Pitaevskii
equation or GPE [11]

iℏ
∂ψ

∂t
=

[
− ℏ2

2m
∇2 + Vext(r) + g|ψ|2

]
ψ (3)

where

g =
4πℏ2a
m

(4)

modulates the interaction and is defined in terms of the ground-state scattering length a. N is fixed from the
normalization condition for its macroscopic wave function N =

∫
ψ2d3r. We will consider a harmonic trapping

potential Vext.
We will analyze the evolution of this macroscopic system under an effective description, under the physical

conditions discussed above, and the average distance between particles much larger than the scattering length
a.

For a one dimensional BEC, in eq. ( 3) we take ∇ → ∂
∂x . Several methods and analysis were implemented

over the past years attempting to solve, analytically, approximately and numerically the GP equation, in 1, 2
and 3 dimensions, for harmonic and more general potentials (Thomas-Fermi limit [6], numerical [13], variational
analytical [14]). We describe now the momentous quantum mechanics method.

3. EFFECTIVE DESCRIPTION OF BOSE-EINSTEIN CONDENSATES

3.1. Momentous quantum mechanics

Momentous quantum mechanics is an effective formulation describing the semiclassical evolution of quan-
tum systems provided by a Hamiltonian defined in an extended phase space, with expectation values of observ-
ables and quantum dispersions as classical variables [7]. The dynamical system so obtained has (in general) an
infinite number of degrees of freedom. Expectation values of quantum dispersion (termed “quantum variables”),
for one degree of freedom, are defined as follows

∆(xapb) = ⟨(x̂− x)a(p̂− p)b⟩Weyl. (5)

where p = ⟨p̂⟩, q = ⟨q̂⟩, and Weyl refers to a totally symmetrical ordering. Similar expressions apply for more
than one degree of freedom.
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The quantum effective Hamiltonian, defined as HQ = ⟨Ĥ⟩, is given explicitly as

HQ = H(x, p) +

∞∑
n=2

n∑
a=0

1

n!

(
n

a

)
∂nH(x, p)

∂xa∂pn−a
∆(xapn−a). (6)

H(q, p) is the corresponding classical Hamiltonian of the system. The semiclassical dynamics can be obtained

from the Hamiltonian (6) in the usual way, that is, ḟ = {q,H}, and for quantum variables we use iℏ {q,H} =〈[
q̂, Ĥ

]〉
.

This formulation for the effective dynamics is valid for general quantum systems, even for those that cannot
be expressed with the usual kinetic and potential terms for the Hamiltonian, that is, H = K +U , although one
may need to implement consistent truncations to the series for complex systems, as we show below. There is
an alternate description in terms of canonical Casimir-Darboux variables [8].

The variables defined in (5) are not canonical order by order in the Hamiltonian (6). It is possible to get
a canonical pair of variables, and a Darboux Casimir, for one degree of freedom, by means of the following
transformation

s =
√
∆(x2), ps =

∆(xp)√
∆(p2)

, U = ∆(x2)∆(p2)−∆(xp)2, (7)

for which we get {s, ps} = 1, and {s, U} = {ps, U} = 0.
Even more, under general arguments it can be shown that all the relevant qantum information in the

system can be obtained from the canonical variable s, and the effective Hamiltonian can be written in the
following way

HQ(x, s) =
p2 + p2s
2m

+ Veff(x, s), (8)

where the effective, all-order potential is

Veff =
U

2ms2
+

1

2
[V (x+ s) + V (x− s)], (9)

where V (x) is the classical interaction potential.
In this way we can generate the dynamics from this canonical effective Hamiltonian and its correspondent

all-order potential in the usual way. We will analyze the effective quantum evolution for the BEC under both
schemes described above.

3.2. Effective GPE

The prescription to obtain the quantum Hamiltonian described above can be implemented for the one-
dimensional GPE (3). Particularly, since this is a non-linear Schrödinger equation, we can deduce the corre-
sponding classical Hamiltonian in the following way

Ĥ ≡ − ℏ2

2m
∇2 + Vext(x) + g|ψ|2 →

Hclass ≡ p2

2m
+ Vext(x) + g|ψ|2, (10)

considering the term g|ψ|2 in HQ as part of the effective interacting potential, as we will describe below.
By far, the most interesting trapping potential Vext is harmonic, since it represents the most common

experimental implementation for BEC’s, and we will use this in the following.
As for the interpretation of the interacting, non-linear potential ψ(x, t) at the classical level, we point out

that the classical system is a starting reference upon which the effective analysis will be built, although its
energy may be taken from experimental settings. The bridge between these two regimes, the quantum and the
classical, is the wave function for the non interacting boson gas discussed in section 2, so we propose considering
a generic squeezed coherent state of the form

ψ(x, t) =
1

(2πρ2)1/4
exp

[
− α

4ρ2
(x− ⟨x⟩)2 + ip(x− ⟨x⟩)

]
. (11)

with α = 1− i⟨∆x∆p+∆p∆x⟩. From this the interacting potential reads (taking ⟨x⟩ = 0)

g|ψ|2 =
g

(2πρ2)1/2
exp

[
− (x− ⟨x⟩)2

2ρ2

]
=

g

(2πρ2)1/2
exp

[
− x2

2ρ2

]
. (12)

One can see this already at second order because there are three quantum variables, and they cannot conform a canonical
system.
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The classical Hamiltonian (10) then reads

H(x, p) =
p2

2m
+

1

2
mω2x2 +

ge
− x2

2ρ2

(2πρ2)1/2
. (13)

We can determine the behavior of the 1 dimensional BEC as if it were a classical particle, driven by (13).
In fig. (1) we show the “classical potential”, and in fig. (2) the corresponding semiclassical trajectories, a
particularly interesting feature of our effective treatment. The classical BEC particle is trapped inside the
potential, and is confined in the right (left) valley, or the harmonic trap, depending on whether its energy E is

greater or less than the local potential maximum aℏ2

mρ .
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(a) Classical potential for a=10
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(b) Classical potential as a function of x and a.

Figure 1. Classical potential for the 1 dimensional BEC in a harmonic trap
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(a) Classical trajectory for E ≥ aℏ2
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(b) Classical trajectory for E ≤ aℏ2
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Figure 2. Classical trajectories for the 1 dimensional BEC in a harmonic trap.

The classical Hamiltonian (13) shows the kinetic and potential terms, a form suited for the momentous
effective treatment. We discuss the evolution in two parts: one where ρ varies slowly and can be treated as a
constant, and the general case.

4. EFFECTIVE EVOLUTION

We proceed to analyze the effective evolution for the BEC system, both in the order by order and the
canonical descriptions.
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As was discussed in the previous sections, the macroscopic quantum evolution of the condensate for non
interacting particles (g = 0) can be determined from its wave function, which has an analytic expression given in
(1); values of physical observables can be readily obtained. On the other hand, momentous quantum mechanics
determines the dynamical evolution of expectation values of observables as a function of time: the macroscopic
evolution of the BEC can be interpreted as an effective particle governed, at the quantum level, by the GPE
(3).

For the effective quantum description of the general interacting picture we make use of the non interacting
behavior, by choosing initial values of classical and quantum (dispersions) variables from their corresponding
values of the later. That is, we use the expectation values obtained from the ideal BEC, and experimental
parameters employed in the obtention of the condensate, as initial values for the evolution of the full quantum

effective system. That is, we take f(0) =< f̂ >0, for classical and quantum variables.
The total energy, described by the three terms in the Hamiltonian (10), E = Ekin + Eho + Eint (kinetic,

harmonic and interacting components), is restricted by the virial relation [11]

0 = 2Ekin − 2Eho + 3Eint. (14)

Again, the initial values for each one of the components are obtained from the non interacting system. In this
way, we can determine the effective dynamical evolution of the interacting BEC, as we show below.

4.1. Constant variance ρ

4.1.1. Second order system. As we mentioned above, we analyze first the case where ρ is slowly
varying, for which it can be considered constant. ρ is the width of the distribution, so slow variation would
represent the period of time during which stable evolution is attained, before the colapse and revival of the
matter wave [15]. Its value can be controlled in experimental settings.

The effective Hamiltonian (6), together with (13) reads in this case

HQ =
p2

2m
+

1

2
mω2x2 +

ge
− x2

2ρ2

(2πρ2)1/2
+

∆(p2)

2m
+

1

2
mω2∆(x2) +

+
ge

− x2

2ρ2

(2πρ2)1/2

∞∑
n=2

1

n!

(
− 1√

2ρ

)n

Hn

(
x√
2ρ

)
∆(xn), (15)

where Hn(z) is the Hermite polynomial of degree n. As can be seen in this expression, the total Hamiltonian
has an infinite number of terms, rendering an impossible system to treat in full, so we truncate the series to
lowest orders in dispersions.

The Hamiltonian HQ up to second order in momenta is

HQ =
p2

2m
+

1

2
mω2x2 +

ge
− x2

2ρ2

(2πρ2)1/2

+
∆(p2)

2m
+

∆(x2)

2

{
mω2 +

ge
− x2

2ρ2

(2πρ2)1/2

(
x2

ρ4
− 1

ρ2

)}
. (16)

Equations of motion for classical variables follow

ẋ =
p

m
,

ṗ = −mω2x+
ge

− x2

2ρ2

(2πρ2)1/2

{
x

ρ2
+

∆(x2)

2

(
x3

ρ6
− 3x

ρ4

)}
, (17)

whereas for quantum variables [16]) we get

d∆(x2)

dt
= 2

∆(xp)

m
,

d∆(xp)

dt
=

∆(p2)

m
−∆(x2)

{
mω2 +

ge
− x2

2ρ2

(2πρ2)1/2

(
x2

ρ4
− 1

ρ2

)}
,

d∆(p2)

dt
= −2∆(xp)

{
mω2 +

ge
− x2

2ρ2

(2πρ2)1/2

(
x2

ρ4
− 1

ρ2

)}
. (18)
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4.1.2. Canonical system. Now, for the canonical formulation (8) the effective Hamiltonian (13) reads

HQ(x, s) =
p2 + p2s
2m

+
U

2ms2
+

1

2
mω2(x2 + s2) +

ge
− (x2+s2)

2ρ2

(2πρ2)1/2
cosh

(
xs

ρ2

)
. (19)

The corresponding equations of motion are as follows

ẋ =
p

m
,

ṡ =
ps
m
,

ṗ = −mω2x− ge
− x2+s2

2ρ2

ρ2(2πρ2)1/2

[
s sinh

(
xs

ρ2

)
− x cosh

(
xs

ρ2

)]
,

ṗs =
U

ms3
−mω2s− ge

− x2+s2

2ρ2

ρ2(2πρ2)1/2

[
x sinh

(
xs

ρ2

)
− s cosh

(
xs

ρ2

)]
. (20)

4.2. General variance ρ2 = ∆(x2)

For the general case for which ρ is dynamical we need to modify the dynamics obtained in the previous
section. Though more general, it is interesting to contrast this evolution with the one in the previous subsection,
to determine under which regimes, or parameter values, the constant variance analysis is sufficient.

4.2.1. Second order system In this case, where ρ2 = ∆(x2), the Hamiltonian (13) gives the effective
Hamiltonian, up to second order in momenta

HQ =
p2

2m
+

1

2
mω2x2 +

ge
− x2

2∆(x2)

[2π∆(x2)]1/2

+
∆(p2)

2m
+

∆(x2)

2

{
mω2 +

ge
− x2

2∆(x2)

[2π∆(x2)]1/2

(
x2

∆(x2)2
− 1

∆(x2)

)}
, (21)

or

HQ =
p2 +∆(p2)

2m
+
mω2

2

[
x2 +∆(x2)

]
+

ge
− x2

2∆(x2)

2[2π∆(x2)]1/2

(
1 +

x2

∆(x2)

)
. (22)

Equations of motion for classical variables are

ẋ =
p

m
,

ṗ = −mω2x+
ge

− x2

2∆(x2)

2[2π∆(x2)]1/2

(
x3

∆(x2)2
− x

∆(x2)

)
, (23)

while for quantum variables read
d∆(x2)

dt
= 2

∆(xp)

m
,

d∆(xp)

dt
=

∆(p2)

m
−mω2∆(x2) +

ge
− x2

2∆(x2)

2[2π∆(x2)]1/2

{
1 − x2

∆(x2)1/2

+ x2

(
3

∆(x2)
− x2

∆(x2)2

)}
,

d∆(p2)

dt
= −2mω2∆(xp) +

ge
− x2

2∆(x2)

[2π∆(x2)]1/2

{
∆(xp)

∆(x2)
+ 2x2

∆(xp)

∆(x2)2
− x4

∆(xp)

∆(x2)3

)}
. (24)

Equations of motion for higher order truncations can be readily obtained. In the appendix we show the
third order system for general ρ.
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4.2.2. Canonical system for general variance Since, from (7) we have ρ2 = ∆(x2) = s2, the canonical
all-order Hamiltonian (19) is now

HQ(x, s) =
p2 + p2s
2m

+
U

2ms2
+

1

2
mω2(x2 + s2) +

ge−
(x2+s2)

2s2

(2πs2)1/2
cosh

(x
s

)
. (25)

It is evident that the equations of motion for this case will be modified. We get

ẋ =
p

m
,

ṡ =
ps
m
,

ṗ = −mω2x− ge−
(x2+s2)

2s2

(2π)1/2s3

[
s sinh

(x
s

)
− x cosh

(x
s

)]
,

ṗs =
U

ms3
−mω2s− ge−

(x2+s2)

2s2

(2π)1/2s4

[
(x2 − s2) cosh

(x
s

)
− xs sinh

(x
s

)]
. (26)

5. NUMERICAL EVOLUTION

We present the evolution for each one of the cases discussed in section 4. Being the dynamics governed by
a system of nonlinear coupled differential equations we analyzed their solution numerically.

5.1. Constant variance ρ, second order in momenta

In this case we obtained the following initial conditions for momenta from (5) and (11): ∆(x2) =
1

2ρ2 ,∆(p2) = ρ2

2 ,∆(xp) = 0, and parameters: ℏ = m = ω = 1, a = 3.

In Figure 3 we show the effective potential, displaying its dramatic departure from the classical one (Figure
1) due to quantum back reaction. We may also show its evolution as a function of a, although it is not so
critical as ρ. The semiclassical particle evolves according to the effective potentials depicted, and we display
some interesting trajectories in Figure 4: the behavior is affected by the value of ρ, which is the variance of the
state considered.

t

t

Figure 3. Effective potential for the BEC with constant variance ρ = 2.5, a = 3.

This system was obtained by truncating the Hamiltonian (6) up to second order in momenta,
∆(x2),∆(xp),∆(p2), and this could be extended to higher orders to take into account higher order disper-
sions, as shown in Appendix (B) for example. There is a generalization, though, where we do not need to make
such truncations, which we analyze next.

5.2. Constant variance ρ, all-order potential

We analyze now the system for ρ constant, employing the canonical formulation of the effective formulation
described in subsection 4.1.2. We expect this description to be more general than the one in the previous
subsection, particularly because now we have no truncations in the potential. Employing the same initial
conditions and parameters as before, with the obvious modifications for variables (7) we obtain the potential
shown in fig. 5
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(a) Trajectory for ρ = 1
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(d) Trajectory for ρ = 30

Figure 4. Effective trajectories with constant variance ρ , a = 3.

V_eff

t

(a) Potential for ρ = 2.5

V_eff

t

(b) Potential for ρ = 1.5

Figure 5. Effective potential for the BEC with constant variance ρ = 2.5 , canonical variable s.

This is the all-orders effective potential in (19). It is important to note that determining an effective
potential, for which no truncations are needed, is the most interesting feature of our treatment, for one can
analyze the entire quantum-effective evolution of the system from it. Effective trajectories are shown in fig. 6.

The behavior of the system can be analyzed from these trajectories, where one can modify the parameters
and conditions according to experimental settings or phenomenological guidelines.
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(a) Trajectory for ρ = 1
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(b) Trajectory for ρ = 7.5
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t

x

(c) Trajectory for ρ = 15

10
t

x

(d) Trajectory for ρ = 30

Figure 6. Effective trajectories with constant variance ρ , a = 3, canonical variable s

5.3. General variance ρ, effective potential

We now study the evolution for the general variance ρ as a dynamical variable. One can analyze several
regions of interest in the physics of BEC, including interactions between two or more BEC’s, evolution in the
presence of external fields, among many other possibilities.

The dynamics is governed by the Hamiltonian (25). The last three terms in the r.h.s. of this expression is
the effective potential for the system, for general variance. Its behavior is displayed in fig. 7, where the values
for ρ are the initial ones.

We can obtain the evolution of classical observables, and also determine the spreading ∆(x2),∆(p2) of the
initial wave function (11), just as in [17]. Actually, this can be extended to more general interactions driven by
different trapping potentials. We show trajectories in fig. 8.

Interpretation of the dynamical evolution of the interacting BEC can be obtained from this effective
treatment, particularly from the semiclassical potential and trajectories. For instance, while the “classical”
particle, corresponding to the non interacting system, has a well defined behavior given the potential in fig. 1,
in the interacting case, figures 5 and 7, depending on initial conditions and time of evolution, the BEC can
tunnel from different regions in the trap. This corresponds to the collapse and revival of the matter wave
discussed in [15]. By considering different trapping potentials, and even interacting BEC’s, one can describe
very interesting phenomena by applying this effective setting.

It is important to remember that the effective BEC is quantum in nature, so it should display its prob-
abilistic nature. It is indeed the case, and the trajectories (and the whole evolution for that matter) should
actually be displayed as < x̂ > ±∆x, which is shown in fig. 9.

It is interesting to note that the trajectories evolve within a bounded dispersion.
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(a) Effective potential for ρ0 = 1 (b) Potential for ρ0 = 1.8

(c) Potential for ρ0 = 2 (d) Potential for ρ0 = 2.5

Figure 7. Effective potential with time-dependant variance ρ, in terms of the canonical variable s.

6. DISCUSSION

In this work we have presented a semiclassical effective treatment for a one dimensional Bose Einstein
condensate in a harmonic trap with the typical interacting potential depending on the macroscopic wave function
ψ(x, t), whose dynamic is dictated by the Gross–Pitaevskii equation, a particular form of a non linear Schrödinger
equation. We have shown that the physical information of the system is encoded in the expectation values of
observables and quantum dispersions, acting as classical variables in an extended phase-space, with an effective
Hamiltonian; their quantum evolution can be followed with one-particle trajectories, a very useful feature in
the dynamical analysis of the system.

Our results match those obtained in different approaches of the GPE, particularly those in variational
descriptions where the center and the width of the BEC cloud evolve as particles subjected to classical potentials
(see [14]). Those results have been extended to the explanation of experimental results [18]. Since the setting
for the momentous quantum mechanics is semiclassical, many generalizations to this one-dimensional system
can be studied: two and three dimensional systems can be readily implemented, and the behavior nicely
depicted as a one-particle one. Different interactions with, for example, traps or external fields can also be
discussed, and the evolution can be interpreted from the effective quantum potential that we obtained, as
mentioned in section 3. Moreover, the values taken for the parameters in the model come from phenomenological
descriptions: experimental settings and constraints dictate the physically interesting values for quantum and
effective variables.

The most remarkable feature of our analysis is the semiclassical characteristic of the condensate, allowing
to treat it as a single particle (the most classical form of a matter wave) that inherently has a trajectory,
something not present in usual quantum mechanics. We obtain an effective potential that controls the dynamics
and evolution of the system and, from this, general features of the evolution can be obtained. As such, the
question of quantum tunneling can be treated in a direct way [10], a very interesting phenomena currently under
investigation. As discussed above, our results show a tunneling between regions in the trap, corresponding to



146
EEJP.1(2024) Hector Hernandez-Hernandez

10
t

x

(a) Trajectory for ρ0 = 1

10
t

x

(b) Trajectory for ρ0 = 10

10
t

x

(c) Trajectory for ρ = 15

10
Style[t, 16 c]

x

(d) Trajectory for ρ0 = 20

Figure 8. Effective trajectories with time dependant variance ρ , a = 3.
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Figure 9. Effective trajectories with with quantum uncertainty, shaded region.

the collapse and revival of the matter wave described in [15]. Actual time of flight for condensates can also be
estimated under our description.

Finally we presented two derivations for the evolution of the system, one in terms of (infinite) quantum
momenta -hence the name-, and the other in terms of a all-order potential, mentioned above. We mentioned
that the effective potential includes all the information that the moments do; however, the momenta expression
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is important in its own right because it is the one suited for systems whose Hamiltonian is not expressed in the
usual kinetic and potential term.

Our methodology may serve as a valuable instrument for studying the dynamics of Bose-Einstein con-
densates. It offers a systematic approach to predicting and analyzing an several experimental scenarios, en-
compassing the influence of core-core interactions. Future applications to the investigation of interactions with
radiation, expansions in BEC’s and many other phenomena.

A. GENERAL POISSON ALGEBRA FOR EXPONENTIAL TERMS

The interaction potential for the Bose-Einstein condensate includes the momenta inside an exponential
function. To obtain the corresponding equations of motion we need to expand in a Taylor series, once in this
polynomial form one computes the Poisson brackets among variables, and then switch back to the original
expression. We perform this procedure explicitly.

First the Taylor series for the exponential

e
− x2

2∆(x2) =

∞∑
n=0

(−1)n

n!2n
x2n

∆(x2)n
. (27)

Poisson brackets have the following generic form

{
∆(xapb),

e
− x2

2∆(x2)

[∆(x2)]1/2

}
= e

− x2

2∆(x2)

{
∆(xapb),∆(x2)−1/2

}
+

{
∆(xapb), e

− x2

2∆(x2)

}
∆(x2)−1/2. (28)

The second term in the r.h.s. of this expression gives

{
∆(xapb),

e
− x2

2∆(x2)

[∆(x2)]1/2

}
= e

− x2

2∆(x2)

{
∆(xapb),∆(x2)−1/2

}

+

∞∑
n=0

(−1)n

n!2n
x2n

{
∆(xapb),∆(x2)−n

}
∆(x2)−1/2. (29)

One can obtain generic formulae for any order momenta, however we obtain those for second and third
order, that is, for momenta ∆(xp), ∆(p2), ∆(x2p), ∆(xp2) y ∆(p3).

For instance{
∆(xp),∆(x2)

}
=

{
∆(xp),∆(x2)1/2∆(x2)1/2

}

= ∆(x2)1/2

{
∆(xp),∆(x2)1/2

}
+

{
∆(xp),∆(x2)1/2

}
∆(x2)1/2

= 2∆(x2)1/2

{
∆(xp),∆(x2)1/2

}
= −2∆(x2), (30)

or {
∆(xp),

√
∆(x2)

}
= −

√
∆(x2), (31)

which agrees with [16]. Repeating n times we obtain{
∆(xp),

1

∆(x2)n

}
=

2n

∆(x2)n
. (32)

Similar expression can be obtained for other momenta{
∆(p2),

1

∆(x2)n

}
= 4n

∆(xp)

∆(x2)n+1
, (33)
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{
∆(x2p),

1

∆(x2)n

}
= 2n

∆(x3)

∆(x2)n+1
, (34){

∆(xp2),
1

∆(x2)n

}
= 4n

∆(x2p)

∆(x2)n+1
, (35){

∆(p3),
1

∆(x2)n

}
= 6n

∆(xp2)

∆(x2)n+1
. (36)

Writing back in (29) we get the final result{
∆(xp), e

− x2

2∆(x2)

}
= − x2

∆(x2)
e
− x2

2∆(x2) , (37){
∆(p2), e
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2∆(x2)

}
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2∆(x2)
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= −3x2
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∆(x2)2
e
− x2

2∆(x2) . (41)

B. THIRD ORDER DYNAMICAL SYSTEM

The effective Hamiltonian (6) up to third order in momenta reads

HQ =
p2 +∆(p2)

2m
+
mω2

2

[
x2 +∆(x2)

]
+

ge
− x2

2∆(x2)

2[2π∆(x2)]1/2

{
1 +

x2

∆(x2)

− ∆(x3)

3

(
x3

∆(x2)3
− 3

∆(x2)2

)}
(42)

Equations of motion for classical variables are

ẋ =
p

m
, (43)

ṗ = −mω2x+
ge

− x2

2∆(x2)
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(44)

As before, we compute the equations of motion for momenta using iℏ {q,H} =
〈[
q̂, Ĥ

]〉
. The equations

of motion for third order momenta are
d∆(x2)

dt
= 2

∆(xp)

m
, (45)
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m
−mω2∆(x2) +
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3

(
x5
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+

6

∆(x2)2

)}
,

(46)
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ÅÔÅÊÒÈÂÍÀ ÍÀÏIÂÊËÀÑÈ×ÍÀ ÅÂÎËÞÖIß ÊÎÍÄÅÍÑÀÒIÂ ÁÎÇÅ-ÅÉÍØÒÅÉÍÀ
Ãåêòîð Åðíàíäåñ-Åðíàíäåñ

Ôàêóëüòåò iíæåíåði¨, Àâòîíîìíèé óíiâåðñèòåò ×ióàóà, Ìåêñèêà

Ó öié ðîáîòi ìè àíàëiçó¹ìî åôåêòèâíó åâîëþöiþ îäíîâèìiðíîãî êîíäåíñàòó Áîçå-Åéíøòåéíà (BEC) ó íàïiâêëà-
ñè÷íîìó îïèñi êâàíòîâèõ ñèñòåì íà îñíîâi î÷iêóâàíèõ çíà÷åíü êâàíòîâèõ äèñïåðñié i ôiçè÷íèõ ñïîñòåðåæóâàíèõ,
âiäîìèõ ÿê âàæëèâà êâàíòîâà ìåõàíiêà. Ìè ïîêàçó¹ìî, ùî íàéâèäàòíiøi îñîáëèâîñòi òà ôiçè÷íi ïàðàìåòðè ñè-
ñòåìè ìîæíà âèçíà÷èòè ç äèíàìiêè âiäïîâiäíî¨ íàïiâêëàñè÷íî¨ ñèñòåìè, ùî ñêëàäà¹òüñÿ ç ðîçøèðåíîãî ôàçîâîãî
ïðîñòîðó, âêëþ÷àþ÷è îðèãiíàëüíi êëàñè÷íi ñïîñòåðåæóâàíi òà êâàíòîâi äèñïåðñi¨, i ìè òàêîæ ïîêàçó¹ìî, ùî òðà¹-
êòîði¨ ÷àñòèíîê äëÿ î÷iêóâàíèõ çíà÷åíü ñïîñòåðåæóâàíi ¹ îñîáëèâîþ õàðàêòåðèñòèêîþ â öié ñòðóêòóði. Ìè òàêîæ
äåìîíñòðó¹ìî, ùî âçà¹ìîäiÿ ç äåêiëüêîìà ïîòåíöiàëàìè ìîæå áóòè ðåàëiçîâàíà iíòó¨òèâíî çðîçóìiëèì ñïîñîáîì.
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