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Three-nucleon systems are essential for the investigation of many-body forces in nuclear physics. Well-grounded
parametrization of their vertex functions with further application for the calculation of cross-sections in nonlocal QED
approach provides the ground for investigation of the variety of multi-particle systems. In present paper we describe the
process of parametrization of two-particle photo-breakup amplitudes of three-nucleon systems (*H, *He). We provide
the general description of the wave function construction for three-nucleon systems as well as the parametrization of
their vertex functions accounting two- and three-nucleon interactions based on meson exchange current formalism. In
our calculations we account first and second order one-pion exchange terms and the term related to the exchange of
w and p mesons. The three-nucleon interaction potential is given as a sum of attraction (two-pion exchange) term
and appropriate repulsive part. Based on the variational ”Urbana + Model VII” amplitudes we provide the results for
energy dependence of differential cross-section of *He(y,p)d reaction at proton angle § = 90° from the threshold up
to E, = 40 MeV and compare theoretical predictions with the available experimental data. The investigation is also
provided for angular cross-section distributions at high photon energies (E, = 30545 MeV; 365 +5 MeV; 450 + 10 MeV
and 675 + 50 MeV). Correct description of 3H, *He photo-disintegration processes in a unified approach based on the
gauge nature of the electromagnetic field implies application of this model for other multi-particle systems.
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1. INTRODUCTION

The main goal of studying multi-particle systems in nuclear physics is to obtain the most complete descrip-
tion of the interactions between nucleons. This question is still open, while the charge independence of nuclear
forces is a well-established fact both at low and high energies. In most cases, theoretical methods applied to
multi-particle systems are extensions of the well-studied two-body problem. The most sensitive candidate for
obtaining information about pure nuclear interactions is the binding energy of the tritium and helium-3 nuclei.
Such information can be obtained through the study of three-nucleon systems in the presence of electromag-
netic and weak interactions. In other words, one of the sources of information about sub-nuclear interactions
is the electromagnetic breakup processes and the investigation of momentum distributions of constituent sets
corresponding to different structural levels of matter. It’s worth noting that a satisfactory analytical expression
for the nuclear potential, covering the entire energy scale inside the nucleus, currently does not exist. At this
stage, questions arise about the construction of the wave function components, which can be addressed based
on the meson-exchange current (MEC) formalism.

Three-body systems are the simplest multi-particle systems. Essentially, they don’t have a simple analytical
solution (as in the two-body case) and their behavior cannot be predicted using statistical methods (as in the
multi-particle case). Extending the two-body approximation to the three-body case can provide qualitative
information about the importance and nature of three-body forces. The idea that there might exist a force
between three bodies that cannot be represented as a sum of two-body interactions has no analogy in classical
physics. However, there are indications that three-body forces might play an important role in nuclear physics.
For instance, Brown and Green [1] in 1969 suggested that about 2 MeV of nuclear binding energy arises due to
the presence of a specific multi-particle force. There are indications that the contribution of three-body forces
to the behavior of strongly interacting three-nucleon systems must be significant, particularly proportional to
the magnitude of the recoil in the ground state when the emitted particle has electromagnetic nature.
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2. CONSTRUCTING THE WAVE FUNCTION OF A THREE-NUCLEON SYSTEM

The usual spin and isospin dependence of nuclear forces in three-particle systems introduces algebraic issues
that can be easily overcome. On the other hand, the short-range nature of nuclear interactions incorporates a
more complex problem, which involves approximating complex wave functions with trial functions that have a
simple analytical expression.

The presence of non-central forces significantly complicates the wave function of a three-nucleon system. In
reality, for such systems, there are only three absolute quantum numbers. These are the quantum number of total
angular momentum (J = 1/2), parity (11), and isospin (T' = 1/2). However, if central forces are represented as
a "mixture” of usual (Wigner) and spatial-exchange (Majorana) forces, then permutations of spatial positions
of particles within the nucleus are allowed. These generate additional quantum numbers associated with the
invariance of the wave function with respect to such permutations. A three-nucleon system can have only three
such quantum numbers (three irreducible representations of the permutation group of three objects). There are
completely symmetric, completely anti-symmetric, and one ”mixed” representation.

Thus, the charge independence of nuclear forces yields three possible states 2.5; s2 - The dominant state
for a three-nucleon system under the influence of central forces is the symmetric S-state (with a probability of
around 90%), such that L = 0, S = 1/2 and the wave function is fully symmetric. In this work, we will limit
our consideration to this state. In turn, the "mixed” state is typically denoted as S’. The probability of this
state does not exceed 1-2%.

For three-particle systems, the theory starts with 9 coordinates describing the position of each of the
three particles rq(z1,y1,21),r2(22, Y2, 22), rs(xs3, y3, 23). The center-of-mass symmetry reduces the task to 6
coordinates. These coordinates are defining the size and shape of the triangle formed by the three nucleons.
For instance, these could be the three sides of the triangle (712,723,731) and the three Euler angles («, 8,7 ),
determining the orientation of this triangle in space relative to some standard orientation. Invoking symmetry
groups eliminates the need to write explicit angular dependence in wave functions. This leads to transitioning
from a set of six independent partial differential equations to a set of sixteen coupled equations involving only
three independent variables. It’s evident, that finding the solution for such a set of equations inevitably leads
to the application of variational calculus.

Based on the above, the wave function of the ground state should be written as a sum of products, each
containing three factors: inner wave function (A factor depending on the lengths of the triangle sides); angular”
part of the wave function ( factor depending on the Euler angles, determining the triangle’s position in space);
”spin-isospin” part of the wave function (A factor depending on the spin and isospin functions of each nucleon).
At present paper we attempt to define the first two parts of the total wave function, as long as the second and
third factors can be combined using Clebsch-Gordan coefficients into a single term.

For the triangle sides, the following notations can be used: x1 = ro3; T2 = r31; 3 = T12. Permutation
of particles 1 and 2 leads to the permutation of x1 — 731 = %2, T2 — re3 = z1, while leaving unchanged
r3 — r19 = x3. Thus, the permutation of particles corresponds to the permutations between x1;xo;x3. An
arbitrary function f(x1,xs2,x3) can be symmetric, antisymmetric, or can belong to a mixed representation of
the permutation group of three objects. In the simplest case, when there’s only one function u(z), we can create
only a symmetric function of the product f(z1,z9,z3) = u(z1)u(x2)u(zs). Having two functions u(z) and v(z)
allows creating both symmetric and ”mixed” states. An example of such a state can be found in [19]. Finally,
with 3 functions, one can create a state:

f(z1, 22, 3) = det U((a:l) v(x2) v(arg)) (1)

which refutes the assertion that there is no antisymmetric S-function for three-nucleon systems. However, there
is an evidence [2] that such a state is not observed in the ground state of a three-nucleon system.

3. PARAMETERIZATION OF THREE-NUCLEON SYSTEM VERTEX FUNCTIONS

To parameterize the vertices of strong interaction, we follow the works [4], [5] where for the nuclei *H and
3He the results of variational calculations are presented for ? Urbana+Model VII” and ” Argonne+Model VII”,
as well as Faddeev calculations for the ” Argonne+Model VII”.

We start from the solution of 3-body Schrédinger equation:

HU = BV (2)

2
H= Z —;Lmv% Z v + Z Vijk (3)

i=1,3 i<j<3 i<j<k<3
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where the potentials v;; and Vj;;, describe the two- and three-nucleon interactions, respectively. In many-body
calculations for nuclei and nuclear matter, two-nucleon interactions are commonly expressed in the form of an

operator:
vig =y vP(ri;)OF; (4)
p

where vP(r;;) are functions of distances between particles, and OY; is represented as a set of operators. The
model currently takes into account fourteen different operators. For the radial functions ,we use the expansion:

oP(riz) = B (riz) + v (i) + 05 (1) ()

which includes one-pion exchange in the first and second-order (terms v2(r;;);v%(r;;) ) as well as exchange of
w and p mesons ( term v%(r;;)). For one-pion exchange in the first order the non-zero terms are related only to
(0i05)(7i7;) and S;;(7;7;) operators. They are chosen as:

e M

wr

DT (1) = 3,488 (1 — ¢~ (6)

Sii(7i7;) 3 3 e M —ecr?y\2
. =3488(1+ — 4+ ——)——(1 —
v (r) =3.488(1 + o + (,ur)z) o (1—e ) (7)

where ;1 = 0.7fm~!.We note that selecting the multiplier (1 — (3_"2)2 stimulates the p-meson exchange effect.

Denoting e;:r (1 —e )2 = Yy(r) and (1 + % + (#i)z)%:‘”(l — e=")2 = T,.(r) the potentials for one-pion
exchange in the first order can be rewritten as:
{777 (1) = 3.488Y(r) (8)
w27 (1) = 3.488T (1) 9)
One-pion exchange in the second order is chosen in form:
v (r) = IiPT2(r) (10)

Such a choice of v} facilitates accounting of three-nucleon interactions.

The exchange of w and p mesons is taken as a sum of two Woods-Saxon potentials. This choice is dictated
by the fact that the size of nucleons must be at least of the order of the Compton wavelength of w and p mesons.
Thus:

0§ (r) = SPW(r) + SPW'(r) (11)
where W(r) = —L—% and W'(r) = —L—. The values of parameters c, I?, ST, S’? are obtained from phase
1+e a 1+e af

shift analysis and presented in [7].
Three-nucleon interactions are described by the potential Vj;j. It’s expressed as:

Vijk = Vi?kM + Vi?k (12)

where sz M is the Fujita-Miyazawa three-nucleon interaction potential due to a two-pion exchange. It describes
attraction and can be written as:

VEM =57 —0.0833{(ri7y), (7i7) Horng, e} + i[(mj), (i) i ] (13)

cyc

where x;; = S;;Tx(755) + (050;)Yx(r45). In turn, Viﬁc describes repulsion and is expressed as:

Vil = > UoT 3 (ri) T3 (rir) (14)

cyc

where the coefficient Uy = 0.0038.

All calculations are performed using the Monte Carlo simulation method based on realistic Hamiltonians
that consider both two-nucleon and three-nucleon interactions. These Hamiltonians provide satisfactory binding
energies and densities for light nuclei and nuclear matter. We mark that the results of calculations for d + p
momentum distributions in 3He nucleus at low momentum transfers are in good agreement with the results of
electron scattering analysis in the plane-wave impulse approximation. However, the values observed at high
momentum transfers are slightly larger for the chosen approach.
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The variational wave function ¥, is expressed as a symmetric product of correlation operators. Indeed, in
the case of central forces, the ground state is the S-state, which is described by a spherically symmetric wave
function. The ground 2S;state is symmetric with respect to the spatial coordinates of the nucleon pair and
anti-symmetric with respect to their spins. It has the form:

U, = {ST] i) @+ Y ([ £7) P (i) 0%} @ (15)

1<j P k#j

where S is symmetrizer, and the factor ], £ fi’;k reflects the effect from other particles in uP. Correlations
induced by the Coulomb potential are neglected, so Fi; = f¢(r;;)(1 + >, uP(r;)O};) are identical for 3He and
3H nuclei. The pair correlation F;; can be rewritten as:

Fij = ffj(l + UU(TZ‘j)O'in + UtT(Tij)SijTiTj). (16)

It contains central f{;, tensor u'"(r;;), and spin u?(r;;) correlations.

The behavior of correlation functions at large r in three-nucleon systems is determined by considering the
decay of the investigated nucleus. For instance, denoting R as the distance between selected nucleon an the
center of mass of the system and considering the wave function in the region where R is large, the wave function
for 2H — d + n is determined from the formula:

—k'R 11 3 3 11
< 2 + )Yé;] (17)

U(d+nR— 0) = R

where z is asymptotic ration of D-wave and S-wave, K’ can be found from the equation %K 12 = E;— E; and
YJLAﬁ represent spin and angular wave functions.
The dependence of the variational wave function at large R is given by:

|

1
2

Uy (d +n; R — o0) = [f(R)*{[1 - 4" (R)]Y,

U (R)Y ) (18)

ol N

assuming three-particle fipj . factor to be unity.
By comparing (17) and (18) we finally obtain f¢(r — o), u%(r — oco) and u'™(r — 00). The explicit forms
3

are taken from [2].

,\,‘w Nl

of the spin and angular wave functions: Y3 and Y,
2

4. RESULTS AND DISCUSSION

Denoting ¥o(mg,r1) as the wave function of the deuteron with spin projection mg, and ¥3(ms,t3) as
the ground state of the three-nucleon system with spin and isospin projections mg and t3 we can define the
two-particle amplitude Agp,(mq, my, ms, k) as follows:

[ 3 1. icene 1
Agp(mg, my, ms, k) = m/drl..drglﬂg(md,rlz)xT(Z’),mp,5)@ ik(rs RlZ)\Dg(mg,§) (19)

The square of the amplitude gives the probability of the deuteron and protonto be in states mq and m,
and a relative momentum k in the ground state of 3He. In formula (19) the effect of antisymmetrization of the
d+p state is contained in the multiplier v/3. Antisymmetrization introduces a factor \/g for the normalization

and a factor of 3, which takes into account that any nucleon number can act as a proton. Expanding plane
waves using Bessel functions, we obtain:

Aap(ma,mp,mz, k) = _(=i)' Al (ma, mp, ms, k)Y (K) (20)

L,m

The angle averaged d + p momentum distribution in 3He is given by:

1 m
Nap(k) = - Yo AR (ma,my,ms, k) (21)

md,mp,l,m

The results of the calculations of the two-particle amplitudes are taken from [4]. In general, it’s evident
that variational and Faddeev calculations yield quite similar results. This fact points to the equivalence of
Faddeev and variational calculations. However, we note that a slight difference in momentum distributions
obtained from the Urbana and Argonne models is primarily due to the difference in radii obtained in these
models. Nevertheless, the binding energy is not very sensitive to changes in radius, and therefore the accuracy
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Figure 1. *He two-body N, amplitudes in fm3.

of variational calculations for computed radius is not very high. The error in the calculations is comparable
to the difference between the radii obtained from different models, which suggests that differences in results
between the two models are only related to approximation in the calculations. Here we present the results of
calculations with the variational ” Urbana+Model VII” and ” Argonne+Model VII” and for Faddeev calculations
in ” Argonne+Model VII” amplitude Ny, of He ploted on Figure 1.
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Figure 2. The energy (# = 90°) dependence of the differential cross-section of the process v +32 He — p +d
from the threshold up to 40 MeV in photon energy. Experimental data are taken from [13], [14].

On Figure 2 the energy dependence of the differential cross-section is shown for the helium-3 nucleus with
the proton’s emission angle in the center-of-mass system equal to 90 degrees. The solid line represents the
results of theoretical calculations. The dashed line represents calculations without accounting the non-local
contact part of the diagram [10]. We provide the comparison of calculations for the approach, developed by
authors in [8] with the experimental data on the cross-section energy dependence at a fixed angle of emitted
nucleon [13], [14]. It can be seen that the theoretical curve is in satisfactory agreement with the experimental
data from the disintegration threshold to a photon energy of 40 MeV. The peak cross-section is represented
by different data sets [12], [13], [14] in the range from 80 to 120 ub/sr. The process may be described if only
the gauge invariance is preserved strictly and is brought into agreement with the law of conservation of the
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four-momentum in the amplitude while applying the requirement of the general covariant scheme. As can be
seen in this figure, there is a satisfactory agreement between the theoretical curve and experimental data from
the threshold of splitting up to 40 MeV in photon energy.
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Figure 3. Angular distributions of differential cross-sections for ®He(vy,p)d reaction in the center of mass
system for different energies.

By expanding the cross-section with respect to the proton’s emission angle at a fixed photon energy,
it’s possible to trace the evolution of the cross-section’s shape as the energy increases. In this work we present
theoretical distributions of cross-sections at high photon energies (E, = 305+£5 MeV; 365+5 MeV; 450+£10 MeV
and 675450 MeV) and compare them with experimental data from [15]. The calculations are conducted for the
two-particle breakup of helium-3 nuclei yield to the angular distributions of cross-sections shown on Figure 3. It
can be seen that the proton peak does not disappeared at high energies except the energy E, = 675+50 MeV.
Using the explicit relativistic formulation of the theory [11] removes the question of the role of relativistic
corrections and imposes no limitations on its use in various energy regimes and different kinematic conditions.
As a result, it provides broad possibilities for conducting research on the structure of non-local fields of matter
based on unified requirements.
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AMIUJIITYAIN IBOYACTUHKOBOT'O ©0OTO PO3IMIEIIJIEHHSA AJIEP 3H, 3He
B HEJIOKAJIBHOMY KE/ IIIAXO/JI
Munun Kysuenos®”, FOpiit A. Kacarkin®, B’auecnas ®. Kienikos
¢ Xapriscvrull nayionasvrul yrnisepcumem im. B.H. Kapasina, matidan Ceobodu, 4, 61022, Xapwxie, Yrpaina
b Incmumym eaexmpodisuru ma padiayitnus meznonozit Hayiornarvnot axademii nayx Yrpainu,
eys. depnuwescora, 28, n/c 8812, 61022, Xapxis, Yxpaina
T pHOXHYKJIOHHI CHCTEMH BiAIrpaloTh BaKJIMBY POJIb Y BUBUEHHI 0AraToO<aCTUHKOBHUX CHII B sitepHiil dizumi. O0rpyrToBana
mapaMeTpu3aris iX BepITUHHUX (DYHKIIH 3 MOJAIBIINM 3aCTOCYBAHHSAM JIJIsT O0UNC/IEHHS epepi3iB peakIiiii B HeJIOKAIb-
vomy KEJI migxomi mae OCHOBY JjTsi TOCJTPKEHHS MMUPOKOTO CIIEKTPY 06araro4acTUHKOBUX CHCTEM. ¥ JAaHHIN CTaTTi MU
IIPOBOAMMO MAPAMETPHU3AINI0 AMILIITY/T IBOXIACTHHKOBOTO (hOTO-PO3MALY TPUHYKIOHHUX CUCTEM (?’H7 3He). Mu Hama€MO0
3arajIbHMI OIKIC KOHCTPYKINI XBU/Ib0BOI DYHKIII AJI CHCTEM 3 TPHOMA HYKJIOHAMH, & TAKOXK [IapaMeTPU3AIiio 11 BepuInH-
HUX (YHKIHH 3 ypaxyBaHHSM IBOX- Ta TPHOXHYKJIOHHUX B3a€MOii HA OCHOBI (hopMatizMy 0O6MiHy Me30HAMHU. Y HAITIX
OGIMC/IEHHSIX MU BPAXOBYEMO B3A€MO/III 33 PAXyHOK OJHO IMIOHHOrO OOMIHY y IEpIIOMY Ta APYIOMY MOPSIAKAX Ta TEPM,
OB’ s13aHUI 3 0OMIHOM w Ta p Me30HAMH. [loTeHIias TPHOXHYKIIOHHOI B3a€MOII PO3PAXOBAHO K CyMy IIOTEHIAIy IIPHU-
TaxiHEA (32 PaxyHOK OOMiHY /BOMA IMOHAMY) Ta BIANOBLAHOI wacTWHM, fKa Bimnosimae 3a Bimmrosxysamas. Ha ocHoBi
Bapianitiaux amruritys "Urbana + Model VII"orpumano pesyiabraru [ijisi eHEPreTUYIHOI 3a/1€2KHOCTI AudepeHIiaabLHoro
mepepisy peaxmii > He(vy,p)d mpu kyri mporomy 6 = 90° Bix mopory mo E, = 60 MeB. Teopermuni mepeafadeHms mo-
PIBHSIHO 3 HAaSBHUMHU €KCIIEPUMEHTAJIHbHIME JAHUMU. TaK0oXK IPOBEIEHO JOC/TIIKEHHS I8 KyTOBUX PO3IOILIIB Iepepi3iB
IIpu BUCOKUX eHeprisx ¢orouis (E, = 305 £ 5 MeB; 365 + 5 MeB; 450 + 10 MeB ra 675 + 50 MeB). KoppekrHauii omuc
npomecis ¢oro-posmenenas “H, 3He B eaumoMmy mimxomi Ha OCHOBI Kasi6pOBAHOI HPHPOIM €IEKTPOMATHITHOTO IIOJIS
mepe10avae 3aCTOCYBAHHS IIHOTO MiAXOMY TSl iHMUX 0AaraTO9acTUHKOBUX CHCTEM.
Kiro4uoBi ciioBa: mpunykaonna cucmema; @Gomoposnad; mepepis; amnaimyoa; 06a2amovacmunHKo8a CuAG; ME30H-
00MIHHUT cMPYM
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