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Three-nucleon systems are essential for the investigation of many-body forces in nuclear physics. Well-grounded
parametrization of their vertex functions with further application for the calculation of cross-sections in nonlocal QED
approach provides the ground for investigation of the variety of multi-particle systems. In present paper we describe the
process of parametrization of two-particle photo-breakup amplitudes of three-nucleon systems (3H, 3He). We provide
the general description of the wave function construction for three-nucleon systems as well as the parametrization of
their vertex functions accounting two- and three-nucleon interactions based on meson exchange current formalism. In
our calculations we account first and second order one-pion exchange terms and the term related to the exchange of
ω and ρ mesons. The three-nucleon interaction potential is given as a sum of attraction (two-pion exchange) term
and appropriate repulsive part. Based on the variational ”Urbana + Model VII” amplitudes we provide the results for
energy dependence of differential cross-section of 3He(γ, p)d reaction at proton angle θ = 90◦ from the threshold up
to Eγ = 40 MeV and compare theoretical predictions with the available experimental data. The investigation is also
provided for angular cross-section distributions at high photon energies (Eγ = 305± 5 MeV; 365± 5 MeV; 450± 10 MeV
and 675 ± 50 MeV). Correct description of 3H, 3He photo-disintegration processes in a unified approach based on the
gauge nature of the electromagnetic field implies application of this model for other multi-particle systems.
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1. INTRODUCTION

The main goal of studying multi-particle systems in nuclear physics is to obtain the most complete descrip-
tion of the interactions between nucleons. This question is still open, while the charge independence of nuclear
forces is a well-established fact both at low and high energies. In most cases, theoretical methods applied to
multi-particle systems are extensions of the well-studied two-body problem. The most sensitive candidate for
obtaining information about pure nuclear interactions is the binding energy of the tritium and helium-3 nuclei.
Such information can be obtained through the study of three-nucleon systems in the presence of electromag-
netic and weak interactions. In other words, one of the sources of information about sub-nuclear interactions
is the electromagnetic breakup processes and the investigation of momentum distributions of constituent sets
corresponding to different structural levels of matter. It’s worth noting that a satisfactory analytical expression
for the nuclear potential, covering the entire energy scale inside the nucleus, currently does not exist. At this
stage, questions arise about the construction of the wave function components, which can be addressed based
on the meson-exchange current (MEC) formalism.

Three-body systems are the simplest multi-particle systems. Essentially, they don’t have a simple analytical
solution (as in the two-body case) and their behavior cannot be predicted using statistical methods (as in the
multi-particle case). Extending the two-body approximation to the three-body case can provide qualitative
information about the importance and nature of three-body forces. The idea that there might exist a force
between three bodies that cannot be represented as a sum of two-body interactions has no analogy in classical
physics. However, there are indications that three-body forces might play an important role in nuclear physics.
For instance, Brown and Green [1] in 1969 suggested that about 2 MeV of nuclear binding energy arises due to
the presence of a specific multi-particle force. There are indications that the contribution of three-body forces
to the behavior of strongly interacting three-nucleon systems must be significant, particularly proportional to
the magnitude of the recoil in the ground state when the emitted particle has electromagnetic nature.
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2. CONSTRUCTING THE WAVE FUNCTION OF A THREE-NUCLEON SYSTEM

The usual spin and isospin dependence of nuclear forces in three-particle systems introduces algebraic issues
that can be easily overcome. On the other hand, the short-range nature of nuclear interactions incorporates a
more complex problem, which involves approximating complex wave functions with trial functions that have a
simple analytical expression.

The presence of non-central forces significantly complicates the wave function of a three-nucleon system. In
reality, for such systems, there are only three absolute quantum numbers. These are the quantum number of total
angular momentum (J = 1/2), parity (↑↑), and isospin (T = 1/2). However, if central forces are represented as
a ”mixture” of usual (Wigner) and spatial-exchange (Majorana) forces, then permutations of spatial positions
of particles within the nucleus are allowed. These generate additional quantum numbers associated with the
invariance of the wave function with respect to such permutations. A three-nucleon system can have only three
such quantum numbers (three irreducible representations of the permutation group of three objects). There are
completely symmetric, completely anti-symmetric, and one ”mixed” representation.

Thus, the charge independence of nuclear forces yields three possible states 2S1/2 . The dominant state
for a three-nucleon system under the influence of central forces is the symmetric S-state (with a probability of
around 90%), such that L = 0, S = 1/2 and the wave function is fully symmetric. In this work, we will limit
our consideration to this state. In turn, the ”mixed” state is typically denoted as S′. The probability of this
state does not exceed 1-2%.

For three-particle systems, the theory starts with 9 coordinates describing the position of each of the
three particles r1(x1, y1, z1), r2(x2, y2, z2), r3(x3, y3, z3). The center-of-mass symmetry reduces the task to 6
coordinates. These coordinates are defining the size and shape of the triangle formed by the three nucleons.
For instance, these could be the three sides of the triangle (r12, r23, r31) and the three Euler angles (α, β, γ ),
determining the orientation of this triangle in space relative to some standard orientation. Invoking symmetry
groups eliminates the need to write explicit angular dependence in wave functions. This leads to transitioning
from a set of six independent partial differential equations to a set of sixteen coupled equations involving only
three independent variables. It’s evident, that finding the solution for such a set of equations inevitably leads
to the application of variational calculus.

Based on the above, the wave function of the ground state should be written as a sum of products, each
containing three factors: inner wave function (A factor depending on the lengths of the triangle sides); angular”
part of the wave function ( factor depending on the Euler angles, determining the triangle’s position in space);
”spin-isospin” part of the wave function (A factor depending on the spin and isospin functions of each nucleon).
At present paper we attempt to define the first two parts of the total wave function, as long as the second and
third factors can be combined using Clebsch-Gordan coefficients into a single term.

For the triangle sides, the following notations can be used: x1 = r23; x2 = r31; x3 = r12. Permutation
of particles 1 and 2 leads to the permutation of x1 → r31 = x2, x2 → r23 = x1, while leaving unchanged
x3 → r12 = x3. Thus, the permutation of particles corresponds to the permutations between x1;x2;x3. An
arbitrary function f(x1, x2, x3) can be symmetric, antisymmetric, or can belong to a mixed representation of
the permutation group of three objects. In the simplest case, when there’s only one function u(x), we can create
only a symmetric function of the product f(x1, x2, x3) = u(x1)u(x2)u(x3). Having two functions u(x) and v(x)
allows creating both symmetric and ”mixed” states. An example of such a state can be found in [19]. Finally,
with 3 functions, one can create a state:

f(x1, x2, x3) = det

u(x1) u(x2) u(x3)
v(x1) v(x2) v(x3)
w(x1) w(x2) w(x3)

 (1)

which refutes the assertion that there is no antisymmetric S-function for three-nucleon systems. However, there
is an evidence [2] that such a state is not observed in the ground state of a three-nucleon system.

3. PARAMETERIZATION OF THREE-NUCLEON SYSTEM VERTEX FUNCTIONS

To parameterize the vertices of strong interaction, we follow the works [4], [5] where for the nuclei 3H and
3He the results of variational calculations are presented for ”Urbana+Model VII” and ”Argonne+Model VII”,
as well as Faddeev calculations for the ”Argonne+Model VII”.

We start from the solution of 3-body Schrödinger equation:

HΨ = EΨ (2)

H =
∑
i=1,3

− ℏ2

2m
∇2

i +
∑

i<j≤3

vij +
∑

i<j<k≤3

Vijk (3)
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where the potentials vij and Vijk describe the two- and three-nucleon interactions, respectively. In many-body
calculations for nuclei and nuclear matter, two-nucleon interactions are commonly expressed in the form of an
operator:

vij =
∑
p

vp(rij)O
p
ij (4)

where vp(rij) are functions of distances between particles, and Op
ij is represented as a set of operators. The

model currently takes into account fourteen different operators. For the radial functions ,we use the expansion:

vp(rij) = vpπ(rij) + vpI (rij) + vpS(rij) (5)

which includes one-pion exchange in the first and second-order (terms vpπ(rij); v
p
I (rij) ) as well as exchange of

ω and ρ mesons ( term vpS(rij)). For one-pion exchange in the first order the non-zero terms are related only to
(σiσj)(τiτj) and Sij(τiτj) operators. They are chosen as:

v(σiσj)(τiτj)
π (r) = 3.488

e−µr

µr
(1− e−cr2) (6)

v
Sij(τiτj)
π (r) = 3.488(1 +

3

µr
+

3

(µr)2
)
e−µr

µr
(1− e−cr2)2 (7)

where µ = 0.7fm−1.We note that selecting the multiplier (1− e−cr2)2 stimulates the ρ-meson exchange effect.

Denoting e−µr

µr (1 − e−cr2)2 = Yπ(r) and (1 + 3
µr + 3

(µr)2 )
e−µr

µr (1 − e−cr2)2 = Tπ(r) the potentials for one-pion

exchange in the first order can be rewritten as:

v(σiσj)(τiτj)
π (r) = 3.488Yπ(r) (8)

v
Sij(τiτj)
π (r) = 3.488Tπ(r) (9)

One-pion exchange in the second order is chosen in form:

vPI (r) = IipT 2
π (r) (10)

Such a choice of vPI facilitates accounting of three-nucleon interactions.
The exchange of ω and ρ mesons is taken as a sum of two Woods-Saxon potentials. This choice is dictated

by the fact that the size of nucleons must be at least of the order of the Compton wavelength of ω and ρ mesons.
Thus:

vPS (r) = SpW (r) + S′pW ′(r) (11)

where W (r) = 1

1+e
r−R

a

and W ′(r) = 1

1+e
r−R′

a′
. The values of parameters c, Ip, SP , S′p are obtained from phase

shift analysis and presented in [7].
Three-nucleon interactions are described by the potential Vijk. It’s expressed as:

Vijk = V FM
ijk + V R

ijk (12)

where V FM
ijk is the Fujita-Miyazawa three-nucleon interaction potential due to a two-pion exchange. It describes

attraction and can be written as:

V FM
ijk =

∑
cyc

−0.0333{(τiτj), (τiτk)}{xij , xik}+
1

4
[(τiτj), (τiτk)][xij , xik] (13)

where xij = SijTπ(rij) + (σiσj)Yπ(rij). In turn, V R
ijk describes repulsion and is expressed as:

V R
ijk =

∑
cyc

U0T
2
π (rij)T

2
π (rik) (14)

where the coefficient U0 = 0.0038.
All calculations are performed using the Monte Carlo simulation method based on realistic Hamiltonians

that consider both two-nucleon and three-nucleon interactions. These Hamiltonians provide satisfactory binding
energies and densities for light nuclei and nuclear matter. We mark that the results of calculations for d + p
momentum distributions in 3He nucleus at low momentum transfers are in good agreement with the results of
electron scattering analysis in the plane-wave impulse approximation. However, the values observed at high
momentum transfers are slightly larger for the chosen approach.
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The variational wave function Ψv is expressed as a symmetric product of correlation operators. Indeed, in
the case of central forces, the ground state is the S-state, which is described by a spherically symmetric wave
function. The ground 2S1state is symmetric with respect to the spatial coordinates of the nucleon pair and
anti-symmetric with respect to their spins. It has the form:

Ψv = {S
∏
i<j

f c(rij)(1 +
∑
p

(
∏
k ̸=j

fp
ijk)u

p(rij)O
p
ij)}Φ (15)

where S is symmetrizer, and the factor
∏

k ̸=j f
p
ijk reflects the effect from other particles in up. Correlations

induced by the Coulomb potential are neglected, so Fij = f c(rij)(1 +
∑

p u
p(rij)O

p
ij) are identical for 3He and

3H nuclei. The pair correlation Fij can be rewritten as:

Fij = f c
ij(1 + uσ(rij)σiσj + utτ (rij)Sijτiτj). (16)

It contains central f c
ij , tensor u

tτ (rij), and spin uσ(rij) correlations.
The behavior of correlation functions at large r in three-nucleon systems is determined by considering the

decay of the investigated nucleus. For instance, denoting R as the distance between selected nucleon an the
center of mass of the system and considering the wave function in the region where R is large, the wave function
for 3H → d+ n is determined from the formula:

Ψ(d+ n;R → ∞) =
e−k′R

R
[Y

1
2

1
2

0 1
2

+ x(1 +
3

K ′r
+

3

(K ′r)2
)Y

1
2

1
2

2 3
2

] (17)

where x is asymptotic ration of D-wave and S-wave, K ′ can be found from the equation 3ℏ
4mK ′2 = Ed −Et and

Y LS
JM represent spin and angular wave functions.

The dependence of the variational wave function at large R is given by:

Ψv(d+ n;R → ∞) = [f c(R)]2{[1− 4uσ(R)]Y
1
2

1
2

0 1
2

+ utτ (R)Y
1
2

1
2

2 3
2

} (18)

assuming three-particle fp
ijk factor to be unity.

By comparing (17) and (18) we finally obtain f c(r → ∞), uσ(r → ∞) and utτ (r → ∞). The explicit forms

of the spin and angular wave functions: Y
1
2

1
2

0 1
2

and Y
1
2

1
2

3 3
2

are taken from [2].

4. RESULTS AND DISCUSSION

Denoting Ψ2(md, r1) as the wave function of the deuteron with spin projection md, and Ψ3(m3, t3) as
the ground state of the three-nucleon system with spin and isospin projections m3 and t3 we can define the
two-particle amplitude Adp(md,mp,m3,k) as follows:

Adp(md,mp,m3,k) =

√
3

N1N2

∫
dr1..dr3Ψ

†
2(md, r12)χ

†(3,mp,
1

2
)e−ik(r3−R12)Ψ3(m3,

1

2
) (19)

The square of the amplitude gives the probability of the deuteron and protonto be in states md and mp

and a relative momentum k in the ground state of 3He. In formula (19) the effect of antisymmetrization of the

d+p state is contained in the multiplier
√
3. Antisymmetrization introduces a factor

√
1
3 for the normalization

and a factor of 3, which takes into account that any nucleon number can act as a proton. Expanding plane
waves using Bessel functions, we obtain:

Adp(md,mp,m3,k) =
∑
l,m

(−i)lAlm
dp (md,mp,m3, k)Ylm(k) (20)

The angle averaged d+ p momentum distribution in 3He is given by:

Ndp(k) =
1

4π

∑
md,mp,l,m

|Alm
dp (md,mp,m3, k)|2 (21)

The results of the calculations of the two-particle amplitudes are taken from [4]. In general, it’s evident
that variational and Faddeev calculations yield quite similar results. This fact points to the equivalence of
Faddeev and variational calculations. However, we note that a slight difference in momentum distributions
obtained from the Urbana and Argonne models is primarily due to the difference in radii obtained in these
models. Nevertheless, the binding energy is not very sensitive to changes in radius, and therefore the accuracy
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Figure 1. 3He two-body Ndp amplitudes in fm3.

of variational calculations for computed radius is not very high. The error in the calculations is comparable
to the difference between the radii obtained from different models, which suggests that differences in results
between the two models are only related to approximation in the calculations. Here we present the results of
calculations with the variational ”Urbana+Model VII” and ”Argonne+Model VII” and for Faddeev calculations
in ”Argonne+Model VII” amplitude Ndp of 3He ploted on Figure 1.

Figure 2. The energy (θ = 90◦) dependence of the differential cross-section of the process γ +3 He → p + d
from the threshold up to 40 MeV in photon energy. Experimental data are taken from [13], [14].

On Figure 2 the energy dependence of the differential cross-section is shown for the helium-3 nucleus with
the proton’s emission angle in the center-of-mass system equal to 90 degrees. The solid line represents the
results of theoretical calculations. The dashed line represents calculations without accounting the non-local
contact part of the diagram [10]. We provide the comparison of calculations for the approach, developed by
authors in [8] with the experimental data on the cross-section energy dependence at a fixed angle of emitted
nucleon [13], [14]. It can be seen that the theoretical curve is in satisfactory agreement with the experimental
data from the disintegration threshold to a photon energy of 40 MeV. The peak cross-section is represented
by different data sets [12], [13], [14] in the range from 80 to 120 µb/sr. The process may be described if only
the gauge invariance is preserved strictly and is brought into agreement with the law of conservation of the



Amplitudes of 3H, 3He Two-Particle Photo-Breakup in Non-Local QED Approach
583

EEJP.3(2023)

four-momentum in the amplitude while applying the requirement of the general covariant scheme. As can be
seen in this figure, there is a satisfactory agreement between the theoretical curve and experimental data from
the threshold of splitting up to 40 MeV in photon energy.

(a) Photon energy Eγ = 305 ± 5 MeV (b) Photon energy Eγ = 365 ± 5 MeV

(c) Photon energy Eγ = 450 ± 10 MeV (d) Photon energy Eγ = 675 ± 50 MeV

Figure 3. Angular distributions of differential cross-sections for 3He(γ, p)d reaction in the center of mass
system for different energies.

By expanding the cross-section with respect to the proton’s emission angle at a fixed photon energy,
it’s possible to trace the evolution of the cross-section’s shape as the energy increases. In this work we present
theoretical distributions of cross-sections at high photon energies (Eγ = 305±5 MeV; 365±5 MeV; 450±10 MeV
and 675±50 MeV) and compare them with experimental data from [15]. The calculations are conducted for the
two-particle breakup of helium-3 nuclei yield to the angular distributions of cross-sections shown on Figure 3. It
can be seen that the proton peak does not disappeared at high energies except the energy Eγ = 675± 50 MeV.
Using the explicit relativistic formulation of the theory [11] removes the question of the role of relativistic
corrections and imposes no limitations on its use in various energy regimes and different kinematic conditions.
As a result, it provides broad possibilities for conducting research on the structure of non-local fields of matter
based on unified requirements.
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ÀÌÏËIÒÓÄÈ ÄÂÎ×ÀÑÒÈÍÊÎÂÎÃÎ ÔÎÒÎ ÐÎÇÙÅÏËÅÍÍß ßÄÅÐ 3H, 3He
Â ÍÅËÎÊÀËÜÍÎÌÓ ÊÅÄ ÏIÄÕÎÄI

Ïèëèï Êóçí¹öîâa,b, Þðié À. Êàñàòêiíb, Â'ÿ÷åñëàâ Ô. Êëåïiêîâa,b
aÕàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iì. Â.Í. Êàðàçiíà, ìàéäàí Ñâîáîäè, 4, 61022, Õàðêiâ, Óêðà¨íà

bIíñòèòóò åëåêòðîôiçèêè òà ðàäiàöiéíèõ òåõíîëîãié Íàöiîíàëüíî¨ àêàäåìi¨ íàóê Óêðà¨íè,

âóë. ×åðíèøåâñüêà, 28, ï/ñ 8812, 61022, Õàðêiâ, Óêðà¨íà
Òðüîõíóêëîííi ñèñòåìè âiäiãðàþòü âàæëèâó ðîëü ó âèâ÷åííi áàãàòî÷àñòèíêîâèõ ñèë â ÿäåðíié ôiçèöi. Îá ðóíòîâàíà
ïàðàìåòðèçàöiÿ ¨õ âåðøèííèõ ôóíêöié ç ïîäàëüøèì çàñòîñóâàííÿì äëÿ îá÷èñëåííÿ ïåðåðiçiâ ðåàêöié â íåëîêàëü-
íîìó ÊÅÄ ïiäõîäi äà¹ îñíîâó äëÿ äîñëiäæåííÿ øèðîêîãî ñïåêòðó áàãàòî÷àñòèíêîâèõ ñèñòåì. Ó äàííié ñòàòòi ìè
ïðîâîäèìî ïàðàìåòðèçàöiþ àìïëiòóä äâîõ÷àñòèíêîâîãî ôîòî-ðîçïàäó òðèíóêëîííèõ ñèñòåì (3H, 3He). Ìè íàäà¹ìî
çàãàëüíèé îïèñ êîíñòðóêöi¨ õâèëüîâî¨ ôóíêöi¨ äëÿ ñèñòåì ç òðüîìà íóêëîíàìè, à òàêîæ ïàðàìåòðèçàöiþ ¨¨ âåðøèí-
íèõ ôóíêöié ç óðàõóâàííÿì äâîõ- òà òðüîõíóêëîííèõ âçà¹ìîäié íà îñíîâi ôîðìàëiçìó îáìiíó ìåçîíàìè. Ó íàøèõ
îá÷èñëåííÿõ ìè âðàõîâó¹ìî âçà¹ìîäi¨ çà ðàõóíîê îäíî ïiîííîãî îáìiíó ó ïåðøîìó òà äðóãîìó ïîðÿäêàõ òà òåðì,
ïîâ'ÿçàíèé ç îáìiíîì ω òà ρ ìåçîíàìè. Ïîòåíöiàë òðüîõíóêëîííî¨ âçà¹ìîäi¨ ðîçðàõîâàíî ÿê ñóìó ïîòåíöiàëó ïðè-
òÿæiííÿ (çà ðàõóíîê îáìiíó äâîìà ïiîíàìè) òà âiäïîâiäíî¨ ÷àñòèíè, ÿêà âiäïîâiäà¹ çà âiäøòîâõóâàííÿ. Íà îñíîâi
âàðiàöiéíèõ àìïëiòóä "Urbana + Model VII"îòðèìàíî ðåçóëüòàòè äëÿ åíåðãåòè÷íî¨ çàëåæíîñòi äèôåðåíöiàëüíîãî
ïåðåðiçó ðåàêöi¨ 3He(γ, p)d ïðè êóòi ïðîòîíó θ = 90◦ âiä ïîðîãó äî Eγ = 60 ÌåÂ. Òåîðåòè÷íi ïåðåäáà÷åííÿ ïî-
ðiâíÿíî ç íàÿâíèìè åêñïåðèìåíòàëüíèìè äàíèìè. Òàêîæ ïðîâåäåíî äîñëiäæåííÿ äëÿ êóòîâèõ ðîçïîäiëiâ ïåðåðiçiâ
ïðè âèñîêèõ åíåðãiÿõ ôîòîíiâ (Eγ = 305 ± 5 ÌåÂ; 365 ± 5 ÌåÂ; 450 ± 10 ÌåÂ òà 675 ± 50 ÌåÂ). Êîððåêòíèé îïèñ
ïðîöåñiâ ôîòî-ðîçùåïëåííÿ 3H, 3He â ¹äèíîìó ïiäõîäi íà îñíîâi êàëiáðîâàíî¨ ïðèðîäè åëåêòðîìàãíiòíîãî ïîëÿ
ïåðåäáà÷à¹ çàñòîñóâàííÿ öüîãî ïiäõîäó äëÿ iíøèõ áàãàòî÷àñòèíêîâèõ ñèñòåì.
Êëþ÷îâi ñëîâà: òðèíóêëîííà ñèñòåìà; ôîòîðîçïàä; ïåðåðiç; àìïëiòóäà; áàãàòî÷àñòèíêîâà ñèëà; ìåçîí-
îáìiííèé ñòðóì
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