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A physical model is formulated for the motion of liquid inclusions in a crystal in the field of forces caused by the presence of radiation point 
defects. The model is based on a statistical approach to the processes of induced transitions of structural elements of a crystalline matrix at 
the interfacial boundary with its solution. From the energy principle, an analytical dependence of the velocity of a spherical azimuthally 
symmetric inclusion on its size is obtained, considering the threshold nature of the motion. It is shown that the theoretical dependence 
correlates well with experimental results obtained for inclusions of aqueous saturated solution in potassium chloride crystals irradiated by 
high-energy electrons. The proposed model of the radiation-induced motion of a liquid inclusion is dynamic and allows us to interpret the 
nature of inclusion velocity changes in the crystal over time to determine the characteristic energy parameters of point defects. 
Keywords: Crystal matrix; Point defects; Solution inclusion; Radiation-induced motion; Interfacial boundary; Statistical approach 
PhySH: Surface & interfacial phenomena 

The problem of radiation defect formation remains one of the most important topics in radiation damage physics 
and radiation materials science. Understanding the mechanisms of radiation defect formation in solids is necessary to 
increase the resistance of materials used in power generation or radioactive material storage, and to develop new 
materials (including nanostructured materials) with special properties that cannot be achieved by conventional synthesis 
methods (see [1] and references therein). 

The problem of radiation defect formation also remains relevant for further improvement of technologies and 
methods for increasing the radiation resistance of semiconductor materials for various critical applications [2, 3], 
including the creation of X/γ-ray detectors (see [4, 5] and references in them). 

At the same time, the problem of radiation defect formation has not been solved even for the simplest in-structure 
alkali halide crystals [6]. Although for more than a hundred years, alkali halide crystals, ionic systems with a simple 
electronic and crystal structure, have been model objects for studying radiation damage in materials caused by various 
types of radiation. It is known that irradiation of alkali metal halide crystals can produce Frenkel defect pairs in both the 
anionic and cationic sublattices. However, particular shockless formation mechanisms of Frenkel cation pairs 
(associated with the decay of various electronic excitations) remain unclear even today. 

For many decades, alkali halide crystals have been topical objects not only for fundamental research but also for 
various applications. Optical media for recording and storing information, laser media, near-infrared light filters, 
thermoluminescent dosimeters, etc., have been proposed on their basis. [7]. One application of lithium fluoride, for 
example, is its use in the biological shielding of neutron-powered nuclear reactors. There are prospects for using lithium 
as an active element in thermonuclear fusion. 

Our interest in the problem of the radiation defects formation and their subsequent dynamics during the thermal 
activation of alkali halide crystals in the medium temperature range (~300–600 K) is primarily due to the previously 
discovered effects of mass transfer on singular crystal faces modified by electron irradiation in vacuum [8] and in the 
process spontaneous migration of saturated solution inclusions in electron-irradiated water-soluble crystals (see [9] and 
references therein). 

Study of surface mass transfer processes leading to elementary steps bunching is topical due to the need to obtain 
substrates for the production of low-dimensional structures (see [10–12] and references therein). And a study of motion 
and transformation of the shape of saturated solution inclusions in water-soluble crystals in the field of thermodynamic 
driving forces of various nature is of interest, in particular, for elucidating the mechanisms of crystallization under 
terrestrial conditions that exclude convective heat and mass transfer, which negatively affects the perfection of obtained 
crystals (see [13, 14] and references therein). 

The purpose of this work is to construct a physical model of the motion of liquid inclusions in a crystal in the field 
of forces caused by the inhomogeneous distribution of radiation-induced point defects. As was shown earlier (see [9] 
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and references therein), the presence of such thermodynamic nonequilibrium defects at a certain difference in their 
concentration can cause a chaotic inclusion motion at room temperatures under isothermal conditions. The presence of a 
dynamic model that adequately interprets the experimental data (including the time dependence of the inclusion 
velocity) may allow a better understanding of the radiation defect formation processes in alkali halide crystals. 

PROBLEM STATEMENT 
One of the experimentally detected features of the radiation-induced motion of liquid inclusions in crystals is the 

conservation of a rounded shape close to the equilibrium shape during their motion (see [9] and references therein). 
Let us consider the case when the inclusion in the matrix has a spherical shape with a radius 𝑅  (see Fig. 1). To 

describe such an inclusion shape, a spherical coordinate system is introduced: 𝑥 𝑟 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑 ,  𝑦 𝑟 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑 ,  𝑧 𝑟 𝑐𝑜𝑠 𝜃 , (1)

where , .

For an azimuthal-symmetric inclusion, all unknown quantities do not depend on the angle 𝜑, therefore one can 
assume 𝜑 0 anywhere. Variables 𝑟 and 𝜃 remain independent. The gradient of inhomogeneity in the radiation 
defects density 𝜌 𝑟  (see Fig. 1) is directed at a polar angle 𝜃 0 . Thus, on opposite hemispheres of the 
inclusion, the radiation defect density differs by a small amount ≈ 2𝑅 𝛻 1, that is, the following 
inequality can be considered valid:  𝜌 − 𝜌𝜌 ≈ 𝑅 𝛻 𝜌𝜌 1. 

On the other hand, one assumes that the density of defects is so high that the distance between them is small 
compared to the size of the inclusion in the direction of the crystal inhomogeneity. This condition is equivalent 
to inequality 𝑅 �̄� 1, where �̄� 𝑊 2𝜋 𝜌 𝑟 𝑟 𝑑𝑟 𝑠𝑖𝑛 𝜃 𝑑𝜃 is the average density of radiation defects 
in the crystal volume with radius 𝑅 𝑅 . 

Thus, to consider the macroscopic inclusion motion along the direction of radiation defect inhomogeneous 
distribution, the conditions have the following form: 

�̄� 𝑅 ⃗ ⃗ . (2)

Figure 1 shows a schematic diagram of the inclusion in a crystal. 

Figure. 1. Location diagram of a spherical azimuthally symmetric inclusion in a crystalline matrix. 

The velocity of the spherical inclusion is assumed to be 𝑉 . To simplify the calculations, let us move to the 
reference frame where the inclusion is at rest. Then the velocities of the crystal matrix and the radiation defects are 
given in the form �⃗� 𝑅 𝑉 𝑅 − 𝑉 ,  𝑉 ≥ 𝑉 𝑅 , where 𝑉 𝑅 𝑉 𝑅 𝑅 − 𝑅 𝜗 𝑅 − 𝑅  is the velocity of 

( ) ( )2 2 2 1 1, cos , tg− −= + + = =r x y z zr yxθ ϕ 0 , 0 , 0 2≤ < ∞ ≤ ≤ ≤ ≤r θ π ϕ π
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the spherical inclusion of radius 𝑅, 𝑉 𝑅 = 𝑉  is the inclusion velocity corresponding to the inclusion size threshold 
value 𝑅 , at which �⃗� = 0. Here 𝜗 𝑥  is a unit function of the form 𝜗 𝑥 < 0 = 0; 𝜗 𝑥 ≥ 0 = 1. 

Thus, in the chosen reference frame, the crystal matrix with radiation defects either is at rest at 𝑅 ≤ 𝑅  or moves 
in the negative axis 𝜃 direction (𝜃 = 𝜋) when the inclusion size is larger than the critical: 𝑅 > 𝑅 . 

In the new frame of reference the crystal matrix moves with a velocity �⃗� 𝑅 = 𝑈 𝑅 ;𝑈 𝑅 , where 𝑈 𝑅 = 𝑈 = �⃗� 𝑅 𝑒 , 𝑈 𝑅 = 𝑈 = �⃗� 𝑅 𝑒 , 𝑒 , 𝑒  are unit vectors along the radial 𝑟 and polar 𝜃  axes, 
respectively. 

The inclusion in the crystal contains a solvent that facilitates stress relaxation in the crystal due to 
accelerated diffusion and transfer of the matrix material in the solvent from the front hemisphere to the back. At 
that, the experimental fact of the inclusion motion without a significant change in its shape indicates the 
transition of matrix atoms into solution from the front inclusion surface, and an equal to it deposition of atoms 
from the solution onto the matrix on the back inclusion surface. 

Such processes of matrix atom dissolution and crystallization are observed only in the field of forces of 
inhomogeneously stressed crystal, to which radiation defect inhomogeneous distribution can be referred. 
Therefore, the inhomogeneous distribution of point defects can be considered as a force that initiates inclusion 
displacement. 

The processes of matrix atom transitions into solution and back have a probabilistic nature. Therefore, a two-level 
system can be used to describe such transitions. 

STATISTICAL APPROACH 
The processes occurring on the front and back surfaces of a spherical inclusion are similar to those observed when 

a crystal grows from a supersaturated solvent (vapor or liquid), or when it is dissolved in an unsaturated solvent [15-17]. 
Therefore, the previously developed models for describing such processes are also applicable to the description of the 
crystal inclusion motion, since they are based on the processes of crystal growth and dissolution. 

The presence of a high defect density on the front inclusion surface makes the solvent unsaturated, and this surface 
dissolves. In turn, on the spherical inclusion back surface, where the defect density is lowered and the solvent is 
supersaturated, the growth is observed. Thus, the presence of a radiation defect density gradient causes the inclusion 
displacement in the direction of this gradient. 

Let us consider a model that can explain the inclusion motion along the defect density gradient in a radiation-
damaged crystal. In accordance with the above, the inclusion motion occurs in the direction of the axis 𝜃. In this model, 
the following statistical approach is used to describe the process of inclusion motion in the matrix. 

The elementary processes of the matrix atom transitions into solution and back on the front inclusion surface will 
be considered in the concept of a two-level system shown in Fig. 2. 

Figure 2. Scheme of a two-level system with populations 𝑛  and 𝑛 , energies 𝜀  and 𝜀 , transition probabilities: 𝜇  – spontaneous, 𝑤  and 𝑤  – induced 

In Fig. 2, the arrows show the directions of atom transitions from one level to another: spontaneous transitions 
with probability 𝜇 , induced transitions with probabilities 𝑤  and 𝑤 . In Fig. 2, level 1 corresponds to the matrix 
atoms in the solvent, and level 2 corresponds to those held on the matrix surface. 

In a stable crystal, when the difference in defect densities is less than the critical one, there is no inclusion motion. 
In this state, the difference between the free energies of an atom in the solvent and on the matrix surface is positive [18], 
i.e. 𝜀 > 𝜀 .

Spontaneous transitions reduce the free energy of an atom in solution. Therefore, atoms spontaneously move from 
level 1 to level 2. The probability of spontaneous transitions 𝜇  determines the probability of a spontaneous transition 
of an atom in 1 second. Spontaneous transitions from the upper level to the lower level (𝜀 → 𝜀 ) are described by 
equations: = −𝜇 𝑛 𝑡 , = 𝜇 𝑛 𝑡 , (3)
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where 𝑛 , 𝑡  are the populations of levels 1, 2 as functions of time 𝑡, 𝜇  is the probability of spontaneous transition. 
Since the inclusion displacement is observed only when the defect density difference on its front and back surfaces is 
higher than the critical one, it is assumed that the probability of the induced transition 𝑤  also depends on the 
externally created difference between the point defect densities on the front and back inclusion surfaces. Then the 
probability of induced transitions can be represented as: 𝑤 = 𝛼 𝜌 𝑧 + 𝑐 − 𝜌 𝑧 = 𝑊 = �̄� 𝑁, (4)

where indices 𝑖,𝑚 take values 1, 2, (𝑖 ≠ 𝑚), 𝛼  are constant values, 𝑊 is the inclusion volume, �̄� = 𝑊  is the 
proportionality factor, 𝑊  is the characteristic volume of a solvent molecule, 𝑁  is the number of solvent atoms 
(molecules) in the inclusion volume. 

At the initial moment, the number of solvent atoms is denoted by the value 𝑁(𝑡)| ≡ 𝑁 , and it is assumed to be 
sufficiently large, i.e. 𝑁 >> 𝑛 ,𝑛 , where 𝑛 = 𝑛 (𝑡)| , 𝑛 = 𝑛 (𝑡)| . 

Consideration of induced processes caused by inhomogeneity of point defect density changes the form of the 
initial equations (4): 

( ) ( )1
12 12 1 21 2 ,

dn t
w N n w Nn

dt
μ= − + +

( ) = (𝜇 + �̄� 𝑁)𝑛 − �̄� 𝑁𝑛 . (5)

Equation (6) should be supplemented by the equation for changing the solvent atom number 𝑁(𝑡), providing 
induced processes in the two-level system: 

( ) = − 𝜇 + �̄� 𝑁(𝑡) 𝑛 (𝑡) + �̄� 𝑁(𝑡)𝑛 (𝑡). (6)

From the condition of statistical equilibrium in a two-level system the Einstein relation follows – 𝜇 = �̄� =�̄�  [19, 18]. This relation, for the case when induced processes dominate over spontaneous ones (𝑁 >> 𝑛 ,𝑛 ), 
greatly simplifies the initial system of equations (5), (6): 

( ) = 𝜇 𝑛 (𝑡) − 𝑛 (𝑡) 𝑁(𝑡), ( ) ( ) ( )( ) ( )2
12 2 1 ,

dn t
n t n t N t

dt
μ= − −

( ) = −𝜇 𝑛 (𝑡) − 𝑛 (𝑡) 𝑁(𝑡). (7) 

For spherically symmetric inclusions, the unknown quantities 𝑛 , 𝑛 , 𝑁, 𝜇  in equations (7) become dependent on 
the coordinates 𝑅 + �̃�, 𝜃 + 𝜃, where �̃� and 𝜃 correspond to a small ( �̃⃗� << 𝑅 , 𝜃 << |𝜃 |) deviation of the radius 
and polar angle from 𝑅  and 𝜃 , respectively. 

Under these conditions, equations (7) are transformed to the form: + 𝑈 ̃ + ̃ = 𝜇 (𝑛 − 𝑛 )𝑁,
+ 𝑈 ̃ + ̃ = −𝜇 (𝑛 − 𝑛 )𝑁, (8)

+ 𝑈 ̃ + ̃ = −𝜇 (𝑛 − 𝑛 )𝑁,
where 𝜇 𝑅 + �̃�,𝜃 + 𝜃  is the function of �̃�and 𝜃. 

Let us find solutions to equations (8) in the simple case when the probability of induced transitions 𝜇  can be 
represented as an expansion in a Taylor series in small displacements �̃� and 𝜃 [20]: 𝜇 𝑅 + �̃�,𝜃 + 𝜃 ≈ 𝜇 (𝑅 ,𝜃 ) × 1 + ( , )∑ ! �̃⃗�𝛻 𝜇 (𝑅 ,𝜃 )∞ + 𝜃𝜆 , (9)

where �̃⃗� = �̃� ⋅ 𝑒 + �̃� ⋅ 𝑒 , 𝛻 = 𝑒 ̃ + 𝑒 ̃ , �̃� = 𝑅 ⋅ 2 𝑠𝑖𝑛 ≈ 𝑅 ⋅ 𝜃 (see Fig. 1). Further, in the calculations,
the sign " ∼ " is omitted. 

Consider the case when expansion (9) contains only odd powers 𝑟. Then expression (9) takes the form: 𝜇 (𝑅 + 𝑟,𝜃 + 𝜃) ≈ 𝜇 (𝑅 ,𝜃 ) × 1 + ∑ 𝜆 , 𝑟 + 𝜃𝜆 , (10)
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where 𝜆 , = ( , ) ( )! ( , ), 𝜆 = ( , ) ( , ). Choosing such a power dependence of the 
induced transition probability on 𝑟 under the condition 𝜆 , > 0 corresponds to the inclusion front surface, where the 
density of radiation defects increases with rising 𝑟. In this case, the matrix material dissolution is observed because the 
induced transition probability in the matrix is greater compared to the induced transition probability in the solution. This 
follows from the fact that the terms in (10) proportional to odd powers change sign, because in the solution 𝑟 < 0. 

On the back inclusion surface 𝜆 , < 0, and therefore the deposition of the dissolved crystal atoms on the matrix 
surface is observed, since the value of the probability of induced transitions in the matrix is less than in the solution. 

Based on the type of expansion chosen in (10), a new variable is introduced 𝜉(𝑡, 𝑟,𝜃) = 𝑡 + , + , + . 
Then equations (8) can be transformed to the form: = 𝜇(𝑛 − 𝑛 )𝑁,  = −𝜇(𝑛 − 𝑛 )𝑁,  = −𝜇(𝑛 − 𝑛 )𝑁, (11)

where, for simplification, the following notation is used 𝜇 = 𝜇 (𝑅 ,𝜃 ). 
The form of equation system (11) completely coincides with the form of equation system (7), with the only 

difference that the argument of system (11) is the function 𝜉(𝑟,𝜃, 𝑡). Therefore, the solutions of system (11) coincide 
with the solutions of (7), where argument 𝑡 must be replaced by argument 𝜉(𝑟,𝜃, 𝑡), and 𝜇  must be replaced by 𝜇. 

VELOCITY OF THE SPHERICAL AZIMUTHAL-SYMMETRIC INCLUSION 
To determine the inclusion velocity 𝑉, the plane of constant phase is set. This plane is defined by: 𝜉(𝑡, 𝑟,𝜃) = 𝐷 (12)

where 𝐷 is the constant. 
It follows from equation (12) that for a given time 𝑡 = 𝑡  and 𝐷 = 𝐷  it is possible to construct a second-order 

azimuthal-symmetric surface, which determines the dependence of its radial coordinate on 𝑟 the polar angle 𝜃. 
If one fixes 𝐷 = 𝐷 , then over time the azimuthal-symmetric surface of the second order moves in space together 

with the matrix with a velocity of 𝑈 . This velocity is determined from the expression for the total time derivative of the 
equation (12): 1 + , 𝑈 + , 𝑈 + 𝑈 = 0, (13)

where 𝑈 =  is the radial velocity of a constant phase surface, 𝑈 = 𝑟  is the polar velocity of a constant phase 
surface. 

The angular velocity of the constant phase surface is expressed in terms of the surface radial velocity, based on the 
following considerations. Since the matrix moves as a whole, and the spherical inclusion is at rest and does not change 
its shape, the polar velocity 𝑈  of a point on its surface at 𝜃 =  is equal to the radial velocity of a point on its surface at𝜃 = 0, i.e. 𝑈 = 𝑈 . 

On this basis, it follows from (13): 𝑈 = − (14)

where 𝑥 = , 𝐴 = , , 𝐵 = , , 𝐶 = ,, . 
Assuming 𝑟 = 𝑅 in (14), the dependence of the matrix velocity on the spherical inclusion radius is obtained: 𝑈 = − , (15)

where 𝑥 = 𝑅/𝑅 . 
Expression (15) determines the matrix velocity in the frame of reference where the inclusion is at rest. In the 

laboratory frame of reference, where the matrix is at rest, the inclusion velocity has the opposite sign: 𝑈′ = , (16)

where the sign "′" already determines the inclusion velocity. Further, the sign "′" is omitted. 
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Since the inclusion motion is observed only at radii exceeding the threshold value of the inclusion radius 𝑅 , it is 
possible to replace 𝑥 → 𝑥 − 1 in (16), which corresponds to the transition to the calculation of velocity dependence 
not on the inclusion radius 𝑅, but on its exceeding the threshold value. 

Thus, taking into account the above replacement and equation (16), it follows that for small inclusion radii, when |𝑥 − 1| << 1  and 𝐴 > 0,𝐵 > 0 , its velocity linearly increases as 𝑉 ≈ 𝑉 + (𝑥 − 1)  with increasing inclusion 
radius. As the inclusion radius increases, the velocity reaches a maximum value and then, at |𝑥 − 1| >> 1, decreases 
as 𝑉 ≈ 𝑉 + , where 𝐴 > 0,𝐶 > 0. 

ENERGY INTERPRETATION OF THE INCLUSION VELOCITY 
The spherical inclusion velocity 𝑈  can be related to the matrix velocity 𝑈  using the energy relations. 
The flow of point radiation defects with density 𝜌(𝑧) creates a "wind" moving at speed 𝑈 = 𝑈 . The wind 

pressure force of radiation defects on the inclusion is equal to the difference in pressure forces on its front and back 
hemispheres with an area of the order of 𝑆 = 𝜋𝑅 : 

( ) 2 2
2 1 0 0

1 1 ,
2 2D w D r w D rF C m SU C m WUρ ρ β= − = (17)

where 𝑚  is the effective mass of a point defect, 𝑊 = 𝜋𝑅  is the volume of the order of inclusion volume, 𝐶  is the 
dimensionless resistance coefficient, 𝛽 =

 
is the density gradient of radiation defects, 𝜌 ,𝜌  are the radiation 

defect densities at the front and back poles of the spherical inclusion, respectively. 
If the inclusion moves with velocity 𝑉 ′ in the direction of the force (17), its velocity 𝑈  is lower, and therefore the 

pressure force decreases: 𝐹′ = 𝐶 𝛽𝑚 𝑊(𝑈 − 𝑉 ′) . (18)

The power produced by the pressure force (17) is equal to: 𝑃 = 𝐶 𝛽𝑚 𝑊(𝑈 − 𝑉 ′) 𝑉 ′. (19)

It follows from (19) that the maximum power is achieved at 𝑉 ′ =  [21], and is equal to: 

𝑃 = 𝐶 𝛽𝑚 𝑊𝑈 . (20)

The maximum power (20) is chosen based on the principle of least action, which determines the way of optimal 
stress relief in the crystal: the radiation stress of the crystal must be reset in the minimum time. The maximum power of 
the inclusion motion corresponds to the minimum time of stress relaxation in the crystal. 

Thus, expression (20) determines the maximum power, which the inclusion gains by the wind of radiation defects 
blowing over it. 

On the other hand, this power is spent on overcoming the resistance force 𝐹 , which opposes the inclusion motion. 
The power expended to move an inclusion over a distance 𝑟(𝑡 + 𝛥𝑡) − 𝑟(𝑡) in little time 𝛥𝑡 is determined by the 
following expression: 

𝑃 = 𝐹 𝑙𝑖𝑚→ ( ) ( ) = 𝐹 → = 𝐹 , (21)

where 𝐹 = 𝜅(𝑈 − 𝑉 ′) = 𝜅𝑈  is the resistance force created by the inhomogeneity of the radiation defect density 
distribution and 𝜅 is the coefficient of proportionality. 

From the equality 𝑃 = 𝑃 , the velocity of inclusion motion 𝑈  is defined, assuming that the coordinate r is equal 
to the coordinate of the front inclusion face 𝑟 = 𝑅 : 𝑉 = 𝑉 + 𝐹(𝑥 ), (22)

where 𝐹(𝑥 ) = , 𝛿 = , . 
To determine the parameters 𝑉 ,𝐴,𝐵,𝐶 in (22), the experimental data [22] are used. 
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In Fig. 3, the solid line corresponds to the graph constructed using the analytical expression (22) and experimental 
data are shown with a marker ○. 

Figure 3. Dependence of the inclusion velocity on its longitudinal size (markers ○ correspond to experimental points), 𝑉 = 0.08 ⋅ 10  m/s [22], 𝛿 = 2.8,𝐵 = 0.5,𝐶 = 0.5. 

Comparison of theoretical calculations with experimental data indicates an adequate description of the experiment 
by the proposed theoretical model. 

CONCLUSIONS 
In the present work, a physical model of the liquid inclusion motion in the field of forces due to the inhomogeneous 

distribution of radiation point defects has been developed based on the statistical approach to the processes of induced 
transitions of matrix atoms into solution and back. The analytical dependence of the velocity of a spherical azimuthally 
symmetric inclusion on its size is obtained from the energy principle. It is shown that the analytical expression for the 
inclusion velocity describes the experimental results quite well. The proposed model of radiation-induced inclusion 
motion can be used to estimate the characteristic energy parameters of point defects inhomogeneously distributed in a 
crystalline medium. 
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МОДЕЛЬ РАДІАЦІЙНО-ІНДУКОВАНОГО РУХУ РІДКИХ ВКЛЮЧЕНЬ У КРИСТАЛІ 
Олександр П. Куликa, Оксана В. Подшиваловаb, Михайло Ю. Шевченкоа,c, 

Віктор І. Ткаченкоa,c, Ірина В. Гарячевськаа, Тору Аокіd 
aХарківський національний університет імені В.Н. Каразіна, Харків, Україна 

bНаціональний аерокосмічний університет “Харківський авіаційний інститут”, Харків, Україна
cННЦ “Харківський фізико-технічний інститут” НАН України, Харків, Україна 

dНауково-дослідний інститут електроніки, Університет Шизуоки, Хамамацу, Японія 
Сформульовано фізичну модель руху рідких включень у кристалі у полі сил, спричинених наявністю точкових дефектів 
радіаційного походження. В основу моделі покладено статистичний підхід до процесів індукованих переходів структурних 
елементів кристалічної матриці на міжфазній границі з власним розчином. З енергетичного принципу отримано аналітичну 
залежність швидкості сферичного азимутально-симетричного включення від його розміру, що враховує пороговий характер 
руху. Показано, що теоретична залежність добре корелює з експериментальними результатами, отриманими для включень 
насиченого водного розчину в кристалах хлориду калію, опромінених високоенергетичними електронами. Запропонована 
модель радіаційно-індукованого руху рідкого включення є динамічною і дозволяє інтерпретувати характер зміни 
швидкостей включень у кристалі у часі для визначення характерних енергетичних параметрів точкових дефектів. 
Ключові слова: кристалічна матриця; точкові дефекти; включення розчину; радіаційно-індукований рух; міжфазна 
межа; статистичний підхід 




