STRUCTURE DETERMINATION AND DEFECT ANALYSIS n-Si<Lu>, p-Si<Lu>
BY RAMAN SPECTROMETER METHODS

Khodjakbar S. Daliev, Sharifa B. Utamuradova, Zavkiddin E. Bahronkulov, Alisher Kh. Khaitbaev, Jonibek J. Hamdamov

Branch of the Federal State Budgetary Educational Institution of Higher Education “National Research University MPEI”,
1 Yogdu st., Tashkent, Uzbekistan
Institute of Semiconductor Physics and Microelectronics at the National University of Uzbekistan,
20 Yangi Almazar st., Tashkent, 100057, Uzbekistan
National University of Uzbekistan, Tashkent, Uzbekistan
*Corresponding Author e-mail: zbakhronkulov@inbox.ru

Received August 9, 2023; revised September 13, 2023; accepted September 15, 2023

In this work, lutetium-doped silicon samples were studied using the Raman scattering method. Registration and identification of both crystalline and amorphous phase components in the samples was carried out. There is some violation in the spectra of Raman scattering of light samples of silicon doped with lutetium in comparison with the original sample. It was found that the intensity of Raman scattering of doped samples is 2-3 times higher than the scattering from silicon. The comparison is carried out for the intensities associated with the intensities of the single-phonon line of the silicon substrate. This effect of the Raman spectra in the range 930 cm⁻¹ – 1030 cm⁻¹ appearing in this range is similar to the data reduction for multiphonon propagation on silicon. For the obtained images (n-Si<Lu> and p-Si<Lu>), the bands in the atomic range of combinatorial scattering have a mixed broad and oval background in the range from 623 cm⁻¹ to 1400 cm⁻¹. This background can change the shape of the observed bands.

Keywords: Silicon; Lutetium; Raman spectroscopy; Diffusion; Doping; Temperature
PACS: 78.30.Am

INTRODUCTION

Modern world scientific and technological progress is largely determined by the development of electronics, the achievements of which directly depend on the success of fundamental sciences, primarily solid-state physics and semiconductor physics [1]. Recent advances in these areas are related to the physics of low-dimensional structures and the creation of technologies for obtaining nanostructures with fundamentally new functionality for nano- and optoelectronics, communications, new technologies, measuring equipment, etc. Structured silicon is currently of great interest, since Si itself is an extremely promising material not only for electronics, but also for optoelectronics and solar cells [2,5]. In this regard, studies of the formation of low-dimensional objects and the study of their influence on the electrophysical, optical, photoelectric, and magnetic properties of semiconductors are topical tasks of today [4,6-8]. In the last two decades, Raman spectroscopy (Raman Spectroscopy) has been widely used to study the structure and dynamics of solids. Roman spectroscopy is one of the most powerful analytical methods, when analyzing the chemical and phase state of various objects and their structure and when researching and developing new semiconductor materials, composites, superconductors. Raman scattering has become a standard tool for studying silicon and nanostructured silicon for many years [5,13,14]. Raman studies of nanomaterials provide us with information about energy dispersion, structure, bonding, and disorder [3,16]. In this work, we present the spectra of one- and two-phonon Raman scattering of light from single-crystal silicon doped with lutetium (Lu) atoms.

MATERIALS AND METHODS

Samples of n-Si and p-Si with initial resistivity from 0.3 to 100 Ω·cm were chosen for the study. The samples were doped with Lu impurities sequentially by the thermal diffusion method. Before alloying, the samples were subjected to chemical cleaning and etching, while the oxide layers were removed from the surface of the samples using an HF solution. After thermal degassing of the samples, high-purity (99.999%) Lu impurity films were deposited on clean Si surfaces using vacuum deposition. Vacuum conditions in the volume of the working chamber of the order of 10⁻⁶ ÷ 10⁻⁸ Torr were used to study the interaction of impurity atoms in silicon, it is necessary not only to uniformly dope the material, but also to maximize the concentration [9,10,17].

The Raman spectra were obtained using a SENTERRA II Bruker Raman spectrometer. This fully automated instrument combines excellent sensitivity with a high resolution of 4.0 cm⁻¹. Sunterra’s calibration was automatic and tied to NIST standards, acetaminophen and silicon, resulting in a wavelength measurement accuracy of 0.2 cm⁻¹. The

© Kh.S. Daliev, Sh.B. Utamuradova, Z.E. Bahronkulov, A.Kh. Khaitbaev, J.J. Hamdamov, 2023; CC BY 4.0 license
experiments were carried out with a laser with a wavelength $\lambda_0 = 532$ nm, maximum power $P_{\text{max}} = 25$ mW, acquisition time 100 s, and summation of two spectra. This device makes it possible to obtain spectra in the range from 50 to 4265 cm^{-1}. The Raman spectra were specially processed in order to be able to compare the intensity ratios between the samples. Before normalizing the spectra at the peak at 522 cm^{-1}, which corresponded to the most intense peak in the spectral region $4265-50 \text{ cm}^{-1}$, we subtracted the baseline for each spectrum [11].

Mathematical data preprocessing included offset and cosmic ray removal, baseline correction, and intensity normalization. The intensity of the one-phonon silicon line “523 cm–1” was chosen as a condition for normalization, and the value equal to 1 was chosen. Preliminary processing was carried out using the OPUS 8.5 program (Senterra II, Bruker, Germany). The measured spectra for materials with high κ were compared with the data obtained for n-Si and p-Si.

Samples: n-Si, p-Si and lutetium-doped silicon, n-Si<Lu>, p-Si<Lu> were characterized by Raman spectroscopy.

Figure 1 shows the data collected for n-Si and p-Si samples. In the studied spectra are present as signals modeling a single-phonon silicon line. The following bands can be recognized in the spectrum (except for the Si “523 cm–1” line):

(I) faint band peaking around 230 cm–1;
(II) relatively strong propagation of the band from 300 cm–1 to the one-phonon Si line (~ 550 cm–1);
(III) band with one maximum at about 623 cm–1;
(IV) a broad band with a maximum at about 810 cm–1;
(V) relatively average band spread from 930 cm–1 to 1030 cm–1;

The Raman spectra measured for silicon wafers doped with Lu (n-Si<Lu> and p-Si<Lu>) are shown in Fig. 2. The two most important similarities observed for both semiconductor materials can be distinguished without detailed analysis:

(I) the absence of the so-called bosonic band;
(II) the presence of a band between 930 cm–1 and 1030 cm–1 in the literature is attributed to multiphonon scattering generated in a silicon substrate [12].

Analysis of the Raman spectrum taken for reference samples of n-Si and p-Si (Fig. 1). The band located between 930 cm–1 and 1030 cm–1 refers to multiphonon scattering generated in the silicon substrate [12]. The first feature that appears in the spectra recorded for silicon wafers doped with Lu (n-Si<Lu> and p-Si<Lu>) (Fig. 2) is a significant signal below 300 cm–1. This corresponds to the boson band recorded for excitation with visible Raman scattering [15]. The absence of a relatively strong band in the Raman shift range between 930 cm–1 and 1030 cm–1 is attributed to second-order scattering in doped silicon also observed for both impurity layers (n-Si<Lu> and p-Si<Lu>). The spectra obtained for n-Si<Lu> and p-Si<Lu> contain not only broad bands, but also narrow lines; the full width at half-height of these
Structure Determination and Defect Analysis in Si<Lu>, p-Si<Lu>, and n-Si<Lu>...

According to the data obtained, were characterized using Raman spectroscopy. Raman spectra of doped n-Si<Lu> and single-phonon line of the silicon substrate. 2-3 times higher than the scattering from silicon. The comparison was made for intensities related to the intensity of the p-Si<Lu> samples were compared with silicon. It was found that the intensity of Raman scattering of doped samples is in this range is similar to the reduction of data for multiphonon scattering on silicon.

The Raman spectrum. One narrow line peaking at 395 cm–1 and a slightly wider band peaking at 452 cm–1 appear in the Raman spectrum. The group with a maximum at 1200 cm–1 seems asymmetric. The tail of this band reaches 1400 cm–1. The maxima of these bands reported in the literature are approximately 1075 cm–1 and 1200 cm–1, respectively.

623 cm-1 ÷ 1400 cm-1. The bands described earlier appear against this background. In this case, the Raman scattering spectrum of the obtained composites. The next two bands appearing in the Raman spectra have maxima at 622 cm–1 and 930 cm–1÷1030 cm–1.

In this work, samples of n-Si, p-Si were studied, as well as samples doped with lutetium, n-Si<Lu>, p-Si<Lu>, and p-Si<Lu> samples were compared with silicon. It was found that the intensity of Raman scattering of doped samples is 2-3 times higher than the scattering from silicon. The comparison was made for intensities related to the intensity of the single-phonon line of the silicon substrate.

The last thing to sum up is the behavior of the Raman spectra in the range 930 cm–1÷1030 cm–1. The band appearing in this range is similar to the reduction of data for multiphonon scattering on silicon.

For the obtained n-Si<Lu> and p-Si<Lu> samples, the bands in this range of Raman scattering are shifted with a broad and oval background in the range from 623 cm–1÷1400 cm–1. This background can change the shape of the observed bands.

CONCLUSIONS

REFERENCES

CONCLUSIONS

REFERENCES

ВИЗНАЧЕННЯ СТРУКТУРИ ТА АНАЛІЗ ДЕФЕКТІВ n-Si<Lu>, p-Si<Lu> ЗА ДОПОМОГОЮ РАМАНІВСЬКОЇ СПЕКТРОСКОПІЇ

Ходжакбар С. Далієв, Шаріфа Б. Утамурадова, Завкідді Е. Бахронкулов, Алишер Х. Хаїтбаєв

Філія ФДБУ «Національний дослідницький університет МПЕІ»,
Яогду, 1, Ташкент, Узбекистан

Інститут фізики напівпровідників та мікроелектроніки Національного університету Узбекистану,
100057, Ташкент, Узбекистан, вул. Яны Алмазар, 20

У даній роботі методом комбінаційного розсіяння досліджено леговані лютецієм зразки кремнію. Проведено реєстрацію та ідентифікацію компонентів як кристалічної, так і аморфної фаз у зразках. Спостерігається деяке порушення в спектрах комбінаційного розсіювання світла зразків кремнію, легованих лютецієм, порівняно з вихідним зразком. Встановлено, що інтенсивність комбінаційного розсіювання легованих зразків у 2-3 рази перевищує розсіювання кремнію. Порівняння проведено для інтенсивностей, пов’язаних з інтенсивностями однофононної лінії кремнієвої підкладки. Цей ефект спектрів комбінаційного розсіювання в діапазоні 930 см⁻¹ – 1030 см⁻¹, що з’являється в цьому діапазоні, подібний до зменшення даних для розповсюдження мультифононів на кремні. Для отриманих зображень (n-Si<Lu> i p-Si<Lu>) смуги в атомному діапазоні комбінаційного розсіювання мають змішаний широкий і овалний фон в діапазоні від 623 см⁻¹ до 1400 см⁻¹. Цей фон може змінювати форму спостережуваних смуг.

Ключові слова: кремній; лютецій; рamanівська спектроскопія; дифузія; легування; температура