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In this paper, we study spatially homogeneous and anisotropic Bianchi type-I space-time filled with perfect fluid within the
framework of f(R,T) theory of gravity for the functional form f(R,T) = R + 2f(T) with f(T) = aT + ST?, where a and § are
constants. Exact solutions of the gravitational field equations are obtained by assuming the average scale factor to obey a hybrid
expansion law and some cosmological parameters of the model are derived. Two special cases, leading to the power-law expansion
and the exponential expansion are also considered. We investigate the physical and geometrical properties of the models by studying
the evolution graphs of some relevant cosmological parameters such as the Hubble parameter (H), the deceleration parameter (g) etc.
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1. INTRODUCTION

More than two decades have passed since the first observational results from Supernovae Type Ia [1-3] with
strong support from a number of astrophysical and cosmological observations such as Cosmic Microwave Background
(CMB), Wilkinson Microwave Anisotropy Probe (WMAP), Large Scale Structure (LSS), Baryon Acoustic Oscillation
(BAO), Galaxy redshift surveys [4—10] etc. that the universe at present is in a state of accelerated expansion. It is
accepted as true that there was also a cosmic acceleration, which occurred at the very early epoch of the universe. The
early time cosmic acceleration, called inflation, although there is no known direct detection for this, has theoretical
explanations, but the root cause of the late time cosmic acceleration having direct detection is yet to be ascertained.
Since matter contributes with force and positive pressure that decelerates the rate of cosmic expansion, therefore, as a
resolution to this bizarre issue a substantial amount of energy component apart from the baryonic matter is hypothesized
to be present in the universe to speed up the cosmic expansion. It is possible only when an unusual component with
large negative pressure, dubbed dark energy, covering nearly 68.3% of the total energy content of the universe is
present to counteract the gravitational pressure of the baryonic matter. Within the framework of General Relativity, the
most efficient candidate for dark energy is the cosmological constant A as it works well with the observational data. But
due to its problematic nature with the fine-tuning and the cosmic coincidence problems, various other dark energy
models such as quintessence, k-essence, tachyon, phantom, Holographic dark energy, Chaplygin gas models etc. have
been proposed in the literature.

The problem of late time cosmic acceleration has also been approached with some alternative theories of gravity,
popularly known as modified theories of gravity, which are developed by modifying the geometric part of the Einstein-
Hilbert action. Among the various modified theories of gravity, the simplest and the most studied one is the f(R) theory
of gravity, the action of which is constructed from the standard Einstein-Hilbert action simply by taking an arbitrary
function f(R) in place of R, where R is the Ricci scalar curvature. The other most interesting and viable alternative to
General Relativity is the f (R, T) theory of gravity proposed by Harko et al. [11] in which the gravitational Lagrangian in
Einstein-Hilbert action is given by an arbitrary function f (R, T) of the Ricci scalar R and the trace T of the stress-energy
tensor Tj;. In their work, they have obtained the gravitational field equations in the f (R, T) gravity in the metric formalism
and presented the field equations for the three explicit forms of the functional f(R,T): (i) f(R,T) =R+ 2f(T),
(i) f(R,T) = 1(R) + fo(T), (ii) fF(R,T) = f1(R) + fL(R)f5(T).

Harko et al. also derived the equations of motion of test particles together with the Newtonian limits in f(R,T)
gravity models. Further, they have investigated the constraints on the magnitude of the extra-acceleration on the
precession of the perihelion of the planet Mercury. Houndjo [12] discussed transaction of matter dominated phase to an
accelerated expansion phase by developing the cosmological reconstruction of f(R,T) theory of gravity. Since then,
many researchers have studied cosmological dynamics in f (R, T) theory of gravity as it takes care of the early time
inflation as well as the late time cosmic acceleration. A number of authors have also investigated Bianchi cosmological
models in f(R,T) theory of gravity in different contexts as Wilkinson Microwave Anisotropy Probe (WMAP) and
some other experimental tests support the existence of an anisotropic phase in the early era which might have been
wiped out in the course of cosmic evolution resulting in the present isotropic phase. Adhav [13] investigated LRS
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Bianchi Type I cosmological model with perfect fluid, Reddy ef al. [14] explored Bianchi Type III and Kaluza-Klein
cosmological model, Chandel and Ram [15] generated a new class of solutions of field equations from a set of known
solutions for a Bianchi Type III cosmological model with perfect fluid, Chaubey and Shukla [16] studied a new class of
Bianchi Type III, V, VI, models in presence of perfect fluid, Sahoo and Mishra [17] investigated Kaluza-Klein dark
energy model in the presence of wet dark fluid, Ladke ef al. [18] constructed higher dimensional Bianchi Type-I
cosmological model, Sahoo ef al. [19] investigated an axially symmetric space-time in presence of perfect fluid source,
Agrawal and Pawar [20] investigated plane symmetric cosmological model in the presence of quark and strange quark
matter, Bhoyar [21] talked about non-static plane symmetric cosmological model with magnetized anisotropic dark
energy, Yadav ef al. [22] searched the existence of bulk viscous Bianchi-I embedded cosmological model by taking into
account the simplest coupling between matter and geometry, Yadav et al. [23] investigated a bulk viscous universe and
estimated the numerical values of some cosmological parameters with observational Hubble data and SN Ia data. Singh
and Beesham [24] explored a plane symmetric Bianchi Type I model by considering a specific Hubble parameter which
yields a constant deceleration parameter, Chaubey ef al. [25] considered general class of anisotropic Bianchi
cosmological models in f(R,T) gravity with dark energy in viscous cosmology, Bhattacharjee et al. [26] presented
modelling of inflationary scenarios, Tiwari ef al. [27] studied Bianchi type I cosmological model for a specific choice of
the function of the trace of the energy momentum tensor. Modifications and generalisations of f (R, T) theory of gravity
are also considered in the literature. Singh and Bishi [28] studied Bianchi Type III cosmological model in the presence
of cosmological constant A. Moraes et al. [29] investigated static wormholes in modified f(R,T) gravity. Moraes and
Sahoo [31] have proposed a new hybrid shape function for wormhole. Azmat et al. [31] studied viscous anisotropic
fluid and constructed corresponding dynamical equations and modified field equations in f(R,T) theory of gravity.
Tretyakov [32] discussed the possibility of a further generalization of f (R, T) gravity by incorporating higher derivative
terms in the action and demonstrated that inflationary scenarios appear quite naturally in the theory. Recently, several
authors have studied various other cosmological scenarios in the framework of f (R, T) theory of gravity [33—39].
Motivated by the above-mentioned works, we focus our present work in studying spatially homogeneous and
anisotropic Bianchi type-I universe with perfect fluid source in f(R,T) theory of gravity for the functional form
f(R,T) =R+ 2(aT + BT?), where o and f are constants. The field equations are solved by assuming the average
scale factor in the form of hybrid expansion law. We organize the paper as follows: in section 2, we give a brief review
of the f(R,T) theory of gravity. In section 3, we derive the gravitational field equations for the Bianchi type-I metric.
Exact solutions of the field equations are obtained in section 4. In section 5, some physical and kinematical properties of
the model are discussed by graphically representing the evolution of graphs of some parameters of cosmological
importance. Two particular scenarios are also examined when the expansion of the universe is governed by power-law
expansion and exponential expansion only. We summarize the main results with some concluding remarks in section 6.

2. BRIEF REVIEW OF f(R,T) GRAVITY
In f(R, T) gravity proposed by Harko ez al. (2011), the action is taken as

S =——[f(R,T)J=gd*x + [ Ly/=gd*x, (1)

where f(R,T) is an arbitrary function of the Ricci Scalar R and of the trace T of the stress-energy tensor of matter T;;
defined by
_ ~2 8(/=gLlm)
PSS e @
Here, L,, is the matter Lagrangian that generates a specific set of field equations for each choice of L,,.
By assuming the Lagrangian of matter to depend only on the metric tensor components g;; and not on its derivatives,
the stress-energy tensor can be obtained as

OLm
agi’

Tij = gijLym — 2 (3)
By varying the action (1) with respect to the metric tensor components g/, the field equations of f(R, T theory

of gravity in the metric formalism are obtained as
1
fa®R TRi; = fR, T gij + (9,80 = ViV;) fa (R, T) = 81Ty — fr(R, T)T;j — fr(R, )0y, )
where, fr(R,T) and fr(R, T) are the partial derivatives of f(R,T) with respect to R and T respectively, V; is the

covariant derivative, (] = V, V¥ is the D’ Alembert operator and

k asz

®l'j = _ZTU + gULm - Zgl agijaglk. (5)

The stress-energy tensor of matter T;; is assumed to take the perfect fluid form so that

T;j = (p + Puu; — pgij- (6)
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where p and p are respectively the density and pressure of the perfect fluid.
For the choice L,, = —p, we thus have

0;; = —2T;j — pgij- (7
For the functional form
f(R,T) =R+ 2f(T). (®)

where f(T) is an arbitrary function of T, the gravitational field equations of f(R,T) gravity are obtained from
Eq. (4), as

1 , ,
Ry —ZRgi; = 8Ty — 2f"(T)Ty; — 2f (T)0y; + f(T) gy ©)
where f'(T) = % (f(T)). In view of eq (6), the field equations (9) become

Ry Rgu = 8nTy; + 2f"(T)Ty; + [2pf"(T) + f(T)]9;- (10)
For the choice
f(T) = aT + BT?, (11)
where a and [ are constants, the eq.(10), in presence of a time varying cosmological constant A, reduces to

R;; Rgl] + Agij = [8m + 2a + 4BT]T;; + [2pa+4p,8T+aT+,8T2]gU (12)

3. THE METRIC AND FIELD EQUATIONS
The spatially homogeneous and anisotropic Bianchi type-I metric is given by

ds? = dt? — A%dx? — B*dy? — C%*dz?, 13)

where the directional scale factors 4, B and C are functions of the cosmic time # alone. In comoving coordinates,
the field equations (12) take the form

A2 4 BC 4S8 = (8w +3a)p + 5pp* — 3fp® — 14Bpp —ap — A, (14)
§+§+--=—(8n+3a)p+9/3p2—6Bpp+ap+/3p2—/\, (15)
A B AB
Z+E+Z———(87r+3a)p+9ﬁp — 6Bpp + ap + Bp? — (16)
§+£ __: —(8m + 3a)p + 9Bp? — 6Bpp + ap + Bp? — A, (17)

where an overhead dot denotes differentiation with respect to t.

4. COSMOLOGICAL SOLUTION OF THE FIELD EQUATIONS
Here, we have four field equations with six unknowns A, B, C, p, p and A. So, in order to obtain a complete
solution, we have to consider two extra conditions.
Therefore, we consider the equation of state for perfect fluid as

P = wp, (18)
where w is a constant.
And, the average scale factor a defined by
a= (ABC)? (19)
to obey the hybrid expansion law proposed by Akarsu ef al. [40];
a=a ) ¢, 0)

where y and ¢ are non-negative constants and a, represents the present value of the scale factor and t, represents the
present age of the universe.
From equations (15)-(17), we then obtain

A= ayl, (i)y 6™ exp [ml [ {ao (i)y RCe 1)}_3 dt], @1

to
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t t -3

B = agyl, (é)y 95(5_ Y exp [mz f {ao (é)y ef(g_ 1)} dt], (22)
t t -3

C = apls (%)y ef(%_ ) exp [m3 ) {ao (&)y 65(5_ 1)} dt]. (23)

where [, 15,13 and m,, m,, m5 are constants of integration satisfying the relations l;l,l3 = 1 and m; + m, + m3 = 0.

5. PHYSICAL AND GEOMETRICAL PROPERTIES OF THE MODEL
For our model, some important cosmological parameters are:
The spatial volume

3y Lt
V = ABC = a,? (ti) ¥ 1), (24)
0
The mean Hubble parameter is
G LA B _E Y
H_a_3(A+B+c)_to+t' 25)
The deceleration parameter
_ _ad _ yto® _
1= ~"% = Gwer ! (26)

The expansion scalar

9=3H:(£+§+£’)=3(5+z). @27

A' B ¢ to  t
The shear scalar

2 _1ry3 2 _ 2) — ma?+mz®+mymg
773 (Ziei Hi* = 3H?) aos(ti)éyeef(%n)' (28)
0

The anisotropy parameter

—H\2 2 2
A, = 12?=1 (HL H) _ 2(m; +2m3 +m2m33 ; (29)
O ey
9a0°(z+) () e
where H; = %, H, = g, H; = % are the directional Hubble parameters.
The energy density (p), the pressure (p) and the cosmological constant (A) are obtained as

6 t_ 6y-2 t_
(w+1){(4n+a)2(w+1)a06(i) yesf(fo 1)+8ﬁ(3m—1)<mz2+m32+m2m3—yao6to(‘2)(i) 4 e“(fo 1))1
Am+a to to

p= N t > (30)
4B(Bw-1) 4B(w+1)(3a)—1)a03(%)3]/83;(%_ 1)

t - L
w\/(m+1){(4n+a)2(w+1)a06( t)GyeGS(%_1)+83(3w—1)<m22+m32+m2m3—ya06t0(_2)(ti)ey 2esg(fo 1))}
w@nt+a) o

o
p = _ t ’ (31)
+GEwe=1) 4B(w+1)(3w—1)a03(%)3ye3$(%_1)
A= — (m22+m32+mym3)(w+5) viw+5-6y(w+1)} 3§82  6y§  (4mta){(w+5)(dm+a)-2(8n+3a—aw)} n
- £\6Y ss(i_l) 2(w+1)t2 t?  tto 88(3w—1)
2(w+1)a06(%) e '\to
£ | 7\ (mp?+ma®+myms) 7T
9(£+7) )+ +
t, t 6 = 20(Bw—-1
° ao6(%) yeﬁf(to 1) FBw-1)
t - t_
\](w+1)g(47T+0£)2(w+1)a06(%)6y666(5_1)+8ﬁ(3w—1)<mz2+m32+mzm3—ya06t0(—2)(é)6y ZeGS(fo 1))}
(32)

8B(w+1) 2o (ti)syegs(%- 1)
0
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Figure 1. Variation of the Hubble parameter H v/s cosmic timet  Figure 2. Variation of the deceleration parameter q v/s cosmic
time t

Figure 3. Variation of the energy density p v/s cosmic time t Figure 4. Variation of the pressure p v/s cosmic time t

Figure 5. Variation of the cosmological constant A v/s cosmic time ¢

To explore the physical and geometrical properties of the model from the evolution graphs of the cosmological
parameters, we takey = 0.6, £ = 0.2, ap =1, t, =1, m; =0.7, my; =03, my=-1, a=0.1, £ =01, w =1.
From the graphs, we observe that the Hubble parameter (H) and the deceleration parameter (q) are decreasing
functions of cosmic time. The energy density (p) and pressure (p) are also decreasing function of cosmic time. Figure
5, shows that the cosmological constant (A) decreases rapidly at initial stage and tend to zero in the course of evolution.
The hybrid expansion law (20) is a combination of the power law expansion and the exponential expansion. It yields the
power law expansion for ¢ = 0 and the exponential expansion for y = 0.
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Case (i): When ¢& = 0, equation (20) reduces to

which is the power-law of expansion.
Then, equations (21)-(23) yield

A= ayly (%)y exp [m1a53tgy tll__:;], (33)
B = ayl, (&)y exp [m2a53tgy ':11__33:], (34)
C = ayls (é)y exp [m3 ay3ty tll__:::] (35)

Thus, when the expansion of the universe is governed by a power law expansion, then

3y
V=a(5) (36)
W=t 37)
1
a=1-1, (38)
o=, (39)
2 — m22+m32+m2m3 (40)

6y >
t
a0%(7;)

2(my2+ms2+myms)
m = (41
9a0%(3) (%)
6 6y—2
o J(w+1){(4n+a)2(w+1)a06(%) 188 Ge-1)(my2 +ms2 +myma-yageto I (L) )} o
4f(Bw-1) 4ﬁ(m+1)(3w—1)a03(%)3y ’

wimra) a)j(w+1){(4n+a)2((u+1)a06(%)6y+8,8(3a)—1)(m22+m32+m2m3—yaoﬁto(_z)(%)wﬂ)}

_ ) (43)
4p(Bw-1) 4B(w+1>(3w—1)a°3(%)3y
(ma?+my?+mams)(@+5) | ylw+5-6y(w+D)) _ (“n+ta){(w+5)(@dn+a)-2(8n+3a-aw)) )? (ma®smg*+mams)
A=— 767 20+1)t2 8B (3w-1 +9(_) e
2(w+1)a06($) (w+1)t BGBw-1) ‘ aos(ﬁ)
) i j(w+1){(4n+a)2(w+1)a06(%)6y+86(3w—1)(mzz+m32+mzm3‘V‘loﬁto(_”(%)sy_z)}
44
{2ﬁ(3w—1) 8B(w+1) “03(%)3}, -

From the Figures 6, 7, 8 and 9, we see that the Hubble parameter (H), energy density (p), pressure (p) are
decreasing functions of cosmic time and the cosmological constant (A) decreases initially to negative value and then
increases tending to zero as time evolves. The deceleration parameter (q) may be positive, negative or zero depending
on the values of y. For y > 1, the expansion of the universe corresponding to the constructed model accelerates.

For y < 1, the expansion decelerates and for y = 1, the universe undergoes uniform expansion.

Case (i1): When y = 0, equation (21) reduces to
t
a= aoes(g_ 1),

which is the exponential law of expansion.
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Then, equations (21)-(23) yield

t r t b

A = aglyefli ) exp [matn 34055 ), 3)
L 0 i
t r t b

B = aolzef(g_ ) exp %:t:e_%(%_ g , (46)
| 0 i
t r t 1

C= a0l3ef(5_ ) exp %:t:e_%(% -1) . 47)
| 0 |

0.00z2

Figure 7. Variation of the energy density p v/s cosmic time t

Figure 8. Variation of the pressure p v/s cosmic time t Figure 9. Variation of the cosmological constant A v/s cosmic
time t

When the expansion of the universe is governed by the exponential law of expansion, then

V= a03e35(%‘ o) (48)
H= % (49)
q=-1, (50)
9=3§ G

2 _ m22+m32+m2m3

o =
aoéer(%_l) ’

(52)
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2(my2+mz2+myms)
Ay = 2 23 65(:_2_:)’ (53)
9a06(%) e "\to

6§(L— 1)
(w+1){(4m+a)2(w+1)aybe ~\to +8B(Bw—1)(My2+mz2+myms)

am+a
T 4BGe-1) G , (54)
#eemy 4p(m+1)(3m—1)a0333§(ﬁ‘1)
t
wj(w+1){(4n+a)2(“’“)“06"6{(% B 1)+8ﬁ(3w—1)(m22+m32+mzm3)}
p = w@n+a) (55)
= = — :
ey 4,8(w+1)(3w—1)a03e3€(f0 1)
A=— (ma®+ma2+myms)(w+5)  3§%  (4m+a){(w+5)(47+a)—2(8n+3a—aw)} 49 (i)z (my2+ma?+myms) { -
= J _ > t _
R spGe-1) o/ sestli1) 2B(GBw-1)
t
J(w+1){(4n+“)2(0""1)!10686;(% N 1) +8ﬁ(3w—1)(m22+m32+m2m3)}
; (56)
8B (w+1)

T
3t(55-1)
ag3e "\to

Figure 10. Variation of the energy density p v/s cosmic time t Figure 11. Variation of the pressure p v/s cosmic time t

Figure 12. Variation of the cosmological constant A v/s cosmic time t

From the graphs, we observe that the energy density, pressure and cosmological constant initially assume negative
values and then tend to zero in the course of time.

6. CONCLUDING REMARKS
In this paper, we study Bianchi type-I cosmological model within the framework of f(R,T) theory of gravity
considering the functional f(R,T) = R + 2(aT + BT?), where a and 8 are constants. We consider the expansion of
the universe to follow a hybrid expansion law and obtain exact solution of the field equations. Two particular cases are
also considered when the expansion of the universe is governed by a power law and an exponential law only. We

investigate the physical and kinematical properties of various cosmological parameters in all these three cases and find
that
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* Both the hybrid expansion law and power law of expansion induce an initial singular model of the universe as the
metric coefficients A, B and C vanish at the initial moment. In case of exponential expansion law, the metric
coefficients A, B and C become constants at t = 0.

* For hybrid law and power law of expansion, the physical parameters H, 8,62, A,, assume very high value at the
initial epoch and tend to zero for large t. Also, the volume of the universe is zero at the beginning and increases
exponentially with time t. Hence, the universe starts with the Big Bang singularity at t = 0 and then expand throughout
the evolution. In case of exponential law, the physical parameters H, 8 become constants. Volume is initially very low
and increases exponentially in the course of time while the other parameters show similar behavior as hybrid law and
power law of expansion.

* In hybrid expansion law, the deceleration parameter (q) approaches —1 for large cosmic time. In case of power
law of expansion, it may be positive, negative or zero showing thereby that the universe may undergo accelerating
expansion, decelerating expansion or uniform expansion. The expression for the deceleration parameter q, in the case
of exponential law of expansion, shows that the expansion of the universe is decelerating throughout the evolution
without depending on y.

* For hybrid law and power law of expansion, the energy density and pressure increase rapidly at the beginning but
it decreases in the course of evolution and tend to 0 at late time. But in case of exponential expansion law, the energy
density and pressure are negative and increase exponentially throughout the evolution of the universe and tend to 0 as
time t — oo,

* The cosmological constant (A) decreases initially and then increases and tends to 0 at late times for hybrid law as
well as power-law of expansion. In the case of exponential law, cosmological constant is negative and increases in the
course of time tending to zero at late times.
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AHI3OTPOITHA KOCMOJIOTTYHA MOJIEJIb VY f (R, T) TEOPIi TPABITAIIIT
3 KBAJIPATHYHOIO ®YHKIIE€IO BIA T
Yanapa Pexxa Maxanra, lllasnika /lexa, Kankana Ilarxak
Daxynemem mamemamuru, Ynisepcumem I ayxami, I'veaxami-781014, Inois

V wmiff crarTi MH JOCHIIKYEMO MPOCTOPOBO-OAHODIAHUI Ta aHi3oTponHuil mpocrip-yac bianki Tumy I, 3amoBHeHuit igeanbHOIO
pinunoo, y pamkax AR, T) teopii rpasitauii ais gyukuionansnoi popmu AR, T)=R+2AT) 3 AT)=aT+BT?, ne a i B koucrantu. Touni
PO3B’SI3KH PIBHSAHB T'PaBITALlIHHOTO MONS OTPUMaHI IUIAXOM IPUIMYIICHHS, IO CepeAHill MacmTaOHUK KOe(DIIiEHT MiIKOPSEThCS
riOpuaHOMY 3aKOHY PO3IIMPEHHS, 1 BUBEICHO AEsSKI KOCMOJIOTIYHI TapaMeTpH MOAENi. TakoX pPO3TIIIAIOTBECS Ba OCOOIMBHX
BUIAJKH, IO MPU3BOAATH A0 CTENEHEBOTO PO3KJIALy Ta €KCIIOHEHIIAIIBHOTO po3KiIamny. Mu nociikyeMo (i3ndHi Ta reoMeTpHYHi
BIIACTHBOCTI Mojelel, BUBYal0un rpadiky eBoMIONii IesIKUX BiJIIOBIJHNX KOCMOJIOTIYHHUX ITapaMeTpiB, TAKUX K rmapaMeTp Xaobia
(H), mapameTp ynoBiJIbHEHHS () TOIIO.

Kuarwuosi cnoBa: Bceceim bianxi muny I; f(R,T) meopis epasimayii; napamemp Xabbia;, KOCMONOSIMHA cmMana;, napamemp
YNOBINbHEHHS





