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The structural and mechanical studies of the AISI 302 steel aim to design a correct heat treatment in order to optimize its mechanical 
properties. In this study, we investigated the influence of temperature and time of aging on the structural and mechanical characteristics 
of the AISI 302 steel. The steel was aged at temperatures of 1100°C and 1200°C and for times ranging from 0 to 6000 minutes. The 
structural and mechanical characterization techniques used were the metallurgical microscope, nanoindentation technique, and macro-
hardness test. At the microstructural level, an increase in the time or temperature of the aging contributed to an increase in the austenite 
grains size of AISI 302 steel. This microstructural change led to a decrease in the nanohardness and a drop in the macro-hardness 
between the unaged and aged conditions of AISI 302 steel. 
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1. INTRODUCTION
In terms of annual production, austenitic stainless steels are the largest group of stainless steels [1]. The AISI 300 

steel series are Chromium-Nickel alloys [2], which are essentially developed from steel composed of 18 wt% (percentage 
by weight) of Chromium and 8 wt% of Nickel [3]. They exhibit good mechanical properties, manufacturability, and 
corrosion resistance [1]. They are typically used in high-temperatures and food contact applications [4]. 

Owing to their importance at the industrial level, steels have been extensively studied to understand their 
metallurgical behavior [5-10]. In the literature, the phenomenon of austenite grain growth and its relationship with the 
temperature and time of the aging treatment have gained great interest [11–13]. D. Dong et al. [11], Z. Li et al. [12] and 
S. Benmaziane et al. [13] found that the austenite grain size of the steels increases considerably by increasing the treatment 
temperature. For a fixed temperature, they also reported that the grain growth rate decreases with increasing treatment
time. The mechanism of grain growth has been elucidated in several studies [12, 14–16]. As shown in the work of
R.C. Chen et al. [15], the growth of austenite grain in 300 M steel results from the grain boundaries migrating by
incrementing temperature from 900°C to 1150°C and time from 5 to 120 minutes. For the GCr15 bearing steel cast billet
treated at a temperature range of 1000–1250°C and a holding time interval of 30–180 minutes, Z. Li et al. [12] explained
that grain boundaries migrating process decrease the driving force for grain growth.

Studies have sought to determine the effect of the size of austenite grains on the nano- and macro-mechanical 
properties of steels [17–20]. S. Li et al. [18], G. Liu et al. [19], and our previous work [20] reported the thermal aging 
behavior of the micro-constituents of various stainless-steel grades. For the austenite, at temperatures below 800°C and 
for prolonged holding times, the measurements showed that nanohardness after aging was slightly influenced [18–20]. 
The paper results of Y. Su et al. [17] have shown that the increase of the austenite grains size contributed to the decrease 
in the strength and ductility of Novel 20LH5 austenitic stainless steel.  

Several metallurgical studies have been conducted on AISI 302 steel; however, only limited research has been 
performed on the evolution of the nanohardness of austenite as a function of time at high-temperatures. The 
structural and mechanical studies of the AISI 302 steel help to determine a heat treatment correctly to optimize its 
mechanical performance. In this paper, the aging mechanism and microstructural variations of AISI 302 steel at 
temperatures 1100°C and 1200°C up to 6000 minutes were investigated. Herein, the microstructure of AISI 302 
steel under different heat treatment conditions was visualized using metallurgical microscope. Mechanical 
characterization of the AISI 302 steel before and after aging was carried out using the nanoindentation technique 
and macro-hardness tests. 

2. MATERIALS AND METHODS
2.1. Chemical Composition

The chemical composition (in wt%) of the as-received AISI 302 steel is shown in Table 1 [21]. The AISI 302 steel 
was obtained from a steel plant located in the city of Casablanca, Morocco. At the industrial level, the AISI 302 
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commercial steel was produced in an electric arc furnace and hot-rolled to 10 mm thick plates. The AISI 302 steel samples 
used in the present study were rectangular in shape and had dimension of 25×25×10 mm3. 
Table 1. Chemical composition of AISI 302 steel 

Element Fe Cr C Ni Si Mn P
Percentage by weight (wt%) 72.81 18 0.15 8 0.4 0.61 0.03 

2.2. Aging Treatments 
The AISI 302 steel samples were aged using a SELECTA air furnace at a heating rate of 20°C per minute and 

temperature control with an accuracy of ± 1°C. First, the steel was aged at two temperatures 1100°C and 1200°C and for 
the following durations: 0 (unaged condition of the AISI 302 steel), 60, 600, 1000, and 6000 minutes. Then, the quenching 
of the samples was carried out in water up to a temperature of ~ 25°C (room temperature). 

2.3. Metallurgical Observations 
Prior to the metallurgical observations, the samples of AISI 302 steel were mechanically polished using abrasive 

papers with grain sizes of 320, 600, 1200, and 4000. The polishing was completed using diamond pastes with particle 
sizes of 1, 3, and 6 μm and suspended in distilled water. This mechanical preparation made it possible to remove the oxide 
layers formed during heat treatments and to obtain a mirror-polished surface.  

The structure of AISI 302 stainless steel was visualized by chemical etching with dilute aqua regia solution (mixture 
of 5 mL HNO3, 15 mL HCl, and 100 mL H2O) and the rinsing was performed with bi-distilled water [22]. The structure 
of the AISI 302 steel was examined using an OPTIKA brand metallurgical microscope coupled with a high-resolution 
AIPTEK camera. The average grain size was measured by using the linear intercept method.  

2.4. Nanoindentation Technique 
Nanoindentation tests were performed using a Nanoindenter XP (CSM Instruments) tester with a Berkovich indenter 

of B-O 45 series (pyramidal diamond tip with a nominal angle of 65.3° between the vertical axis and each face) [23]. 
Nanoindentations were performed under a maximum load of 50000 μN and a dwell time of 5 seconds.  

Analysis of the loading-unloading curves of the samples was performed using the method of Oliver and 
Pharr [24, 25]. Figure 1 shows a typical loading–unloading curve with an indication of the parameters used in this method. 
The hc is the contact depth and can be calculated as follows:  hୡ ൌ  h୫ୟ୶ െ  ɛ ൈ ቀ୔ౣ౗౮ୗ ቁ. (1)

Where Pmax is the peak load, hmax is the indenter maximum penetration on the sample flat surface, ɛ is a constant 
(equal to 0.75 for Berkovich indenter), and S is the unloading curve tangent slope. 

Ac is the contact projection area and can be expressed as follows: Aୡ ൌ 24.5 ൈ hୡଶ ൅ ∑ C୧ ൈ hୡଵ/ଶ౟଻୧ୀ଴ . (2)

Where C1, C2, ..., C7 are constants. The first term of equation (2) describes the perfect shape of the Berkovich 
indenter, and the second term describes deviations from Berkovich geometry due to the blunting tip.  

HIT is the nanohardness and expressed as follows: H୍୘ ൌ  P୫ୟ୶/Aୡ. (3)

Another parameter used in the evaluation of loading-unloading curves is hr which refers to the indenter residual 
penetration. The value of the hr parameter is the intersection of the unloading curve with the horizontal axis (see Figure 1). 

Figure 1. The typical loading-unloading curve of nanoindentation test 



269
Microstructure, Nano-, and Macro-Indentation Characterization of AISI 302 Steel...     EEJP. 4 (2023)

2.5. Macro-Hardness Test 
Macro-hardness measurements were effectuated using a TESTWELL Durometer. The macro-hardness of the 

AISI 302 steel samples was evaluated using the ROCKWELL C method (diamond indenter with a total load of 
150 Kgf) [26]. To assure repeatability, each macro-hardness value corresponded to the average of 10 indentations well 
distributed on the flat surface of each sample. 

3. RESULTS AND DISCUSSIONS
3.1. Metallurgical Study

Figure 2 shows the phase fraction versus temperature diagram computed using the JMatPRO (version 7.0) software 
for the steel composition shown in Table 1 and for a temperature range of 1000 – 1500°C. As illustrated in Figure 2, the 
microstructure of AISI 302 steel was composed of 100 wt% of austenite for the two temperatures studied 1100°C and 
1200°C.  

Figure 2. Phase diagram of the AISI 302 steel calculated using JMatPro (Version 7) software 

Figure 3 shows micrographs of the microstructure of the AISI 302 steel aged at 1100 °C for 0, 60, 600, 1000, and 
6000 minutes. According to the images obtained, the equiaxed grains size of the AISI 302 steel increased by increasing 
the aging time from 0 to 6000 minutes. The grains growth contributes to a reduction in the number of grains per unit 
volume, and therefore a decrease in the total area of grain boundaries [27]. At high-temperatures, these microstructural 
changes are caused by the grain boundaries migrating process [15–16]. 

Figure 3. Metallurgical microscope 
images of AISI 302 steel aged at 1100°C 
for (a) 0 minutes, (b) 60 minutes, 
(c) 600 minutes, (d) 1000 minutes and
(e) 6000 minutes

Figure 4 shows the austenite grain size as a function of the temperature and time of aging. As can be observed, for 
a fixed temperature, the austenite grain growth behavior can be divided into two stages: rapid growth stage for times 
below 1000 minutes, and relatively slow growth stage for times up to 6000 minutes. In other words, the majority of grain 
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growth occurred within 1000 minutes, and as the aging time increased, the grain growth rate slowed down. We can 
conclude that grain growth kinetics are reduced by increasing the aging time, which is linked to a decrease in the driving 
force for grain growth [28]. 

Several scientific papers have discussed the effect of the temperature and time of treatment on the austenite grain 
growth rate. The grain growth rate (dD/dt) can be quantitatively described as follows [12, 28-31]:   ୢୈୢ୲ ൌ  M଴ exp ቀെ   ୕ౘୖ ୘ቁ ୅ ஓୈ . (4)

Where M0 is the pre-exponential coefficient, Qb is the grain boundary activation energy, R is the gas constant 
(8.314 J/mol/K), T is the temperature, A is a constant, γ is the grain boundary energy, and D is the austenite grain size. 
According to equation 4, the austenite growth rate increases with the increase of temperature and decreases with the 
increase of austenite grain size. These conclusions are in good agreement with the grain size measurements of AISI 302 
steel under different conditions (see Figure 4). 

Figure 4. The austenite grain size of austenite aged at 1100°C and 1200°C for 0 (unaged), 60, 600, 1000, and 6000 minutes 

3.2. Nanoindentation Technique 
Figure 5 shows the nanoindentation curves of the austenite aged at 1100 °C and 1200°C for 0, 60, 600, 1000, and 

6000 minutes. The nanoindentation measurements were categorized according to the aging temperature; Figure 5(a) for 
1100°C and Figure 5(b) for 1200°C. The applied load (P) was plotted as a function of the penetration depth of the indenter 
(h) on the flat surfaces of the samples. For the different aging treatments, the mechanical behavior of the austenite was
nearly identical. Nanoindentation curves did not exhibit discontinuities during the complete loading-unloading
cycle [32, 33]. For all nanoindentation curves obtained, the unloading part was linear with a low slope. The plotted
nanoindentation curves correspond to ductile materials [34].

We plotted the nanoindentation curve of the austenite aged for 0 minutes in Figure 5(a) and Figure 5(b) in order to 
visualize the effect of thermal aging time. At a given temperature, the nanoindentation curves shifted to the right by 
incrementing the aging time. According to Figure 5, the difference in displacement between the austenite curves was 
small for times greater than 60 minutes at two temperatures 1100°C and 1200°C. 

Figure 5. The loading-unloading curves of the AISI 302 steel 
aged at (a) 1100°C and (b) 1200°C for 0 (unaged), 60, 600, 1000, and 6000 minutes 

The nano-mechanical behavior of the austenite can also be evaluated from the parameters extracted from the 
P-h curves and which are hmax and hr. Table 2 shows the values of the parameters hmax and hr as a function of the
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temperature and time of the aging. Compared to the austenite aged for 0 minutes, the values of hmax and hr increased by 
increasing one of the aging treatment parameters (time or temperature).  
Table 2. Parameters extracted from the loading-unloading curves of austenite aged at 1100°C and 1200°C for 0 (unaged), 60, 600, 
1000, and 6000 minutes 

Maximum indenter penetration depth 
(hmax (nm)) 

Residual indenter penetration depth 
(hr (nm)) 

Aging time (minutes) 1100°C 1200°C 1100°C 1200°C 
0 (unaged) 803.99 707.79 

60 921.71 936.15 825.51 839.95
600 942.81 949.62 846.61 853.42
1000 961.93 978.54 865.73 882.34
6000 982.36 994.10 886.16 897.90

Table 3 shows the variation in the elastic deformation work (We), plastic deformation work (Wp), and total work 
(Wt) performed by the Berkovich indenter in the austenite phase as a function of the temperature and time of the aging. 
The We corresponds to the area surrounded between the unloading curve and the horizontal axis. The Wp corresponds to 
the area between the loading and unloading curves and the horizontal axis. The Wt is the sum of the We and Wp. As can 
be seen from this table, the We decreased while the Wt and Wp increased by incrementing the temperature or time of the 
aging. These results indicated an increase in the plastic deformation of the austenite aged at temperatures 1100°C and 
1200°C for the longest holding time of 6000 minutes. 
Table 3. The elastic deformation work, plastic deformation work and total deformation work carried out by the Berkovich indenter at 
aging temperatures 1100°C and 1200°C for 0 (unaged), 60, 600, 1000, and 6000 minutes. 

Elastic work deformation carried out 
by the indenter (We (PJ)) 

Plastic work deformation carried out 
by the indenter (Wp (PJ)) 

Total work deformation carried out 
by the indenter (Wt (PJ)) 

Aging time 
(minutes) 1100°C 1200°C 1100°C 1200°C 1100°C 1200°C

0 (unaged) 1869.49 12454.95 14324.44 
60 1723.60 1709.22 15401.94 16202.61 16725.54 17911.83

600 1704.09 1699.53 16465.45 16671.93 18169.54 18371.46
1000 1698.71 1678.84 16984.51 17256.79 18683.22 18935.63
6000 1661.42 1654.74 17322.82 17952.25 18984.24 19606.99

The nanohardness values of the austenite as a function of the temperature and time of the aging are summarized in 
Table 4. For a given aging time, the nanohardness at 1200°C was lower than that at 1100°C. For the two temperatures 
explored, the nanohardness of the austenite decreased for aging times between 0 and 60 minutes. By contrast, the 
nanohardness of the austenite remained nearly constant over an aging time interval ranging from 60 to 6000 minutes. 
Several scientific studies have also shown that the nano-hardness of the aged austenite is almost constant at temperatures 
between 350°C and 800°C, and for prolonged holding times up to 20000 h [35-37]. 
Table 4. Nano-hardness of the austenite aged at 1100°C and 1200°C for 0 (unaged), 60, 600, 1000, and 6000 minutes. 

Nanohardness (HIT (GPa)) 
Aging time (min) 1100°C 1200°C 

0 (unaged) 3.69 ± 0.30 
60 2.75 ± 0.25 2.66 ± 0.30 
600 2.62 ± 0.25 2.58 ± 0.25 

1000 2.51 ± 0.15 2.42 ± 0.20 
6000 2.40 ± 0.10 2.34  ± 0.15 

3.3. Macro-Hardness Test 
Figure 6 shows the macro-hardness evolution of the AISI 302 steel aged at 1100°C and 1200°C for 0, 60, 600, 1000, 

and 6000 minutes. Regardless of the aging temperature, this mechanical property reduced significantly by incrementing 
the treatment time.  

As shown in Figure 6, the thermal aging behavior of AISI 302 steel was almost identical for the two temperatures 
studied. The aging behavior of the AISI 302 steel exhibited a decreasing trend with two-softening stages and it can be 
described as follows: the macro-hardness decreased sharply in the first stage (0–1000 minutes) and it continued to 
decrease but slightly in the second stage (1000–6000 minutes). The error bars represent the standard deviation of the 
macro-hardness measurements. In the second stage, the variation of the macro-hardness standard deviation fluctuated 
very little compared with the first stage. 

The significant loss of the steel macro-hardness can be explained mainly by the austenite grains growth and reduction 
in the area of grain boundaries per unit volume [14,27,38]. The Hall-Petch equation [39–41] also confirms the relationship 
between the variation in the macro-hardness (H) and the change in the microstructure. It can be written as follows: 
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H ൌ f ൈ ቆH଴ ൅  k dభమ൘ ቇ ൅ ሺ1 െ fሻ ൈ Hୋ୆ . (5)

In which f is the volume fraction of the grains and (1-f) is the volume fraction of the grain boundaries, H0 and k are 
material-specific constants, d is the average grain diameter, and HGB is the hardness of the grain boundaries.  

For the two temperatures investigated, the two stages of the macro-hardness variation as a function of time are due 
to the decrease of the grain growth rate by incrementing the treatment time [11, 12].  

Figure 6. Macro-hardness variation of the AISI 302 steel 
aged at 1100°C and 1200°C for 0 (unaged), 60, 600, 1000, and 6000 minutes 

4. CONCLUSIONS
In this study, the influence of thermal aging on the microstructural changes, nanoindentation responses, and macro-

hardness evolution of the AISI 302 steel was investigated. The main conclusions drawn from this study were as follows: 
1. According to metallurgical observations, the increase in the temperature or time of aging leads to an increase in the

grains size. The austenite grain size aged for 0 minutes was 49.23 ± 25 µm and after 6000 minutes, it changed
significantly to 581.71 ± 38.25 and 1268.10 ± 33.45 µm for the temperatures 1100°C and 1200°C, respectively.

2. At a fixed aging temperature, the nanohardness of the austenite decreased by incrementing the aging time from 0 to
6000 minutes. The nanohardness of the austenite aged at 0 minutes was equal to 3.69 ± 0.30 GPa, and after
6000 minutes of aging, it was equal to 2.40±0.10 and 2.34±0.15 GPa for the temperatures 1100°C and 1200°C,
respectively.

3. For the temperatures explored, the macro-hardness property dropped significantly with incrementing the thermal aging 
time. The macro-hardness of AISI 302 steel aged at 0 minutes was equal to 54.5 ± 0.75 HRC and after 6000 minutes
of aging, it was equal to 39 ± 0.5 and 36.25 ± 0.5 HRC for the temperatures 1100°C and 1200°C, respectively.

ORCID 
Omar Ben Lenda, https://orcid.org/0009-0008-1979-5508; Hajar El Ganich, https://orcid.org/0000-0003-3303-607X 
El Madani Saad, https://orcid.org/0000-0003-3621-1339 

REFERENCES 
[1] J.K.L. Lai, C.H. Shek, and K.H. Lo, Stainless steels: An introduction and their recent developments, (Bentham Science

Publishers, Beijing, China, 2012), pp. 23. https://doi.org/10.1007/978-1-84628-669-8
[2] J.R. Davis, Alloy digest sourcebook: stainless steels, (ASM international, Materials Park, Ohio, USA, 2000), p. 7.
[3] S.L. Chawla, Materials selection for corrosion control, (ASM international, Materials Park, Ohio, USA, 1993), p. 117.
[4] F. Cardarelli, Materials Handbook: A Concise Desktop Reference, 2nd ed. (Springer Science & Business Media, London, UK,

2008), p. 102. https://doi.org/10.1007/978-1-84628-669-8
[5] N.A. Savinkov, O.M. Bulanchuk, and A.A. Bizyukov, East. Eur. J. Phys. 3, 102 (2021). https://doi.org/10.26565/2312-4334-2021-3-16
[6] I. Kolodiy, O. Kalchenko, S. Karpov, V. Voyevodin, M. Tikhonovsky, O. Velikodnyi, G.Tolmachova, R. Vasilenko, and

G. Tolstolutska, East. Eur. J. Phys. 2, 105 (2021). https://doi.org/10.26565/2312-4334-2021-2-07
[7] V. Voyevodin, M. Tikhonovsky, G. Tolstolutska, H. Rostova, R. Vasilenko, O. Kalchenko, N. Andrievska, and O. Velikodnyi,

East. Eur. J. Phys. 3, 93 (2020), https://doi.org/10.26565/2312-4334-2020-3-12
[8] N. Filonenko, A. Babachenko, and G. Kononenko, East Eur. J. Phys. 2, 46 (2019), https://doi.org/10.26565/2312-4334-2019-2-07
[9] V.A. Belous, Yu.A. Zadneprovskiy, N.S. Lomino, I.S. Domnich, and T.I. Bevs, East Eur. J. Phys. 4, 98 (2018),

https://doi.org/10.26565/2312-4334-2018-4-12
[10] O. Ben lenda, S. Benmaziane, A. Tara, and E. Saad, E3S Web Conf. 297, (2021), https://doi.org/10.1051/e3sconf/202129701044
[11] D. Dong, F. Chen, and Z. Cui, J. Mater. Eng. Perform. 25, 152 (2016), https://doi.org/10.1007/s11665-015-1810-9
[12] Z. Li, Z. Wen, F. Su, R. Zhang, and Z. Li, J. Mater. Res. 31, 2105 (2016), https://doi.org/10.1557/jmr.2016.248
[13] S. Benmaziane, O. Ben Lenda, S. Saissi, L. Zerrouk, and E. Saad, Recent Pat. Mech. Eng. 15, 486 (2022),

http://dx.doi.org/10.2174/2212797615666220816123154
[14] Z. B. Liu, X. Tu, X. H. Wang, J. X. Liang, Z. Y. Yang, Y. Q. Sun, and C. J. Wang, J. Iron Steel Res. Int. 27, 732 (2020),

https://doi.org/10.1007/s42243-020-00429-6



273
Microstructure, Nano-, and Macro-Indentation Characterization of AISI 302 Steel...     EEJP. 4 (2023)

[15] R.C. Chen, C. Hong, J.J. Li, Z.Z. Zheng, and P.C. Li, Procedia Eng. 207, 663 (2017),
https://doi.org/10.1016/j.proeng.2017.10.1038

[16] C. Yue, L. Zhang, S. Liao, and H. Gao, J. Mater. Eng. Perform. 19, 112 (2010), https://doi.org/10.1007/s11665-009-9413-y
[17] Y. Su, R. Song, T. Wang, H. Cai, J. Wen, and K. Guo, Mater. Lett. 260, 1 (2020), https://doi.org/10.1016/j.matlet.2019.126919
[18] S. Li, Y. Wang, S. Li, H. Zhang, F. Xue, and X. Wang, Mater. Des. 50, 886 (2013), https://doi.org/10.1016/j.matdes.2013.02.061
[19] G. Liu, Y. Wang, S. Li, and X. Wang, J. Mater. Eng. Perform. 27, 4714 (2018), https://doi.org/10.1007/s11665-018-3540-2
[20] O. Ben Lenda, E. Saad, A. Tara, and O. Jbara, Adv. Mater. Process. Technol. 8, 3859 (2022),

https://doi.org/10.1080/2374068X.2022.2036443
[21] H.S. Khatak, and B. Raj, Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring (Woodhead Publishing, 

Cambridge, UK, 2002), p. 6
[22] G.F. Vander Voort, Metallography, Principles and Practice (ASM International, Materials Park, Ohio, USA, 1999), p. 649
[23] M. Yovanovich, in: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics

and Astronautics, Reno, Nevada, 2006), pp. 1-28.
[24] W.C. Oliver, and G.M. Pharr, J. Mater. Res. 7, 1564 (1992). https://doi.org/10.1557/JMR.1992.1564
[25] G.M. Pharr, W.C. Oliver, and F.R. Brotzen, J. Mater. Res. 7, 613 (1992). https://doi.org/10.1557/JMR.1992.0613
[26] E. Broitman, Tribol. Lett. 65, 1 (2017), https://doi.org/10.1007/s11249-016-0805-5
[27] G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, Handbook of Workability and Process Design (ASM international, Materials Park,

Ohio, USA, 2003), pp. 250-251
[28] Y. Xu, J. Liu, Y. Zhao, and Y. Jiao, Philos. Mag. 101, 77 (2021). https://doi.org/10.1080/14786435.2020.1821113
[29] M. Militzer, E.B. Hawbolt, and T.R. Meadowcroft, Metall. Mater. Trans. A, 27, 3399 (1996).

https://doi.org/10.1007/BF02595433
[30] S.H. Mohamadi Azghandi, V. Ghanooni Ahmadabadi, and A. Zabett, Philos. Mag. 94, 2758 (2014).

https://doi.org/10.1080/14786435.2014.932460
[31] B.R. Patterson, and Y. Liun, Metall. Trans. A. 23, 2481 (1992). https://doi.org/10.1007/BF02658051
[32] T.H. Ahn, C.S. Oh, K. Lee, E.P. George, and H.N. Han, J. Mater. Res. 27, 39 (2012), https://doi.org/10.1557/jmr.2011.208
[33] N.K. Mukhopadhyay, and P. Paufler, Int. Mater. Rev. 51, 209 (2006), https://doi.org/10.1179/174328006X102475
[34] O. Ben Lenda, A. Tara, F. Lazar, O. Jbara, A. Hadjadj, and E. Saad, Strength Mater. 52, 71 (2020).

https://doi.org/10.1007/s11223-020-00151-4
[35] S.L. Li, Y.L. Wang, and X.T. Wang, Mater. High Temp. 32, 524 (2015). https://doi.org/10.1179/1878641314Y.0000000040
[36] G. Liu, Y. Wang, S. Li, K. Du, and X. Wang, Mater. High Temp. 33, 15 (2016).

https://doi.org/10.1179/1878641315Y.0000000014
[37] S.L. Li, Y.L. Wang, H.L. Zhang, S.X. Li, K. Zheng, F. Xue, and X.T. Wang, J. Nucl. Mater. 433, 41 (2013).

https://doi.org/10.1016/j.jnucmat.2012.09.004
[38] J. Choi, C.S. Seok, S. Park, and G. Kim, J. Mater. Res. Technol. 8, 2011 (2019). https://doi.org/10.1016/j.jmrt.2018.11.017
[39] E.O. Hall, Proc. Phys. Soc. B, 64, 747 (1951). https://doi.org/10.1088/0370-1301/64/9/303
[40] N.J. Petch, J. Iron Steel Inst. 174, 25 (1953)
[41] A.M. Glezer, and I.E. Permyakova, Melt-Quenched Nanocrystals (CRC Press, Boca Raton, Florida, USA, 2013).

ХАРАКТЕРИСТИКА МІКРОСТРУКТУРИ, НАНО- ТА МАКРОІНДЕНТАЦІЇ СТАЛІ AISI 302 
ПІСЛЯ ВИСОКОТЕМПЕРАТУРНОГО СТАРІННЯ 

Омар Бен Лендаa, Хаджар Ель Ганічb, Ель Мадані Саадa 
a Перший університет Хасана в Сетаті, лабораторія фізико-хімії процесів та матеріалів факультету наук та технологій, 

Сетат, Марокко 
b Перший університет Хасана в Сеттаті, вищий інститут медичних наук, лабораторія наук та технологій охорони здоров'я, 

ВР 555, 26000, Сетат, Марокко 
Структурні та механічні дослідження сталі AISI 302 спрямовані на розробку правильної термообробки з метою оптимізації її 
механічних властивостей. У цьому дослідженні ми досліджували вплив температури та часу старіння на структурно-механічні 
характеристики сталі AISI 302. Сталь старіли при температурах 1100°C і 1200°C протягом часу від 0 до 6000 хвилин. 
Методами структурної та механічної характеристики, які використовувалися, були металургійний мікроскоп, метод 
наноіндентування та тест на макротвердість. На мікроструктурному рівні збільшення часу або температури старіння сприяло 
збільшенню розміру зерен аустеніту сталі AISI 302. Ця зміна мікроструктури призвела до зниження нанотвердості та падіння 
макротвердості між нестареним і старим станом сталі AISI 302. 
Ключові слова: сталь AISI 302; старіння; мікроструктура; аустеніт; зростання зерна; нанотвердість; наноіндентування; 
макротвердість 




