
66
East European Journal of Physics. 4. 66–76 (2023)

DOI: 10.26565/2312-4334-2023-4-07 ISSN 2312-4334

NUMERICAL SIMULATION AND ANALYSIS OF THE MODIFIED
BURGERS’ EQUATION IN DUSTY PLASMAS

Harekrishna Dekaa, Jnanjyoti Sarmab
aK.K. Handiqui State Open University, Khanapara, Guwahati, 781022, India

bR.G. Baruah College, Fatasil Ambari, Guwahai, 781025, India
∗Corresponding Author e-mail: harekrishnadeka11@gmail.com

Received July 30, 2023; revised September 16, 2023; accepted September 25, 2023

This paper presents a comprehensive study on the numerical simulation of the one-dimensional modified Burgers’ equation
in dusty plasmas.The reductive perturbation method is employed to derive the equation, and a numerical solution is
obtained using the explicit finite difference technique.The obtained results are extensively compared with analytical
solutions, demonstrating a high level of agreement, particularly for lower values of the dissipation coefficient.The accuracy
and efficiency of the technique are evaluated based on the absolute error.Additionally,the accuracy and effectiveness of
the technique are assessed by plotting L2 and L∞ error graphs.The technique’s reliability is further confirmed through
von-Neumann stability analysis, which indicates that the technique is conditionally stable. Overall, the study concludes
that the proposed technique is successful and dependable for numerically simulating the modified Burgers’ equation in
dusty plasmas.
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1. INTRODUCTION

Wave propagation in dusty plasmas [1] has gained significant attention in recent years due to its relevance in
astrophysical and space environments, as well as in the lower ionosphere of the Earth [2, 3, 4, 5, 6]. The presence
of charged dust particles in dusty plasmas has a notable impact on the spectra of normal plasma waves [7], giving
rise to the emergence of two kind of low-frequency waves [8] in dusty plasmas, including dust acoustic waves
[9, 10] and dust-ion-acoustic waves [8, 9].Dust-acoustic waves (DAWs) have numerous industrial uses, including in
laboratory plasma equipment, semiconductor chip manufacturing, and fusion reactor systems [11, 12]. Numerous
researchers have investigated the characteristics of nonlinear wave propagation in dusty plasmas. Tamang and
Saha [13] presented dynamic transitions of dust acoustic waves in collisional dusty plasmas. Dev et al. [14] have
derived the nth-order three-dimensional modified Burgers’ equation, considering non-thermal ions with varying
temperatures.Tian et al.[15] analyzed a new (3 + 1)-dimensional modified Burgers’ equation with the electron
distribution in the presence of trapping particles and the kinetic equation of charge of dust particle. This paper
investigates the one-dimensional modified Burgers’ equation in a dusty plasma medium. The MBE has the
strong non-linear behaviours and also has widely been utilized in physical phenomena [16].The MBE equation
is a nonlinear advection-diffusion equation [17].The primary objective is to numerically solve the equation and
explore the diverse characteristics of shock waves. Numerous authors in the literature have suggested and
applied diverse numerical techniques to approximate the solution of the modified Burgers’ equation.A summary
of the suggested numerical techniques for approximating the solution of the modified Burgers’ equation includes
the following:

Zeytinoglu et al.[18] investigated an efficient numerical method for analyzing the propagation of shock
waves in the equation. Bratsos [19] employed a finite difference technique as a computational method to
solve the equation. Ramadan et al. [20] employed a septic B-spline collocation approach for solving the
equation. Irk [21] have applied the sextic B-spline collocation technique for solving the equation. Saka and Dag
[22] used quintic B-splines collocation technique to solve the equation. Duan et al.[23] implemented Lattice
Boltzmann method to solve the equation. A Chebyshev spectral collocation method is applied by Temsah [24].
Roshan and Bharma [25] applied the Petrov-Galerkin method for solving the equation. Kutluay et al.[26]
implemented a cubic B-spline collocation technique for solving the equation. Also, Ucar et al. [27] used
finite difference technique for solving the equation. Gao et al. [28] developed a high bounded upwind scheme
within the normalized-variable formulation to approximate the equation. Grienwank et al. [29] introduced a
non-polynomial spline-based method for solving the equation. Bratsos et al. [30] employed the explicit finite
difference scheme to numerically solve the equation.Numerical solution of nonlinear modified Burgers’ equation
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is obtained using an improvised collocation technique with cubic B-spline as basis functions in [31]. The authors
in [32] provided an orthogonal collocation technique with septic Hermite splines as basis function to obtain the
numerical solution of non-linear modified Burgers’ equation. A numerical method based on quintic trigonometric
B-splines for solving modified Burgers’ equation (MBE) is presented in [33]. The arrangement of the manuscript
is as follows. Section 2 of the manuscript discusses the governing equations of the dusty plasma model, along
with the derivation of the modified Burgers’ equation in dusty plasmas. Section 3 presents the explicit finite
difference technique. The stability analysis of this technique is presented in Section 4. Section 5 includes the
results and discussion, while the conclusion is provided in Section 6.

2. GOVERNING EQUATIONS AND DERIVATION OF MODIFIED BURGERS’ EQUATION

The governing equations for the dusty plasma model are:

∂nd
∂t

+∇. (ndud) = 0 (1)

∂ud
∂t

+ (ud.∇)ud =
Zde

md
∇Ψ− ∇pd

mdnd
(2)

The Poisson equation is expressed as follows

∇2Ψ = 4πe[ne + Zdnd − nil − nih] (3)

where ud represents the fluid speed, Zd denotes the dust charge number, md represents the mass of the dust
particle, Ψ represents the electrostatic potential, and nd represents the dust particle number density. Addition-
ally, nil represents the ion particle number density at lower temperature, nih represents the ion particle number
density at higher temperature, and ne represents the electron particle number density.

The electron density, as well as the ion densities at both low and high temperatures, are provided as follows:

ne =

(
1

σ1 + σ2 − 1

)
e

(
sθ1Ψ
KBTe

)
(4)

nil =

(
σ1

σ1 + σ2 − 1

)(
1 + ηgφ+ η (gφ)

2
)
exp

(
−gΨ
KBTil

)
(5)

nih =

(
σ1

σ1 + σ2 − 1

)(
1 + ηgρφ+ η (gθφ)

2
)
exp

(
−gρΨ
KBTih

)
(6)

where θ1 = Til

Te
, θ2 = Tih

Te
, θ = θ1

θ2
= Til

Tih
, σ1 = nil0

ne0
, σ2 = nih0

ne0
, g =

Teff

Til
= σ1+σ2−1

σ1+σ2θ+θ1
, φ = eΨ

KBTeff
and η = 4κ

1+3κ .

The charge equation is written as [35, 36]

dQ̄d

dt
+ νQ̄d = |Ie0|nd0Zd0

(
n̄il
nil0

+
n̄ih
nih0

− n̄e
ne0

)
(7)

with Qd = Q̄d+Qd0 where Q̄d and Qd0 are the charged of the dust particle at perturbed and equilibrium states

respectively. The natural decay rate ν is defined as ν = e|Ie0|
C

[
1

KBTeff
+ 1

ℵ0

]
and ℵ0 = kBTeff − eΨf0, with

Ψf0 is the floating potential at equilibrium.
The effective temperatures Teff for two types of ions, namely, ions at low temperature and ions at high

temperature, are provided.

Teff =

[
1

nd0Zd0

(
ne0
Te

+
nil0
Til

+
nih0
Tih

)]−1

(8)

The equations 1, 2, 3 and 7 can be expressed in their normalized form as follows:

∂Nd

∂T
+∇ (NdUd) = 0 (9)

(
∂

∂T
+ Ud∇

)
Ud = Zd∇ψ − Ω

5

3
N

d

−1

∇Nd
ξ (10)
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∇2ψ = Υ1ψ +Υ2ψ
2 + (ZdNd − 1) (11)

dZd

dι
+ ν′Zd = r + r1ψ + r2ψ

2 (12)

where Υ1 = θ1+(σ1+σ2θ)(1−η)
σ1+σ2−1 g, Υ2 = θ1

2−σ1−σ2θ
2

2(σ1+σ2−1) g
2,Ω = Td

Teff
, r = |Ie0|

ezd0ωpd
, r1 = |Ie0|[(η−1)(1+θ)−θ1]

ezd0ωpd
, r2 =

|Ie0|(1+θ2−θ1
2)

2ezd0ωpd
g2, ν′ = ν

ωpd
and Nd is the number density of dust particle and is normalized by nd0, Ud is the

fluid velocity which is normalized by cd =
√

Zd0kBTeff

md
,ψ is the electrostatic potential which is normalized by

ψ = eΨ
KBTeff

and charge density Zd is normalized by Zd0.x is normalized by the dust λD =
(

KBTeff

4πnd0e2Zd0

) 1
2

and

time variable t is normalized by the dust plasma frequency ωpd =
(

4πZd0
2nd0e

2

md

) 1
2

. The adiabatic index ξ = 3

for the one dimensional geometry of the system.

For employing reductive perturbation theory, the space and time stretched coordinates are as follows:

ζ = ϵ3 (x− Vpt) ; ι = ϵ6t (13)

where ϵ represents a small quantity that characterizes the nonlinearity in the system, and Vp is the phase speed
of the wave. The variables Nd, Zd , ψ and Udx are expanded as power series in terms of ϵ as shown below:

Nd = 1 + ϵN
(1)
d + ϵ2N

(2)
d + ϵ3N

(2)
d + . . . (14)

Zd = 1 + ϵZ
(1)
d + ϵ2Z

(2)
d + ϵ3Z

(2)
d + . . . (15)

ψ = ϵψ(1) + ϵ2ψ(2) + ϵ3ψ(3) + . . . (16)

Udx = ϵU
(1)
dx + ϵ2U

(2)
dx + ϵ3U

(3)
dx + . . . (17)

After substituting the relations 13-17 into equations 9-12 and performing some algebraic manipulations,
the following equation has been obtained [14] as:

∂ψ(1)

∂ι
+A

[
ψ(1)

]3 ∂ψ(1)

∂ζ
= B

∂2ψ(1)

∂ζ2
(18)

The nonlinear coefficient A is given in the form

A =
e2zd0 (zd0 + r1)

V 3
p m

2
d

− e2r1zd0
V 3
p m

2
dθ

− 4

3

er2
mdVP

+
e3 (zd0)

3

4V 5
p m

3
d

− r21e

4mdVpz
(0)
d θ2

+
r2e

2

Vpmdθ

− e

2mdVpzd0θ2
+

r1r2Vp

4θ2 (zd0)
2 +

r21Vp

16θ3 (zd0)
2

(19)

and the dissipation coefficient B is represented by

B =
V 4
p r

2ω2
pdθ

2
(20)

The equation 18 is commonly referred to as the one-dimensional modified Burgers’ equation in dusty
plasmas. It serves as a fundamental model for describing various phenomena, including shock wave solutions,
mass transport, gas dynamics in plasma, and fluid dynamics.

The travelling wave solution [14] of 18 is derived as

ψ(1) =
{
ψm

[
1− tanh

(υ
δ

)]} 1
3

(21)
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Here, ψm = 4V l
2Al2 = 2V

Al represents the amplitude of the shock wave, and δ = 2Bl3

V l = 2Bl2

V represents its
width. In these equations, l denotes the direction cosines, and V is the speed of the shock wave. Substitut-

ing υ = ζl−V ι, ψm = 2V
Al and δ = 2Bl2

V in 21, the travelling wave solution of modified Burgers’ equation becomes

ψ(1) (ζ, ι) =

{
2V

Al

[
1− tanh

(
ζl − V ι

2Bl2

V

)]} 1
3

(22)

3. EXPLICIT FINITE DIFFERENCE METHOD

For convenience, we consider ψ(1) (ζ, ι) = u(x, t) and l = 1. The equation 18 is rewritten as

∂u

∂t
+Au3

∂u

∂x
= B

∂2u

∂x2
(23)

The travelling wave solution of equation is written by

u (x, t) =

{
2V

A

[
1− tanh

V

4B

(
x− t

2

)]} 1
3

(24)

with the initial condition,

u (x, 0) =

{
2V

A

[
1− tanh

(
V x

4B

)]} 1
3

(25)

and the boundary conditions

u (0, t) =

{
2V

A

(
1 + tanh

V t

8B

)} 1
3

(26)

u (1, t) =

{
2V

A

[
1− tanh

V

4B

(
1− t

2

)]} 1
3

(27)

In order to discretize the modified Burgers’ equation 23,we apply the forward difference approximation to
replace the partial derivative ∂u

∂t and the central difference approximation to replace the partial derivatives ∂u
∂x

and ∂2u
∂x2 ,as described in reference[34], i.e.

∂u

∂t
≈ ui,j+1 − ui,j

k
(28)

∂2u

∂x2
≈ ui+1,j − 2ui,j + ui−1,j

h2
(29)

∂u

∂x
≈ ui+1,j − ui−1,j

2h
(30)

thus 23 becomes

ui,j+1 − ui,j
k

+Aui,j
3

[
ui+1,j − ui−1,j

2h

]
= B

[
ui+1,j − ui,j + ui−1,j

h2

]
(31)

which simplifies

ui,j+1 = ui,j +
kA

2h
ui,j

3 [ui−1,j − ui+1,j ] +
kB

h2
[ui+1,j − 2ui,j + ui−1,j ] (32)
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4. STABILITY ANALYSIS OF THE EXPLICIT FINITE DIFFERENCE METHOD

The von Neumann analysis method is employed to assess the stability of a numerical approach for both
linear initial value problems and linearized nonlinear boundary value problems [37]. The Von Neumann stability
theory in which the growth factor ξ is defined as

ui,j = ξjeIkhi = ξjeIθi (33)

where I =
√
−1 ,ξj is the amplitude at time level k and h = ∆x.The equation 32 has been linearized by putting

u3 =M to check the stability.

ui,j+1 = ui,j +
kAM

2h
[ui−1,j − ui+1,j ] +

kB

h2
[ui+1,j − 2ui,j + ui−1,j ] (34)

ui,j+1= (1− 2kB

h2
)u

i,j
+ (

kAM

2h
+
kB

h2
)ui−1,j + (

kB

h2
− kAM

2h
)ui+1,j (35)

Substitute 33 in 35, we get

ξjeIθiξ = ξjeIθi
[(
1− 2kB

h2

)
+
(
kAM
2h + kB

h2

)
e−Iθ + (kBh2 − kAM

2h )eIθ
]

ξ =
(
1− 2kB

h2

)
+
(
kAM
2h + kB

h2

)
e−Iθ + (kBh2 − kAM

2h )eIθ

ξ =
(
1− 2kB

h2

)
+ kAM

2h

(
e−Iθ − eIθ

)
+ kB

h2 (e
Iθ + e−Iθ)

ξ =
(
1− 2kB

h2

)
+ kAM

2h (−2Isinθ) + kB
h2 (2cosθ)

ξ =
(
1− 2kB

h2

)
− kAM

h sinθ + 2kB
h2 cosθ

The stability criteria for the numerical technique is |ξ| ≤ 1,which means −1 ≤ ξ ≤ 1 where

|ξ| =
∣∣∣∣(1− 2kB

h2

)
− kAM

h
sinθ +

2kB

h2
cosθ

∣∣∣∣ ≤ 1 (36)

So the stability condition is 2kB
h2 ≤ 1 or kB

h2 ≤ 1
2

k ≤ h2

2B
(37)

5. RESULTS AND DISCUSSION

Upon evaluating the von Neumann stability condition, we explore different values of B (specifically, B =
0.001, 0.005, 0.01, 0.05, 0.1, 0.5) for given step sizes h = 0.001, 0.01 and k = 0.01, 0.05, 0.0001, 0.0005. The
coefficient A is influenced by various plasma parameters, and within these parameters, we consider a specific
range of A values, namely A = 0.2 to A = 4. The validity of the present technique is evaluated using the
absolute error which is defined by ∣∣∣uAnalytical

i − uNumerical
i

∣∣∣ (38)

Also,L2 and L∞ error norms, defined by

L2 =

√√√√h

N∑
j=1

∣∣∣uanalyticalj − unumerical
j

∣∣∣2 (39)

L∞ = max
∣∣∣uanalyticalj − unumerical

j

∣∣∣ (40)

are presented graphically for various values of nonlinear coefficient and dissipation coefficient for chosen space
and time steps to check the accuracy and effectiveness of the method.
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Figure 1. Analytical and numerical solutions, as well as the absolute error, L2 error norm, and L∞ error
norm,at A = 1, B = 0.01, h = 0.01, and k = 0.005.

Figure 2. Analytical and numerical solutions, as well as the absolute error, L2 error norm, and L∞ error norm,
at A = 2,B = 0.05,h = 0.01,k = 0.001.
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Figure 3. Analytical and numerical solutions, as well as the absolute error, L2 error norm, and L∞ error norm,
at A = 2.5,B = 0.1,h = 0.1,k = 0.0005.

Figures 1-3 demonstrate that the greatest absolute error is observed on the left side of the solution domain
for B = 0.01 and B = 0.05. This suggests that there is a significant discrepancy between the numerical and
analytical solutions in that region for these specific values of B.Conversely, the highest error for both the L2

and L∞ norms is found on the right side of the solution domain, again for B = 0.01 and B = 0.05. This implies
that the overall accuracy of the numerical solution deteriorates more prominently towards the right side for
these particular values of B. Furthermore, by examining Figures 1-3, it can be concluded that as the dissipation
coefficient decreases, the wave curves exhibit interesting behavior. Specifically, they become progressively flatter
and steeper. This observation suggests that reducing the dissipation coefficient has a noticeable impact on the
shape and steepness of the wave curves, indicating a stronger influence of convection effects in the system.
Therefore, it can be concluded from the analysis of Figures 1-3 that the dissipation coefficient plays a crucial
role in shaping the behavior of the wave curves.

Figure 4. The numerical solution at various time stages using different values for A and B.
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Figure 4 demonstrates that the wave propagation accelerates as the dissipation coefficient decreases. Fur-
thermore, the figure also illustrates that as the value of the dissipative coefficient decreases, the wave front tends
to exhibit a sharper steepness. In other words, with lower values of the dissipation coefficient, the wave profile
becomes more pronounced and intense, indicating a stronger and more distinct wavefront. Figure 4 provides a
visual representation of the behavior of shock wave profiles at different time intervals, while considering various
values of the dissipation coefficient.

Figure 5. The numerical and analytical solution for various values of A and B (red - analytical, blue -
numerical)

Figure 6. The numerical and analytical solution for various values of A and B (red - analytical, blue -
numerical)

Figure 5 and 6 present a comparison between the numerical and analytical solutions at different time points,
considering various values of A and B. Upon examination, it can be observed that the graphs representing the
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numerical results closely align with the analytical results, particularly when B takes on the values of 0.005 and
0.001.

6. CONCLUSION

In this research, we numerically solve the one-dimensional modified Burgers’ equation in dusty plasmas,
considering the presence of non-thermal ions with different temperatures. The explicit finite difference technique
is employed to solve the equation and investigate the characteristics of shock wave profiles. To assess the
accuracy of our approach, we compare the numerical results with analytical results and find that the numerical
graphs closely match the analytical ones. Moreover, our numerical solutions outperform those obtained by
other methods described in the literature. The results indicate that the accuracy and efficiency of the technique
depend on the value of the dissipation coefficient. Specifically, smaller values of the dissipation coefficient yield
better results. The research also explores the behavior of shock wave propagation for varying values of the
nonlinear coefficient and dissipation coefficient. It is observed that as the dissipation coefficient decreases, the
wave front becomes sharper. To assess the accuracy and efficiency of the proposed technique, the absolute error
is calculated. The findings indicate that the technique’s accuracy and efficiency depend on the value of the
dissipation coefficient, with improved results obtained when the dissipation coefficient is smaller.
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×ÈÑÅËÜÍÅ ÌÎÄÅËÞÂÀÍÍß ÒÀ ÀÍÀËIÇ ÌÎÄÈÔIÊÎÂÀÍÎÃÎ ÐIÂÍßÍÍß
ÁÞÐÃÅÐÑÀ Â ÇÀÏÎÐÎØÅÍIÉ ÏËÀÇÌI
Õàðåêðiøíà Äåêàa, Äæíàíäéîòi Ñàðìàb

aÄåðæàâíèé âiäêðèòèé óíiâåðñèòåò Ê.Ê. Õàíäiêi, Õàíàïàðà, Ãóâàõàòi, 781022, Iíäiÿ
bÊîëåäæ Ð.Ã. Áàðóà, Ôàòàñèë Àìáàði, Ãóâàõàòi, 781025, Iíäiÿ

Ó öüîìó äîêóìåíòi ïðåäñòàâëåíî âñåái÷íå äîñëiäæåííÿ ÷èñåëüíîãî ìîäåëþâàííÿ îäíîâèìiðíîãî ìîäèôiêîâàíîãî

ðiâíÿííÿ Áþðãåðñà â çàïîðîøåíié ïëàçìi. Äëÿ âèâåäåííÿ ðiâíÿííÿ âèêîðèñòîâó¹òüñÿ ìåòîä âiäíîâíèõ çáóðåíü, à

÷èñëîâå ðiøåííÿ îòðèìàíî çà äîïîìîãîþ ÿâíîãî ìåòîäó êiíöåâèõ ðiçíèöü. Îòðèìàíi ðåçóëüòàòè äåòàëüíî ïîðiâ-

íþþòüñÿ ç àíàëiòè÷íèìè ðiøåííÿìè, äåìîíñòðóþ÷è âèñîêèé ðiâåíü óçãîäæåíîñòi, îñîáëèâî äëÿ ìåíøèõ çíà÷åíü

êîåôiöi¹íòà äèñèïàöi¨. Òî÷íiñòü i åôåêòèâíiñòü ìåòîäèêè îöiíþþòü çà àáñîëþòíîþ ïîõèáêîþ. Êðiì òîãî, òî÷íiñòü

i åôåêòèâíiñòü ìåòîäèêè îöiíþ¹òüñÿ øëÿõîì ïîáóäîâè ãðàôiêiâ ïîõèáîê L2 i L∞. Íàäiéíiñòü ìåòîäèêè äîäàòêî-

âî ïiäòâåðäæó¹òüñÿ àíàëiçîì ñòàáiëüíîñòi çà ôîí-Íåéìàíîì, ÿêèé âêàçó¹ íà òå, ùî ìåòîäèêà óìîâíî ñòàáiëüíà.

Çàãàëîì äîñëiäæåííÿ ðîáèòü âèñíîâîê, ùî çàïðîïîíîâàíà ìåòîäèêà ¹ óñïiøíîþ òà íàäiéíîþ äëÿ ÷èñåëüíîãî ìî-

äåëþâàííÿ ìîäèôiêîâàíîãî ðiâíÿííÿ Áþðãåðñà â çàïèëåíié ïëàçìi.

Êëþ÷îâi ñëîâà: ïèëîâà ïëàçìà; ðåäóêòèâíèé ìåòîä çáóðåíü; ìîäèôiêîâàíå ðiâíÿííÿ Áþðãåðñà; ìåòîä ñêií÷åí-

íî¨ ðiçíèöi â ÿâíîìó âèãëÿäi; àíàëiç ñòiéêîñòi ôîí Íåéìàíà
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