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In this paper, we analysed the five-dimensional plane symmetric cosmological model containing perfect fluid in the
context of f(R, T ) gravity. Field equations have solved for two class of f(R, T ) gravity i.e., f(R, T ) = R + f(T ) and
f(R, T ) = f1(R)f2(T ) with the inclusion of cosmological constant Λ and quadratic equation of state parameters in the
form p = αρ2 − ρ, where α is a constant and strictly α ̸= 0. In order to derive the exact solutions, we utilize volumetric
power law and exponential law of expansion. The physical and geometrical aspects of model have discussed.
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1. INTRODUCTION

Over a significant period of time, scientific understanding suggested that the expansion of the universe was
decelerating. However, recent astrophysical observations have indicated that our universe is actually undergoing
an accelerated expansion [1, 2, 3, 4, 5]. This phenomenon is attributed to the presence of a mysterious form of
energy, known as dark energy, which possesses a negative pressure. Dark energy comprises approximately 69% of
the total energy content of the universe, while dark matter constitutes about 26%, and baryonic matter (ordinary
matter) makes up the remaining 5%. The precise nature of dark energy and dark matter remains largely
unknown. Scientists have proposed various theoretical explanations to account for the accelerated expansion
of the universe. One approach involves the consideration of dark energy candidates such as quintessence [6],
phantom models [7, 8], polytropic gas models [9], k-essence [10], tachyons [11], chaplygin gas [12, 13], and the
cosmological constant Λ. The cosmological constant Λ represents a straightforward and natural candidate for
explaining the expansion of the universe. It is essentially a modification to Einstein’s field equations, serving
as a classical correction factor. Incorporating the cosmological constant into the field equations is an effective
means of generating accelerated expansion. However, this approach faces significant challenges, including the
fine-tuning problem and the cosmic coincidence problem in cosmology [14, 15]. An alternative avenue involves
modifying the geometric component of Einstein’s Hilbert action, leading to the formulation of modified theories
of gravity, such as f(R) [16], f(T ) [17], f(G) [18], f(R, T ) [19] theories of gravity. These modified gravity theories
play a crucial role in successfully explaining the motion of galaxy clusters and the rotation curves of galaxies
within the universe. By altering the underlying gravitational framework, these theories provide alternative
explanations for the observed accelerated expansion while addressing certain shortcomings associated with the
cosmological constant approach.

Harko et al. [19] have developed a novel modified theory of gravity called f(R, T ) gravity, which extends
the concept of f(R) gravity. This theory introduces an arbitrary function within the gravitational Lagrangian,
involving both the Ricci scalar R and the trace T of the energy-momentum tensor. By employing metric
formalization, the researchers derived the dynamic field equations for various choices of the Lagrangian. Sev-
eral investigations have focused on studying plane symmetric cosmological models within the framework of
f(R, T )gravity. Chirde and Shekh [20] have explored plane symmetric models of dark energy represented as a
wet dark fluid in the context of f (R, T ) gravity. Pawar and Agrawal [21] examined plane symmetric cosmolog-
ical models incorporating quark and strange quark matter within the framework of f(R, T ) gravity. Shamir [22]
have investigated exact static solutions for plane symmetric systems in f(R, T )gravity. Shaikh and Bhoyar [23]
discussed a deterministic solution of field equation for plane symmetric cosmological model with Λ in modified
theory of gravity. Mollah et al. [24] have explored Bianchi type-III universe with quadratic equation of state in
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Lyra geometry and they found the shear free dark energy cosmological model universe for large values of cosmic
time t. Katore et al. [25] explored plane symmetric cosmological models incorporating perfect fluid and dark
energy within the framework of general relativity (GR). In summary, Harko et al. proposed the f(R, T )gravity
an extension of f(R) gravity and various researchers have since investigated different aspects of plane symmet-
ric cosmological models within this modified theory. These studies have examined dark energy models, quark
matter, static solutions and perfect fluid dynamics within the context of f(R, T ) gravity, thereby contributing
to our understanding of the universe’s behaviour.

In recent times, several researchers have focused on investigating various cosmological models within the
framework of modified f (R, T ) gravity, aiming to elucidate the evolution of the universe during both early and
late times. Adhav [26] examined a locally-rotationally-symmetric (LRS) Bianchi-I spacetime model assuming
a constant expansion rate in the f (R, T ) = R + 2λT gravity theory and obtained a solution and they have
studied physical behaviour of the universe. However, the solutions presented by the author were found to
be mathematically and physically invalid due to an incorrect field equation. Singh and Beesham [27] on the
other hand considered the correct field equations and extended the solutions to incorporate a scalar field model
(quintessence or phantom). They thoroughly explored the geometrical and physical properties associated with
the solutions. Nagpal and her co-authors [28, 29, 30] have also investigated various aspects of f (R, T ) gravity.
Katore and Hatkar [31] studied Kantowski-Sachs and Bianchi type III models incorporating a domain wall
within the f (R, T ) theory. Singh and Singh [32] examined the anisotropic LRS Bianchi type-I metric with dark
energy within the framework of the modified f (R, T ) theory. Aditya et al. [33] analysed a plane-symmetric
dark energy model incorporating a massive scalar field. Singh et al. [34] have studied a spherically symmetric
spacetime in a 5D setting was explored within the framework of f (R, T ) gravity, where the f (R, T ) gravity
theory itself behaves as a dark energy model. Biswal et al. [35] presented a five-dimensional Kaluza-Klein
cosmological model within the f (R, T ) theory of gravity, considering the presence of domain walls and obtained
the solutions using Berman’s proposed special law of variation parameter leading to a constant deceleration
parameter. Dasunaidu et al. [36] investigated non-static five-dimensional spherically symmetric cosmological
models in the presence of massive strings within the framework of f (R, T ) gravity. Pawar et al. [37] have
discussed Bianchi type-V model in presence of perfect fluid with heat conduction using modified theory of
gravity.

In the realm of relativity and cosmology, the equation of state plays a significant role as it defines the
relationship between combined matter, temperature, pressure, and energy density within any region of space.
The quadratic equation of state holds particular importance in Brane world models and the study of dark
energy and general relativistic dynamics in different models [38, 39]. Furthermore, the quadratic equation
of state governs the evolution of the universe from the Planck epoch to the de-Sitter epoch, making it an
increasingly relevant topic. Thus, exploring the quadratic equation of state becomes crucial. The general form
of the quadratic equation of state can be expressed as

p = p0 + αρ + Bρ2 (1)

Where, α, β, p0 are parameters. Equation (1) indicates the first terms of the Taylor expansion of any equation
of state parameter of the form p = p(ρ) about ρ = 0.

Ananda and Bruni [40] examined the Robertson-Walker cosmological model with a non-linear quadratic
equation of state. Ananda and Bruni [41] also investigated the impact of the quadratic equation of state,
described by the equation,

p = αρ+
ρ2

ρc
(2)

on anisotropic homogeneous and inhomogeneous cosmological models in general relativity, aiming to achieve
isotropization of the universe as the initial singularity is approached.

Nojiri and Odintsov [42] have discussed the modifications to the general equation of state, including inho-
mogeneous and Hubble parameter-dependent terms, in the late-time universe. Capozziello et al. [43] presented
observational constraints on dark energy models with a quadratic equation of state. Nojiri and Odintsov [42]
and Capozziello et al. [43] demonstrated that the quadratic equation of state can describe dark energy or unified
dark matter. Mahanta et al. [44] have explored Bianchi type-V universe in the context of f (R, T ) gravity for
time varying cosmological constant and quadratic equation of state. Aygün et al. [45] have studied Mader
space- time in presence of perfect fluid for different quadratic equation of state models in modified f (R, T )
gravity. Rahman [46] discussed an electromagnetic mass model with a quadratic equation of state in the con-
text of general relativity. Chavanis [47] proposed a cosmological model based on a quadratic equation of state,
unifying vacuum, radiation, and dark energy. Additionally, Chavanis [48] investigated a cosmological model that
describes early inflation, intermediate decelerating expansion, and late accelerating expansion using a quadratic
equation of state. Feroze and Siddiqui [49] explored charged anisotropic matter models with a quadratic equation
of state in general relativity. Malaver [50] studied strange quark star models with a quadratic equation of state,
obtaining a class of models characterized by anisotropic compact spheres, where the gravitational potential Z
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depends on an adjustable parameter n. Bhar et al. [51] investigated compact stellar models obeying a quadratic
equation of state. Maharaj and Takisa [52] derived new exact solutions of the Einstein-Maxwell field equations
by considering a static and spherically symmetric spacetime with charged anisotropic matter distribution and
a quadratic equation of state. Sharma and Ratanpal [53] obtained a class of solutions describing the interior
of a static spherically symmetric compact anisotropic star, demonstrating that the model admits a quadratic
equation of state. Singh and Bishi [54] discussed the Bianchi type-I cosmological model containing perfect fluid
with a quadratic equation of state and cosmological constant within the framework of f (R, T ) gravity. Singh
and Bishi [55] analysed solutions with a quadratic equation of state in the context of f (R, T ) gravity, including
a cosmological constant Λ, for the Bianchi I transit universe, as expressed by equation

p = αρ2 − ρ (3)

where α ̸= 0 is a constant.
In summary, various researchers have investigated different aspects of the quadratic equation of state

in cosmological and stellar models considering its implications for the behaviour of the universe, dark en-
ergy, anisotropy, compact objects, and other phenomena in the framework of general relativity and modified
gravity theories. Motivated by the previous studies in cosmology, this paper focuses on investigating a higher-
dimensional plane symmetric cosmological model that involves a perfect fluid with a quadratic equation of state
within the framework of f(R, T ) theory. The structure of the paper is outlined as follows:

Section 2 provides a concise overview of the gravitational field equations derived from the modified f(R, T )
gravity theory. In Section 3, the metric and field equations for the specific case of f (R, T ) = R + 2f (T ) are
discussed. Section 4 presents the solutions obtained for the metric and field equations using the volumetric
power law and exponential expansion law. Section 5 explores the field equations for the case of f (R, T ) =
f1 (R) + f2 (T ), along with their corresponding solutions using power law and exponential expansion laws.
Finally, in Section 6, concluding remarks are provided to summarize the findings and implications of the study.
In essence, this paper delves into the analysis of a higher-dimensional plane symmetric cosmological model
within the f(R, T ) theory, specifically focusing on the presence of a perfect fluid with a quadratic equation of
state. The paper follows a structured format, presenting the theoretical background, field equations, solutions,
and concluding remarks in a coherent manner.

2. GRAVITATIONAL FIELD EQUATIONS OF f(R, T ) GRAVITY

The f (R, T ) theory of gravity is the modification or generalization of general relativity which is proposed
by Harko et al. (2011). The action principle is,

s =
1

16πG

∫
f (R, T )

√
−gd4x+

∫
Lm

√
−gd4x (4)

Where, f (R, T ) is an arbitrary function of Ricci scalar R and trace T of the energy momentum tensor of matter
Tij . Lm is the matter Lagrangian density. The energy momentum tensor of matter is defined as,

Tαβ = − 2√
−g

δ (
√
−gLm)

δgαβ
(5)

on varying the action with respect to metric tensor gαβ , the field equations of f (R, T ) gravity are obtained as
fR (R, T ) gravity are obtained as

fR (R, T )Rαβ − 1

2
f (R, T ) gαβ − fR (R, T ) (∇α∇β − gαβ□) = 8πTαβ − fT (R, T ) (Tαβ +Θαβ) (6)

where,

Θαβ = −2Tαβ + gαβLm − 2glk
∂2Lm

∂gαβ∂g
lk

(7)

Here, fR (R, T ) = ∂f(R,T )
∂R , fT (R, T ) = ∂f(R,T )

∂T ,□ = ∇α∇α where ∇α is the covariant derivative
Now contraction of equation (6) gives

fR (R, T )R + 3fR (R, T )− 2f (R, T ) = 8πT − fT (R, T ) (T +Θ) (8)

where Θ = gαβΘαβ eqn. (8) gives relation between Ricci scalar R and the trace T of energy momentum tensor.
In the present study, we assume that the stress energy tensor of matter is given by,

Tαβ = (ρ + p) uαuβ − pgαβ (9)
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Where, p and ρ indicates pressure and density of fluid. Here, uα = (0, 0, 0, 0, 1) is the five-velocity vector in
co-moving co-ordinate system and satisfies the conditions, uαu

α = 1 and uα∇β uα = 0. We choose matter
Lagrangian as Lm = −p ,which yields the

θαβ = −pgαβ − 2Tαβ (10)

It may be mentioned that these field equations depend on physical nature of matter field. As f(R, T ) gravity
depends on matter field, many theoretical models corresponding to different matter could be derived. The Three
classes of three of these models are given as follow

f (R, T ) =

 R+ 2f (T )
f1 (R) + f2 (T )

f1 (R) + f2 (R) f3 (T )

In this present work, we have focused on two classes of f (R, T ). i.e. first class f (R, T ) = R + 2f (T ) and
second class f (R, T ) = f1 (R) + f2 (T ) . for the choice of f (R, T ) = R + 2f (T ) gravitational field equation of
f (R, T ) modified gravity with the help of eqn. (8) and (9), eqn. (6) becomes

Rαβ − 1

2
gαβR = 8πTαβ + 2f

′
(T )Tαβ +

[
f (T ) + 2Pf

′(T )
]
gαβ (11)

where, an overhead prime denotes differentiation with respect to the argument T .
for the choice of f (R, T ) = f1 (R) + f2 (T ) gravitational field equation of f (R, T ) gravity with the help of eqn.
(8) and (9), eqn. (6) becomes

f
′

1 (R)Rαβ − 1

2
f1 (R) gαβ +

(
gαβ□ −∇α∇β

)
f

′

1 (R) = (8π + f ′
2 (T ))Tαβ +

(
f ′
2 (T ) p+

1

2
f2 (T )

)
gαβ (12)

3. METRIC AND FIELD EQUATIONS FOR f(R, T ) = R+ 2f(T )

Higher dimensional plane symmetric cosmological model given by

ds2 = dt2 −R1
2
(
dx2 + dy2

)
−R2

2dz2 −R3
2dω2 (13)

here R1, R2, R3 are matric potentials which are functions of cosmic time t.
Now using a co-moving coordinate system, the field equations (11) with the help of equation (9) for the metric
(13) can be explicitly written as

R̈1

R1
+

R̈2

R2
+

R̈3

R3
+

Ṙ1Ṙ2

R1R2
+

Ṙ1Ṙ3

R1R3
+

Ṙ2Ṙ3

R2R3
= (8π + 4λ) p − λρ− Λ (14)

2
R̈1

R1
+ 2

Ṙ1Ṙ3

R1R3
+

(
Ṙ1

R1

)2

+
R̈3

R3
= (8π + 4λ) p − λρ− Λ (15)

2
R̈1

R1
+

R̈2

R2
+

(
Ṙ1

R1

)2

+ 2
Ṙ1Ṙ2

R1R2
= (8π + 4λ) p − λρ− Λ (16)

2
Ṙ1Ṙ2

R1R2
+ 2

Ṙ1Ṙ3

R1R3
+

Ṙ2Ṙ3

R2R3
+

(
Ṙ1

R1

)2

= − (8π + 3λ) ρ + 2pλ− Λ (17)

Here overhead dot represents derivative with respect to t.
Dynamical parameters for five-dimensional plane symmetric cosmological model are defined as follows:
The spatial volume V = a4 (t) = R1

2R2R3

The directional Hubble parameters

Hx = Hy =
Ṙ1

R1
, Hz =

Ṙ2

R2
, Hω =

Ṙ3

R3

The generalized mean Hubble’s parameter H is given as

H =
1

4

(
2
Ṙ1

R1
+

Ṙ2

R2
+

Ṙ3

R3

)
(18)
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The expansion Scalar θ is given by,

θ = 4H = 2
Ṙ1

R1
+

Ṙ2

R2
+

Ṙ3

R3
(19)

The Shear Scalar and the mean anisotropic parameter are defined as

σ2 =
4

2
∆H2 (20)

and

Am =
1

4

4∑
i=1

(
Hi −H

H

)2

(21)

4. SOLUTIONS OF FIELD EQUATIONS

After solving eqns. (14) – (17), we get

R1

R2
= k1exp

[
x1

∫
dt

V

]
(22)

R2

R3
= k2exp

[
x2

∫
dt

V

]
(23)

R3

R4
= k3exp

[
x3

∫
dt

V

]
(24)

where k1, k2, k3 and x1,x2, x3 are constant of integration which satisfies the relation

k3 = k1k2 and x3 = x2 + x1

Using above Eqns. (22) (23) and (24), we can write the metric functions A, B and C explicitly as

R1 = K1V
1
4 exp

[
X1

∫
dt

V

]
(25)

R2 = K2V
1
4 exp

[
X2

∫
dt

V

]
(26)

R3 = K3V
1
4 exp

[
X3

∫
dt

V

]
(27)

where K1, K2, K3 and X1, X2, X3 are constant of integration which satisfies the relation

K1
2K2K3 = 1 and 2X1 +X2 +X3 = 0

Now, using Eq. (14) and (17), we obtain

ρ2 =
1

α (8π + 2λ)

 R̈1

R1
+

R̈2

R2
+

R̈3

R3
− Ṙ1Ṙ3

R1R3
−

(
Ṙ1

R1

)2

− Ṙ1Ṙ2

R1R2

 (28)

To solve the Einstein’s modified field equations for the system having four equations and six unknowns
( R1, R2, R3,p, ρ,Λ ). To obtain the complete solution, we need two more physically plausible relations.

1. Quadratic Equation of State

2. Expansion Law

Power Law

V = V1t
n (29)

Exponential law

V = V1e
4βt (30)
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4.1. Power Law Model

V = V1t
n

where, V1 and n are constant.
Then metric potential become

R1 = K1V1
1
4 t

n
4 exp

[
X1

V1

t1−n

1− n

]
(31)

R2 = K2V1
1
4 t

n
4 exp

[
X2

V1

t1−n

1− n

]
(32)

R3 = K3V1
1
4 t

n
4 exp

[
X3

V1

t1−n

1− n

]
(33)

As the time t approaching zero, the analysis indicates that all the metric potentials become zero. As a result,
the model exhibits an initial singularity.
The directional Hubble parameter Hx = Hy, Hz,Hω are given as

Hx = Hy =
n

4t
+

X1

V1t
n (34)

Hz =
n

4t
+

X2

V1tn
(35)

Hω =
n

4t
+

X3

V1tn
(36)

Mean Hubble parameter H is given by

H =
n

4t
(37)

Anisotropy parameter of the expansion is

∆ =
4X2

n2V1
2t2(n−1)

(38)

where 2X1
2 +X2

2 +X3
2 = X2

Dynamical scalar is given by

θ = 4H =
n

t
(39)

Deceleration parameter q is given by,

q =
d

dt

(
1

H

)
− 1 =

4

n
− 1 (40)

Shear scalar

σ2 =
4

2
∆H2 =

X2

2V1
2t2n

(41)

Using equation (28)

ρ =

√√√√ 1

α (8π + 2λ)

[
X2

2 +X3
2 −X1(X2 +X3 )

(V1tn)
2 − 3n

t2

]
(42)

Using Eqn. (42) in Eqn. (3) pressure is obtained as

p =
1

8π + 2λ

[
X2

2 +X3
2 −X1 (X2 +X3)

(V1tn)
2 − 3n

t2

]
−

√√√√ 1

α (8π + 2λ)

[
X2

2 +X3
2 −X1 (X2 +X3)

(V1tn)
2 − 3n

t2

]
(43)

With the help of Eqn. (15)

Λ =
(4π + 2λ)

(4π + λ)

[
X2

2 +X3
2 −X1(X2 +X3 )

(V1tn)
2 − 3n

t2

]
−(8π + 5λ)

√√√√ 1

α (8π + 2λ)

[
X2

2 +X3
2 −X1(X2 +X3 )

(V1tn)
2 − 3n

t2

]
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−6
( n

4t

)2
−
[
3X1

2 +X3
2 + 2X1X3

]
(V1tn)

2 +
2n

t2
(44)

Figure 1.
Directional Hubble Parameter Vs Cosmic time t

for n, V1, n,X2, X3 = 1, X1 = −1.

Figure 2.
Shear scalar Vs Cosmic time t for

n, V1, X2, X3 = 1, X1 = −1.

Figure 3.
Density Vs Cosmic time t for α,
V1, X2, X3, λ, n = 1, X1 = −1.

Figure 4.
Pressure Vs Cosmic time t for α,
V1, X2, X3, λ, n = 1, X1 = −1.

4.2. Exponential Law Model

We consider model for exponential expansion.

V = V1e
4βt

Then the scale factor can be obtained by using

R1 = K1V1
1
4 eβtexp

(
−X1

4V1β
e−4βt

)
(45)

R2 = K2V1
1
4 eβt

(
−X2

4V1β
e−4βt

)
(46)

R3 = K3V1
1
4 eβtexp

(
−X3

4V1β
e−4βt

)
(47)

Evidently, the metric potentials maintain constant values during the initial period and subsequently undergo
time-dependent evolution without encountering any form of singularity. Eventually, they diverge towards infin-
ity. This aligns with the concept of the big bang scenario, reminiscent of the findings presented in the Shaikh
and Bhoyar [23].
The directional Hubble parameter are given as

Hx =

(
X1

V1e4βt
+ β

)
(48)
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HZ =

(
X2

V1e4βt
+ β

)
(49)

Hω =

(
X3

V1e4βt
+ β

)
(50)

Mean Hubble parameter

H = β (51)

At the time t equals zero, the directional Hubble parameters possess finite values. These parameters deviate
from the average Hubble parameter due to the influence of factor β.
Anisotropy parameter

∆ =
X2

4β2(V1e4βt)
2 (52)

where 2X1
2 +X2

2 +X3
2 = X2

Dynamical scalar is given by

σ2 =
X2

2(V1eβt)
2 (53)

Deceleration parameter is given by

q = −1 (54)

With increasing time t, the expansion’s anisotropy diminishes exponentially until it reaches null. As a result,
the space converges towards isotropy in accordance with this model.
Using the values of metric potentials R1, R2, R3and substituting the quadratic equation of state in the form
p = αρ2 − ρ we obtained the energy density ρ and Λ.

ρ =

√√√√ 1

α (8π + 2λ)

[
X2

2 +X3
2 −X1(X2 +X3 )

(V1e4βt)
2

]
(55)

p =
1

(8π + 2λ)

X2
2 +X3

2 − X1 (X2 +X3)(
V1e

4βt
)2

−

√√√√ 1

α (8π + 2λ)

[
X2

2+X3
2 −X1 (X2 +X3)

(V1e4βt)
2

]
(56)

Λ =
(4π + 2λ)

(4π + λ)

[
X2

2 +X3
2 −X1(X2 +X3 )

(V1e4βt)
2

]
− (8π + 5λ)

V1e4βt

√
1

α (8π + 2λ)

[
X2

2 +X3
2 −X1 (X2 +X3 )

]
−6β2 −

[
3X1

2 +X3
2 + 2X1X3

]
(V1e4βt)

2 (57)

Figure 5.
Shear Scalar vs Cosmic time t for β,

V1, X2, X3 = 1, X1 = −1.

Figure 6.
Anisotropy Parameter vs Cosmic time t for β,

V1, X2, X3 = 1, X1 = −1.
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Figure 7.
Density vs Cosmic time t for β,

V1, X2, X3, λ, α = 1, π = 3.14, X1 = −1.

Figure 8.
Pressure vs Cosmic time t for β,

V1, X2, X3, λ = 1, π = 3.14, X1 = −1.

5. FIELD EQUATIONS FOR f(R, T ) = f1(R) + f2(R)

In f (R, T ) ,with the choice of f1 (R) = λR, f2 (T ) = λT gravitational field equation (12) along with cosmological
constant Λ appears as follows:

Gij =

(
8π + λ

λ

)
Tij +

(
ρ − p+ 2Λ

2

)
gij

In this case, field equations are given by

R̈1

R1
+

R̈2

R2
+

R̈3

R3
+

Ṙ1Ṙ2

R1R2
+

Ṙ1Ṙ3

R1R3
+

Ṙ2Ṙ3

R2R3
=

(8π + 2λ)

λ
p − ρ

2
− Λ (58)

2
R̈1

R1
+ 2

Ṙ1Ṙ3

R1R3
+

(
Ṙ1

R1

)2

+
R̈3

R3
=

(8π + 2λ)

λ
p − ρ

2
− Λ (59)

2
R̈1

R1
+

R̈2

R2
+

(
Ṙ1

R1

)2

+ 2
Ṙ1Ṙ2

R1R2
=

(8π + 2λ)

λ
p − ρ

2
− Λ (60)

2
Ṙ1Ṙ3

R1R3
+ 2

Ṙ1Ṙ2

R1R2
+

Ṙ2Ṙ3

R2R3
+

(
Ṙ1

R1

)2

= − (16π + 3λ)

2λ
ρ + p− Λ (61)

5.1. Power law Model

By adopting the same procedure as in subsection 4.1, we have obtained the same metric potential as in equation
(31) (32) and (33). Using the values of metric potential R1, R2, R3 and substituting the quadratic equation of
state in the form p = αρ2 − ρ,we obtained the energy density ρ, pressure p and cosmological constant Λ as
follows:

ρ =

√√√√ λ

α (8π + λ)

[
X2

2 +X3
2 −X1(X2 +X3 )

(V1tn)
2 − 3n

t2

]
(62)

p =
λ

8π + λ

[
X2

2 +X3
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t2

]
−

√√√√ λ
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[
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2 +X3
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]
(63)

Λ =
(8π + 2λ) λ
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[
X2

2 +X3
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t2

]
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)√√√√ λ

α (8π + λ)

[
X2

2 +X3
2 −X1 (X2 +X3 )
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]
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( n
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−
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3X1

2 +X3
2 + 2X1X3

]
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2 +
2n

t2
(64)
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Figure 9.
Density vs Cosmic time t for β,

V1, X2, X3, λ, α = 1, π = 3.14, X1 = −1.

Figure 10.
Pressure vs Cosmic time t for β,

V1, X2, X3, λ, α = 1, π = 3.14, , X1 = −1.

In this context, we have observed a comparable outcome similar to findings presented in section 4.1

5.2. Exponential Law Model

By adopting the same procedure as in subsection 4.2, we have obtained the same metric potential as in equation
(45) (46) and (47). Using the values of metric potential R1, R2, R3 and substituting the quadratic equation of
state in the form p = αρ2 − ρ, we obtained the energy density ρ, pressure p and cosmological constant Λ as
follows:

ρ =

√√√√ λ

α (8π + λ)

[
X2

2 +X3
2 −X1(X2 +X3 )

(V1e4βt)
2

]
(65)

p =
λ

(8π + λ)

[
X2

2 +X3
2 −X1 (X2 +X3)

(V1e4βt)
2

]
−

√√√√ λ

α (8π + λ)

[
X2

2 +X3
2 −X1(X2 +X3 )

(V1e4βt)
2

]
(66)

Λ =
(8π + 2λ)

(8π + λ)

[
X2

2 +X3
2 −X1(X2 +X3 )

(V1e4βt)
2

]
− (16π + 5λ)

2λ

√
λ
[
X2

2 +X3
2 −X1 (X2 +X3 )

]
α (8π + λ) (V1e4βt)

2

−6β2 −
[
3X1

2 +X3
2 + 2X1X3

]
(V1e4βt)

3 (67)

Figure 11.
Density vs Cosmic time t for β,

V1, X2, X3, λ, α = 1, π = 3.14, X1 = −1.

Figure 12.
Pressure vs Cosmic time t for β,

V1, X2, X3, λ, α = 1, π = 3.14, , X1 = −1.

In this context, we have observed a comparable outcome similar to findings presented in section 4.2
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6. OBSERVATION AND DISCUSSION

To decipher the exact solution of five- dimensional plane symmetric cosmological model we assumed power law
expansion and exponential expansion law, in the previous section. We have found that

� In section 4.1, for Power Law Model.

– Figure 1 represent that he directional Hubble parameter Hx and Hy in the direction x and y are
increasing function of cosmic time t whereas directional Hubble parameter Hz , Hw in the direction
z, w are decreasing function of cosmic time t.

– Now from Figure 2 and equation (41), it is clear that the shear scalar is decreasing function of cosmic
time t. At initial epoch, when time t = 0 shear scalar start with infinite value and vanishes as t →
∞.

– Figure 3 of equation (42), illustrate the variation of energy density ρ against time t . Here it is
observed that energy density is positive function that decreases over time.

– By analysing Figure 4 of equation (43), it is observed that pressure is increasing function of time.
Initially, it begins from large negative value and gradually approaches to small negative value close
to zero.

� In section 4.2, for exponential expansion model

– From Figure 5 and 6, it is clear that shear scalar and anisotropy parameter are decreasing function
of time t whereas for large time t universe approaches to isotropy.

– The graph of energy density and pressure are shown in Figure 7 and Figure 8 respectively. Figure 7
shows that energy density is positive decreasing function over time t.

– Figure 8 reveals that the pressure starts from significantly large negative value and approaches to
small negative value close to zero. This result consistent with prior studies referenced in reference
[23]

� In section 5

– In this context, we have observed a comparable outcome similar to findings presented in section
4.1 and 4.2. for power law model we found that pressure Figure 10 and density Figure 9 exhibited
identical graphs to pressure Figure 4 and density Figure 3

– Similarly, for exponential expansion model, we found that density Figure 11 and pressure Figure 12
exhibited identical graphs to density Figure 7 and pressure Figure 8

7. CONCLUSION

We investigated the intricate details of a five-dimensional plane symmetric cosmological model governed by
f(R, T ) gravity, taking into consideration the influence of a cosmological constant and employing a quadratic
equation of state. The motivation for this inquiry originates from the desire to investigate modified gravity
theories that go beyond the traditional general relativity framework, allowing for a more thorough understanding
of the universe’s behaviour and evolution. We studied two unique classes of functionals within the f(R, T )
gravity framework. The first is represented by f(R, T ) = R+ f(T ), and the second by f(R, T ) = f1(R) f2(T ).
To examine the model’s behaviour, we used a quadratic equation of state and an expansion rule to find an exact
solution to the field equations, yielding vital insights into the evolution of the cosmos within the considered
framework. From both the models of f (R, T ) we have following findings.

In power law model, several intriguing findings emerge from our investigation. Because of the positive
average Hubble parameter (H > 0), we see an expanding cosmos. However, as time passes towards infinity,
the expansion slows and eventually approaches zero. This behaviour is consistent with our assumptions and
lends support to the idea of a universe approaching zero expansion asymptotically. Interestingly, we discover
that the pace of expansion of the universe is extremely fast during the early stages of cosmic time (0 < t <
1), followed by a slowing of the growth for t > 1. This behaviour implies a transition from a quick early
phase to a more steady expansion over time. These findings are consistent with prior studies referenced in
references [56, 57], which validates our methodology and increases the credibility of our findings. Furthermore,
we have detected anisotropy and shearing in the cosmos throughout its whole existence. This implies that the
universe has directional deviations and a lack of perfect symmetry, which could have serious ramifications for
the distribution and evolution of matter on cosmic scales.

Additionally, our analysis indicates that the universe undergoes accelerated expansion for values of the
parameter n > 4, as deduced from equation (40). This finding aligns with current observations [58], providing
further support for the validity of the model and its ability to reproduce essential features of the real universe.
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Examining the evolution of physical quantities, we find that the density of the cosmic fluid decreases as cosmic
time progresses, as depicted in Figure 3. This decrease in density suggests that the universe becomes less dense
as it expands, a result that is in line with our expectations and consistent with our understanding of cosmological
expansion. Furthermore, our investigation reveals the presence of negative pressure, as illustrated in Figure 4.
This negative pressure is a characteristic feature of dark energy. Its presence within the model lends support
to the notion that dark energy plays a significant role in shaping the dynamics of our cosmos.

In exponential expansion model, we have obtained significant findings regarding this particular model
including the deceleration parameter (q) and the rate of change of Hubble parameter

(
dH
dt

)
.These findings are

indicative of the model’s ability to provide highly accurate values for the Hubble parameter, while effectively
representing both the inflationary era during the early stages of the universe and the late-time evolution. In
this model, the directional Hubble parameters have finite values at both the beginning t → 0 and the far
future t → ∞ while the mean Hubble parameter remains constant. The expansion scalar, which measures the
rate of expansion of the universe remains constant throughout its evolution, indicating uniform exponential
expansion.Anisotropic expansion of universe measures constant value at initial time t while it decreases as time
progresses and finally tends to zero at infinite time.From Figure 5 the shear scalar is finite at initial epoch
while the Shear Scalar approaches zero as time approaches infinity i.e. σ → 0 as t → ∞. This indicates
that the anisotropy of the universe diminishes over time, eventually tending towards isotropy. The sign of
the deceleration parameter q determines whether the universe is accelerating or decelerating. A positive value
of q corresponds to the standard decelerating model while a negative value indicates acceleration. Current
cosmological observations support the notion that the expansion of the universe is accelerating at present,
whereas it was decelerating in the past. From the equation (54), we find that the deceleration parameter is
negative aligning with the current observations of Type Ia supernovae and the cosmic microwave background
(CMB). This result resembles with the Singh and Bishi [54].The expansion scalar, which measures the rate
at which the universe expands remains constant throughout the entire evolution, thereby indicating a uniform
exponential expansion.At the initial time the anisotropy parameter remains constant and diminishes as time
advances.This implies that the universe was initially anisotropic but steadily moves towards isotropy as time
elapses. This behavior is visually depicted in Figure5.

Overall, our study provides a comprehensive analysis of a five-dimensional plane symmetric cosmological
model within the framework of f(R, T ) gravity. By incorporating a quadratic equation of state and exact
solutions to the field equations, we have gained valuable insights into the nature of the universe, its expansion,
anisotropy, and the presence of dark energy. Our findings not only contribute to the advancement of theoretical
cosmology but also align with current observations, consolidating our understanding of the universe’s behavior
at both early and late cosmic timescales.
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Ï'ßÒÈÂÈÌIÐÍÀ ÏËÎÑÊÀ ÑÈÌÅÒÐÈ×ÍÀ ÊÎÑÌÎËÎÃI×ÍÀ ÌÎÄÅËÜ Ç
ÊÂÀÄÐÀÒÍÈÌ ÐIÂÍßÍÍßÌ ÑÒÀÍÓ Â f(R, T ) ÒÅÎÐI� ÃÐÀÂIÒÀÖI�

Â.À. Òàêàðåa, Ð.Â. Ìàïàðib, Ñ.Ñ. Òàêðåc
aÔàêóëüòåò ìàòåìàòèêè, Íàóêîâèé êîëåäæ Øèâàäæi, Àìðàâàòi (Ì.Ñ.), Iíäiÿ

bÄåïàðòàìåíò ìàòåìàòèêè, Óðÿäîâèé Iíñòèòóò íàóêè òà ãóìàíiòàðíèõ íàóê Âiäàðáõà, Àìðàâàòi
cÔàêóëüòåò ìàòåìàòèêè, Íåçàëåæíèé ìîëîäøèé êîëåäæ, Àìðàâàòi (MS) -444604 Iíäiÿ), Iíäiÿ

Ó öié ñòàòòi ìè ïðîàíàëiçóâàëè ï'ÿòèâèìiðíó ïëîñêó ñèìåòðè÷íó êîñìîëîãi÷íó ìîäåëü, ùî ìiñòèòü iäåàëüíó ðiäèíó,

ó êîíòåêñòi f(R, T ) ãðàâiòàöi¨. Ðiâíÿííÿ ïîëÿ ðîçâ'ÿçàíi äëÿ äâîõ êëàñiâ f(R, T ) ãðàâiòàöi¨, òîáòî f(R, T ) = R +
f(T ) i f(R, T ) = f1(R)f2(T ) iç âêëþ÷åííÿì êîñìîëîãi÷íî¨ ñòàëî¨ Λ i êâàäðàòíîãî ðiâíÿííÿ ïàðàìåòðiâ ñòàíó ó

âèãëÿäi p = αρ2 − ρ, äå α � êîíñòàíòà i ñòðîãî α ̸= 0. Ùîá îòðèìàòè òî÷íi ðiøåííÿ, ìè âèêîðèñòîâó¹ìî îá'¹ìíèé

ñòåïåíåâèé çàêîí i åêñïîíåíöiàëüíèé çàêîí ðîçøèðåííÿ. Ðîçãëÿíóòî ôiçè÷íi òà ãåîìåòðè÷íi àñïåêòè ìîäåëi.

Êëþ÷îâi ñëîâà: Êâàäðàòíå ðiâíÿííÿ ñòàíó; f(R, T ) ãðàâiòàöiÿ; êîñìîëîãi÷íà ñòàëà; ï'ÿòèâèìiðíà ïëîñêà ñè-
ìåòðè÷íà êîñìîëîãi÷íà ìîäåëü
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