
East European Journal of Physics. 3. 441–450 (2023)
441

DOI: 10.26565/2312-4334-2023-3-49 ISSN 2312-4334

UNSTEADY FLOW PAST AN ACCELERATED VERTICAL PLATE WITH
VARIABLE TEMPERATURE IN PRESENCE OF THERMAL

STRATIFICATION AND CHEMICAL REACTION†

Nitul Kalita*, Rudra Kanta Deka, Rupam Shankar Nath
Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India

∗Corresponding Author e-mail: nitulkalita9602@gmail.com

Received July 11, 2023; revised July 24, 2023; accepted July 26, 2023

This work aims to investigate the effect of thermal stratification on fluid flow past an accelerated vertical plate in the
presence of first order chemical reaction. The dimensionless unsteady coupled linear governing equations are solved by
Laplace transform technique for the case when the Prandtl number is unity. The important conclusions made in this
study the effect of thermal stratification is compared with the scenario in which there was no stratification. The results
of numerical computations for different sets of physical parameters, such as velocity, temperature, concentration, skin-
friction, Nusselt number and Sherwood number are displayed graphically. It is shown that the steady state is attained
more quickly when the flow is stratified.
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1. INTRODUCTION

Thermal stratification is a natural phenomenon that may be seen in many natural systems, such as lakes
and seas. The presence of chemical reactions might further complicate the flow’s dynamics. In this paper,
we investigate how flow dynamics and interactions with chemical processes are impacted by thermal stratifica-
tion.The applications of this study are wide. It may be used to build more efficient chemical reactors and heat
exchangers. It may also be used to look at how the performance of cooling systems in electrical equipment is
affected by thermal stratification.

[1] investigated the influence of a chemical reaction on the behavior of an unsteady flow through an
accelerating vertical plate, where the mass transfer was variable and without considering stratification. The
purpose of this research is to determine how fluid flow past an accelerated vertical plate impacts the interaction
between thermal stratification and chemical reaction. [2] and [3] investigated the unsteady flow of a thermally
stratified fluid past a vertically accelerated plate under a variety of conditions. Researchers [4], [5], and [6]
have investigated steady flows in a stable stratified fluid with a focus on infinite vertical plates. [7] and [8]
both investigated buoyancy-driven flows in a stratified fluid. The interaction between thermal stratification and
chemical reaction to change MHD flow for vertical stretching surfaces has been studied by researchers [9] and
[10]. These two phenomena were also investigated by [11], who investigated the impact of non-Newtonian fluid
flow in a porous medium. The unsteady MHD flow past an accelerating vertical plate with a constant heat flux
and ramped plate temperature respectively was researched by [12] and [13].

In this paper, we derived the special solutions for Sc = 1 and classical solutions for the case S = 0 (without
stratification). These solutions are compared with the primary solutions, and graphs are used to demonstrate the
differences. The impacts of physical parameters on velocity, temperature, and concentration profiles, including
the stratification parameter (S), thermal Grashof number (Gr), mass Grashof number (Gc), Schimdt number
(Sc) and Chemical Reaction Parameter (K), are explored and presented in graphs. The results of this research
have a wide range of applications in a variety of industries and chemical factories.

2. MATHEMATICAL ANALYSIS

We consider a fluid that is stratified, viscous, and in-compressible, traveling along an accelerating vertical
plate with first-order chemical reaction present. As can be seen in fig. 1, we use a coordinate system in which
the y′ axis is perpendicular to the plate and the x′ axis is taken vertically upward along the plate to study the
flow situation. The starting temperature T ′

∞ and initial fluid concentration C ′
∞ of the plate and fluid are the

same. At time t′ > 0, the plate is subjected to an impulsive constant acceleration u0, and the concentration
and temperature of the plate are increased to C ′

w and T ′
w, respectively. All flow variables are independent of x′
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Figure 1. Physical Model and coordinate system

and only affected by y′ and t′ since the plate has an infinite length. As a result, we are left with a flow that is
only one dimension and has one non-zero vertical velocity component, u′. The Boussinesqs’ approximation is
then used to represent the equations for motion, energy, and concentration as follows:

∂u′

∂t′
= gβ(T ′ − T ′

∞) + gβ∗(C ′ − C ′
∞) + ν

∂2u′

∂y′2
(1)

∂T ′

∂t′
= α

∂2T ′

∂y′2
− γu′ (2)

∂C ′

∂t′
= D

∂2C ′

∂y′2
−K1C

′ (3)

with the following initial and boundary Conditions:

u′ = 0 T ′ = T ′
∞ C ′ = C ′

∞ ∀y′, t′ ≤ 0

u′ = u0t
′ T ′ = T ′

∞ + (T ′
w − T ′

∞)At′ C ′ = C ′
w at y′ = 0, t′ > 0

u′ = 0 T ′ → T ′
∞ C ′ → C ′

∞ as y′ → ∞, t′ > 0

where, α is the thermal diffusivity, β is the volumetric coefficient of thermal expansion, β∗ is the volumetric
coefficient of expansion with concentration, η is the similarity parameter, ν is the kinematic viscosity, g is the

acceleration due to gravity, D is the mass diffusion coefficient. Also, γ =
dT ′

∞
dx′ + g

Cp
denotes the thermal

stratification parameter and
dT ′

∞
dx′ denotes the vertical temperature convection known as thermal stratification.

In addition, g
Cp

represents the rate of reversible work done on fluid particles by compression, often known

as work of compression. The variable (γ) will be referred to as the thermal stratification parameter in our
research because the compression work is relatively minimal. For the purpose of testing computational methods,
compression work is kept as an additive to thermal stratification.

and we provide non-dimensional quantities in the following:

U =
u′

(u0ν)1/3
, t =

t′u
2/3
0

ν1/3
, y =

y′u
1/3
0

ν2/3
, θ =

T ′ − T ′
∞

T ′
w − T ′

∞
, C =

C ′ − C ′
∞

C ′
w − C ′

∞
, Gr =

gβ(T ′
w − T ′

∞)

u0

Gc =
gβ∗(C ′

w − C ′
∞)

u0
, P r =

ν

α
, Sc =

ν

D
, K =

K1ν
1/3

u
2/3
0

, S =
γν2/3

u
1/3
0 (T ′

w − T ′
∞)

where, A =
(

u2
0

ν

)1/3

is the constant.

The non-dimensional forms of the equations (1)-(3) are given by

∂U

∂t
= Grθ +GcC +

∂2U

∂y2
(4)
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∂θ

∂t
=

1

Pr

∂2θ

∂y2
− SU (5)

∂C

∂t
=

1

Sc

∂2C

∂y2
−KC (6)

Non-dimensional form of initial and boundary Conditions are:

U = 0 θ = 0 C = 0 ∀y, t ≤ 0

U = t θ = t C = 1 at y = 0, t > 0

U = 0 θ → 0 C → 0 as y → ∞, t > 0 (7)

3. METHOD OF SOLUTION

The non-dimensional governing equations (4)- (6) with boundary conditions (7) are solved using Laplace’s
transform method for Pr = 1. Hence, the expressions for concentration, velocity and temperature with the help
of [14] and [15] are given by

C =
1

2

[
e−2η

√
ScKterfc

(
η
√
Sc−

√
Kt

)
+ e2η

√
ScKterfc

(
η
√
Sc+

√
Kt

)]
(8)

U =
1

2
{f4(iA) + f4(−iA)}+ iA

2S
{f4(iA)− f4(−iA)}+ Gc

2(Sc− 1)
[C1 {f1(iA) + f1(−iA)}

+(C2 − iC3) {f2(iA,B + iB1) + f2(−iA,B + iB1)}+ (C2 + iC3) {f2(iA,B − iB1)

+f2(−iA,B − iB1)}] +
Gc

2iA
[(D1 − 1) {f1(iA)− f1(−iA)}+ (D2 + iD3) {f2(iA,B + iB1)

−f2(−iA,B + iB1)}+ (D2 − iD3) {f2(iA,B − iB1)− f2(−iA,B − iB1)}]

− Gc

(Sc− 1)

[
C1

2

{
e−2η

√
ScKterfc

(
η
√
Sc−

√
Kt

)
+ e2η

√
ScKterfc

(
η
√
Sc+

√
Kt

)}
+(C2 − iC3) {f3(K,B + iB1)}+ (C2 + iC3) {f3(K,B − iB1)}] (9)

θ =
S

2iA
{f4(iA)− f4(−iA)}+ 1

2
{f4(iA) + f4(−iA)}+ SGc

2iA(Sc− 1)
[C1 {f1(iA)− f1(−iA)}

+(C2 − iC3) {f2(iA,B + iB1)− f2(−iA,B + iB1)}+ (C2 + iC3) {f2(iA,B − iB1)

−f2(−iA,B − iB1)}] +
SGc

2(Sc− 1)2
[E1 {f1(iA) + f1(−iA)}+ (E2 − iE3) {f2(iA,B + iB1)

+f2(−iA,B + iB1)}+ (E2 + iE3) {f2(iA,B − iB1) + f2(−iA,B − iB1)}]

− SGc

(Sc− 1)2

[
E1

2

{
e−2η

√
ScKterfc

(
η
√
Sc−

√
Kt

)
+ e2η

√
ScKterfc

(
η
√
Sc+

√
Kt

)}
+(E2 − iE3)f3(K,B + iB1) + (E2 + iE3)f3(K,B − iB1)] (10)

where,

η =
y

2
√
t
, A =

√
SGr, B =

ScK

Sc− 1
, B1 =

A

Sc− 1
=

√
SGr

Sc− 1
, C1 =

B

(B2 +B2
1)

C2 =
−B

2(B2 +B2
1)

, C3 =
−B1

2(B2 +B2
1)

, D1 =
B2

(B2 +B2
1)

, D2 =
B2

1

2(B2 +B2
1)

D3 =
BB1

2(B2 +B2
1)

, E1 =
1

(B2 +B2
1)

, E2 =
−1

2(B2 +B2
1)

, E3 =
B

2B1(B2 +B2
1)

Also, fi’s are inverse Laplace’s transforms given by

f1(ip) = L−1

{
e−y

√
s+ip

s

}
, f2(ip, q1 + iq2) = L−1

{
e−y

√
s+ip

s+ q1 + iq2

}

f3(p, q1 + iq2) = L−1

{
e−y

√
Sc(s+p)

s+ q1 + iq2

}
, f4(ip) = L−1

{
e−y

√
s+ip

s2

}
We separate the complex arguments of the error function contained in the previous expressions into real and
imaginary parts using the formulas provided by [15].
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4. SPECIAL CASE [FOR SC=1]

We came up with answers for the special case where Sc = 1. Hence, the solutions for the special case are
as follows:

C∗ =
1

2

[
e−2η

√
Kterfc

(
η −

√
Kt

)
+ e2η

√
Kterfc

(
η +

√
Kt

)]
(11)

U∗ =
1

2
{f4(iA) + f4(−iA)}+ KGc

2(K2 +A2)
{f1(iA) + f1(−iA)}

+
iAGc

2(K2 +A2)
{f1(iA)− f1(−iA)}+ iA

2S
{f4(iA)− f4(−iA)}

− KGc

2(K2 +A2)

[
e−2η

√
Kterfc

(
η −

√
Kt

)
+ e2η

√
Kterfc

(
η +

√
Kt

)]
(12)

θ∗ =
1

2
{f4(iA) + f4(−iA)}+ SKGc

2iA(K2 +A2)
{f1(iA)− f1(−iA)}

+
SGc

2(K2 +A2)
{f1(iA) + f1(−iA)}+ S

2iA
{f4(iA)− f4(−iA)}

− SGc

2(K2 +A2)

{
e−2η

√
Kterfc

(
η −

√
Kt

)
+ e2η

√
Kterfc

(
η +

√
Kt

)}
(13)

5. CLASSICAL CASE (S=0)

We derived solutions for the classical case of no thermal stratification (S = 0). We want to compare
the results of the fluid with thermal stratification to the case with no stratification. Hence, the corresponding
solutions for the classical case is given by :

θc = = t

{(
1 + 2η2

)
erfc(η)− 2η√

π
e−η2

}
(14)

Uc =
Gc

2KSc

[
2erfc (η)− e−Bt

{
e−2η

√
−Bterfc

(
η −

√
−Bt

)
+ e2η

√
−Bterfc

(
η +

√
−Bt

)}
−
{
e−2η

√
ScKterfc

(
η
√
Sc−

√
Kt

)
+ e2η

√
ScKterfc

(
η
√
Sc+

√
Kt

)}
+e−Bt

{
e−2η

√
Sc(K−B)terfc

(
η
√
Sc−

√
(K −B)t

)
+ e2η

√
Sc(K−B)terfc

(
η
√
Sc+

√
(K −B)t

)}]
+
ηGrt2

3

{
4√
π
(1 + η2)e−η2

− η(6 + 4η2) erfc(η)

}
+ t

{(
1 + 2η2

)
erfc (η)− 2η√

π
e−η2

}
(15)

5.1. Skin-Friction

The non-dimensional Skin-Friction, which is determined as shear stress on the surface, is obtained by

τ = −dU

dy

∣∣∣∣
y=0

The solution for the Skin-Friction is calculated from the solution of Velocity profile U , represented by (9), as
follows:

τ =

√
t

π
cosAt+ t

√
A

2
(r1 − r2) +

(r1 + r2)

2
√
2A

+
A

S

[√
t

π
sinAt− t

√
A

2
(r1 + r2) +

(r1 − r2)

2
√
2A

]

+
Gc

Sc− 1

[
C1

{
cosAt√

πt
+

√
A

2
(r1 − r2)−

√
ScK erf(

√
Kt)−

√
Sc

πt
e−Kt

}

+2C2

{
cosAt√

πt
−
√

Sc

πt
e−Kt

}
+ e−Bt {(C2P1 + C3Q1)(r3 cosB1t+ r4 sinB1t)

+(C3P1 − C2Q1)(r4 cosB1t− r3 sinB1t)}+ e−Bt {(C2P2 − C3Q2)(r5 cosB1t− r6 sinB1t)

−(C3P2 + C2Q2)(r6 cosB1t+ r5 sinB1t)} − 2e−Bt
√
Sc {(C2P3 − C3Q3)

(r7 cosB1t− r8 sinB1t)− (C3P3 + C2Q3)(r8 cosB1t+ r7 sinB1t)}]
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+
Gc

A

[
(D1 − 1)

{
− sinAt√

πt
+

√
A

2
(r1 + r2)

}
− 2D2 sinAt√

πt

+e−Bt {(D2P1 −D3Q1)(r4 cosB1t− r3 sinB1t) + (D3P1 +D2Q1)(r3 cosB1t+ r4 sinB1t)}
+e−Bt {(D2P2 +D3Q2)(r6 cosB1t+ r5 sinB1t)− (D3P2 −D2Q2)(r5 cosB1t− r6 sinB1t)}

]
The solution for the Skin-Friction for the special case is given from the expression (12), which is represented

by

τ∗ =

√
t

π
cosAt+ t

√
A

2
(r1 − r2) +

(r1 + r2)

2
√
2A

+
KGc

K2 +A2

[
cosAt√

πt
+

√
A

2
(r1 − r2)

−
√
K erf(

√
Kt)− e−Kt

√
πt

]
+

A

S

[√
t

π
sinAt− t

√
A

2
(r1 + r2) +

(r1 − r2)

2
√
2A

]

+
AGc

K2 +A2

{
sinAt√

πt
−
√

A

2
(r1 + r2)

}
The solution for the Skin-Friction for the classical case is given from the expression (15), which is represented

by

τc =
Gc

KSc

[
e−Bt

{√
Sc(K −B) erf(

√
(K −B)t)−

√
−B erf(

√
−Bt)

}
−

√
ScK erf(

√
Kt)

]
+2

√
t

π

(
1− tGr

3

)
5.2. Nusselt Number

The non-dimensional Nusselt number, which is determined as the rate of heat transfer, is obtained by

Nu = −dθ

dy

∣∣∣∣
y=0

The solution for the Nusselt number is calculated from the solution of Temperature profile θ, represented by
(10), as follows:

Nu =

√
t

π
cosAt+ t

√
A

2
(r1 − r2) +

(r1 + r2)

2
√
2A

− S

A

[√
t

π
sinAt− t

√
A

2
(r1 + r2) +

(r1 − r2)

2
√
2A

]

+
Gc

A(Sc− 1)

[
C1

{
− sinAt√

πt
+

√
A

2
(r1 + r2)

}
− 2C2 sinAt√

πt

+e−Bt {(C2P1 + C3Q1)(r4 cosB1t− r3 sinB1t)− (C3P1 − C2Q1)(r3 cosB1t+ r4 sinB1t)}
+e−Bt {(C2P2 − C3Q2)(r6 cosB1t+ r5 sinB1t) + (C3P2 + C2Q2)(r5 cosB1t− r6 sinB1t)}

]
+

SGc

(Sc− 1)2

[
E1

{
cosAt√

πt
+

√
A

2
(r1 − r2)−

√
ScK erf(

√
Kt)−

√
Sc

πt
e−Kt

}

+2E2

{
cosAt√

πt
−
√

Sc

πt
e−Kt

}
+ e−Bt {(E2P1 + E3Q1)(r3cosB1t+ r4 sinB1t)}

+(E3P1 − E2Q1)(r4cosB1t− r3 sinB1t) + e−Bt {(E2P2 − E3Q2)(r5cosB1t− r6 sinB1t)

−(E3P2 + E2Q2)(r6cosB1t+ r5 sinB1t)} − 2e−Bt
√
Sc {(E2P3 − E3Q3)(r7cosB1t− r8 sinB1t)

−(E3P3 + E2Q3)(r8cosB1t+ r7 sinB1t)}]

The solution for the Nusselt number for the special case is given from the expression (13), which is repre-
sented by

Nu∗ =
SKGc

A(K2 +A2)

[
− sinAt√

πt
+

√
A

2
(r1 + r2))

]
+

(
1 +

SGc

K2 +A2

)[
cosAt√

πt
+

√
A

2
(r1 − r2)

]

−S

A

[√
t

π
sinAt− t

√
A

2
(r1 + r2) +

(r1 − r2)

2
√
2A

]
− SGc

K2 +A2

{√
K erf(

√
Kt) +

e−Kt

√
πt

}
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+

√
t

π
cosAt+ t

√
A

2
(r1 − r2) +

(r1 + r2)

2
√
2A

The solution for the Nusselt number for the classical case is given from the expression (14), which is
represented by

Nuc =
1√
πt

5.3. Sherwood Number

The non-dimensional Sherwood number, which is determined as the rate of mass transfer, is obtained by

Sh = −dC

dy

∣∣∣∣
y=0

The solution for the Sherwood number is calculated from the solution of Concentration profile C, represented
by (8), as follows:

Sh =
√
ScK erf(

√
Kt) +

√
Sc

πt
e−Kt

The solution for the Sherwood number for the special case is given from the expression (11), which is
represented by

Sh∗ =
√
K erf(

√
Kt) +

1√
πt

e−Kt

where,

B2 =
√
B2 + (A−B1)2, B3 =

√
B2 + (A+B1)2, B4 =

√
(K −B)2 +B2

1 , P1 =

√
B2 −B

2
,

Q1 =

√
B2 +B

2
, P2 =

√
B3 −B

2
, Q2 =

√
B3 +B

2
, P3 =

√
B4 − (K −B)

2

Q3 =

√
B4 + (K −B)

2
,

√
−B + i(A−B1) = P1 + iQ1,

√
−B + i(A+B1) = P2 + iQ2,√

K −B + iB1 = P3 + iQ3, erf(
√
iAt) = r1 + ir2, erf(P1

√
t+ iQ1

√
t) = r3 + ir4,

erf(P2

√
t+ iQ2

√
t) = r5 + ir6, erf(P3

√
t+ iQ3

√
t) = r7 + ir8

6. RESULT AND DISCUSSIONS

In order to better understand the physical significance of the problem, we calculated the velocity, temper-
ature, concentration, Skin friction, Nusselt number, and Sherwood number using the solutions we found in the
previous sections, for different values of the physical parameters S,Gr,Gc, Sc,K and time t. Additionally, we
represented them graphically in Figures 2 to 13.

The effect of thermal stratification (S) on the velocity profiles is seen in Figure 2. It can be seen that there
is a decrease in velocity as a result of thermal stratification. An increase in the values of Gr and Gc leads to
a rise in the value of the velocity, as seen in Figure 3. Figures 4 and 5 depicted the fluid’s velocity at various
values of Sc and K. The fluid velocity decreases as the values of Sc and K increase.

Figures 6 and 7 portray the effect of thermal stratification on fluid velocity and temperature against time.
Without stratification, the velocity and temperature increase over time in an exponential manner; but, when
stratification takes place, they finally stabilize. Due to the application of thermal stratification, which reduces
velocity and temperature in comparison with the standard case (S = 0). Hence, this research with stratification
is more realistic than prior ones without stratification.

The combined effect of thermal stratification and chemical reaction on temperature can be seen in Figure 8.
The temperature seems to decrease when the thermal stratification parameter is increased, yet chemical reactions
enhance the temperature. The effects of Gr,Gc and Sc on the temperature profile are shown in Figures 9 and
10, respectively. For higher Gr, Sc, and lower Gc values, the temperature decreases.

Figure 11 illustrates how the parameters Sc and K influence the concentration of the fluid. The concen-
tration decreases when the Sc and K parameters are increased. Figures 12 and 13 illustrate the skin friction
and Nusselt number variations produced by thermal Stratification. They considerably rise in the presence of
stratification compared to the absence of stratification. Additionally, stratification increases the frequency of
oscillations for both skin friction and the Nusselt number.
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Figure 2. Effects of S on Velocity Profile for Gr =
5, Gc = 5, t = 1.7, Sc = 0.5,K = 0.2

Figure 3. Effects of Gr and Gc on Velocity Profile for
S = 0.4, Sc = 0.5, t = 1.7,K = 0.2

Figure 4. Effects of Sc on Velocity Profile for Gr =
5, Gc = 5, S = 0.4, t = 1.7,K = 0.2

Figure 5. Effects of K on Velocity Profile for Gr =
5, Gc = 5, S = 0.4, Sc = 0.5, t = 1.7

Figure 6. Effects of S on Velocity Profile against time
for Gr = 5, Gc = 5, Sc = 0.5, y = 1,K = 0.2

Figure 7. Effects of S on Temperature Profile against
time for Gr = 5, Gc = 5, Sc = 0.5, y = 1,K = 0.2
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Figure 8. Effects of S and K on Temperature Profile
for Gr = 5, Gc = 5, Sc = 0.5, t = 1.7

Figure 9. Effects of Gr and Gc on Temperature Pro-
file for S = 0.4, Sc = 0.5, t = ‘1.7,K = 0.2

Figure 10. Effects of Sc on Temperature Profile for
Gr = 5, Gc = 5, S = 0.4, t = 1.7,K = 0.2

Figure 11. Effects of Sc and K on concentration
Profile

7. CONCLUSION

We explored how chemical reactions impact the flow through an accelerated vertical plate in the presence
of thermal stratification. The outcomes of the current study are compared with those of the classical situation

Figure 12. Effects of S on Skin friction for Gr =
5, Gc = 5, Sc = 0.5,K = 0.2

Figure 13. Effects of S on Nusselt Number for Gr =
5, Gc = 5, Sc = 0.5,K = 0.2
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in which stratification does not take place. As S, Sc and K grow, the fluid’s velocity decreases, whereas an
increase in Gr,Gc increases it. This research is more practical than earlier ones because it applies thermal
stratification, which lowers velocity and temperature in comparison to the classical scenario (S = 0). The
temperature decreases when K and Gc decreases, and it increases when S,Gr increases. Thermal stratification
increases the recurrence of oscillations in the skin friction and Nusselt number.
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ÍÅÑÒIÉÊÈÉ ÏÎÒIÊ ÏÎÂÇ ÏÐÈÑÊÎÐÅÍÓ ÂÅÐÒÈÊÀËÜÍÓ ÏËÀÑÒÈÍÓ ÇI
ÇÌIÍÍÎÞ ÒÅÌÏÅÐÀÒÓÐÎÞ ÇÀ ÍÀßÂÍÎÑÒI ÒÅÐÌÎÑÒÐÀÒÈÔIÊÀÖI� ÒÀ

ÕIÌI×ÍÎ� ÐÅÀÊÖI�
Íiòóë Êàëiòà, Ðóäðà Êàíòà Äåêà, Ðóïàì Øàíêàð Íàòõ

Ôàêóëüòåò ìàòåìàòèêè, Óíiâåðñèòåò Ãàóõàòi, Ãóâàõàòi-781014, Àññàì, Iíäiÿ

Öÿ ðîáîòà ñïðÿìîâàíà íà äîñëiäæåííÿ âïëèâó òåðìi÷íî¨ ñòðàòèôiêàöi¨ íà ïîòiê ðiäèíè ïîâç ïðèñêîðåíó âåðòèêàëü-

íó ïëàñòèíó çà íàÿâíîñòi õiìi÷íî¨ ðåàêöi¨ ïåðøîãî ïîðÿäêó. Áåçðîçìiðíi íåñòàöiîíàðíi ïîâ'ÿçàíi ëiíiéíi êåðóþ÷i

ðiâíÿííÿ ðîçâ'ÿçóþòüñÿ ìåòîäîì ïåðåòâîðåííÿ Ëàïëàñà äëÿ âèïàäêó, êîëè ÷èñëî Ïðàíäòëÿ äîðiâíþ¹ îäèíèöi. Âà-

æëèâi âèñíîâêè, çðîáëåíi â öüîìó äîñëiäæåííi, âïëèâ òåðìi÷íî¨ ñòðàòèôiêàöi¨ ïîðiâíþþòü çi ñöåíàði¹ì, â ÿêîìó

ñòðàòèôiêàöi¨ íå áóëî. Ðåçóëüòàòè ÷èñåëüíèõ îá÷èñëåíü äëÿ ðiçíèõ íàáîðiâ ôiçè÷íèõ ïàðàìåòðiâ, òàêèõ ÿê øâèä-

êiñòü, òåìïåðàòóðà, êîíöåíòðàöiÿ, òåðòÿ, ÷èñëî Íóññåëüòà òà ÷èñëî Øåðâóäà, âiäîáðàæàþòüñÿ ãðàôi÷íî. Ïîêàçàíî,

ùî ñòàöiîíàðíèé ñòàí äîñÿãà¹òüñÿ øâèäøå, êîëè ïîòiê ñòðàòèôiêîâàíèé.

Êëþ÷îâi ñëîâà: òåðìi÷íà ñòðàòèôiêàöiÿ; õiìi÷íà ðåàêöiÿ; òåïëî- òà ìàñîîáìií; âåðòèêàëüíà ïëàñòèíà; ïðè-

ñêîðåííÿ
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