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The scattering theory's main objective is to comprehend an object by hurling something at it. One can learn details about an object by 
observing how it bounces off other objects. The potential that exists between the two particles is the thing that one seeks to comprehend. 
In a time-independent approach to scattering, one assumes that the incident beam has been activated for a very long time and that the 
entire system is in a stationary state. For short-range local potentials, the variable phase methodology is highly useful in solving 
quantum mechanical scattering problems. Variable phase methodology/phase-function technique has been explicitly utilized for non-
relativistic nucleon-nucleon scattering phenomenon with the fundamental central local potential term and without spin-orbit force. 
Working under this methodology, scattering phase shifts, total scattering cross section, and Differential cross section have been 
investigated for a new nuclear potential model “Shifted Deng-Fan potential”. Real nucleon-nucleon scattering systems (n-p) and (p-p) 
have been treated for this purpose with partial waves up to 2=  in the low and moderate energy region. For 0>  waves, interacting 
repulsive barrier potential has been incorporated with the existing central part. Our results for the considered potential model show a 
close contest with that of the experimental data. 
Keywords: Shifted Deng-Fan Potential; Phase function method; Scattering Phase shifts; Scattering cross sections; (n-p) and (p-p) 
systems 
PACS: 03.65.Nk; 21.30.Fe; 13.75.Cs; 24.10.-i 

INTRODUCTION 
It is a well-known fact that the exact solution of the Schrödinger equation is significant in quantum mechanics as 

they enclose all necessary information regarding the quantum system under consideration. Most of the quantum systems 
can only be treated by approximation methodologies [1,2,3], as exact analytic solutions are feasible only for a few simple 
cases such as the hydrogen atom, the harmonic oscillator and others [4,5,6] in all partial waves and all energies. In a quest 
to find a suitable potential for diatomic interaction to describe the vibrational spectrum, Deng and Fan, in 1957, proposed 
a new molecular potential model [7] that is exponential in nature and was called Generalized Morse potential [8]. This 
potential is a modification of the Morse potential also known as Deng-Fan molecular potential (DF). Numerous studies 
were performed for this potential by researchers in various applications [9]. This potential has been adequately utilized in 
describing the nucleons’ mobility in the mean field produced from the interactions of the nuclei [10]. Dong treated the 
Deng-fan potential as a pertinent alternative to the Morse potential for vibrational spectrum and electromagnetic 
transitions [11,12] of the diatomic molecules. Mesa [13] applied this potential for energy spectra studies of the diatomic 
molecules. Oyewumi [14] utilized the Nikiforov–Uvarov method to obtain bound state solutions of the Deng–Fan 
molecular potential for several diatomic molecules like HCl, LiH, H2 and so on. Many of the other works have been 
accomplished with this potential via different quantum mechanical wave equations [15-22] by utilizing several standard 
approximation prescriptions to the solution in both relativistic and non-relativistic domains.  

 A modified form of the DF called Shifted Deng-Fan potential (SDF)was proposed by Hamzavi et al. in 2012[23] 
for the calculation of ro-vibrational energy levels for few of the diatomic molecules. In the modified form, the DF potential 
is shifted by the dissociation energy (D). Ref. [23] also demonstrated that DF and Morse potential are qualitatively similar 
but SDF and Morse potentials are very much similar for large values of r i.e in the regions r ≈ re and r >re, however, they 
differ at r ≈ 0. Here, re is the equilibrium diatomic separation. Louis [24] solved the Dirac equation for the Manning-
Rosen plus shifted Deng-Fan (MRSDF) potential in the presence of spin and pseudospin (pspin) symmetries and by 
including a Coulomb-like tensor potential. All of above works [7-24] pertains to molecular spectroscopy and molecular 
dynamics. Within the framework of the shifted Deng Fan potential (SDF), Sajedi [25] studied the cluster structure of 
astrophysically important 19Ne nucleus. In recent past, working with the exponential class of potentials, our group 
obtained exact analytical solution of the elastic Deng Fan potential [26] scattering of a particle in S-wave and obtained 
the phase parameters using the Jost function methodology for the systems under consideration in the nuclear realm. 

In this article, we present the study of the non-relativistic nuclear scattering treatment of the SDF potential in terms 
of the fundamental nucleon-nucleon scattering both charged and uncharged. In support of our justification, we present 
phase shift observables, total scattering cross section for proton-neutron (p-n) and proton-proton (p-p) scattering & 
differential cross section studies for proton-proton (p-p) scattering. A comparison is drawn for the obtained data against 
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the well-established experimental data. This is indirect way of knowing how much the SDF potential model treatment is 
justified in nuclear realm. We make use of the standard Phase function approach (PFM) [27] for numerical solution of 
the Schrödinger wave equation for motion of a particle in the SDF potential. Our study on the selected systems reproduces 
well consistent data in phase parameters, elastic scattering cross section and differential cross section for partial wave 
calculations up to ℓ= 2.  

 
2. METHODOLOGY 

Computing scattering phase shifts ( )kδ   as a function of centre of mass energy ( 2
. 0c mE k= > in the theoretical 

limit of )2 2 1m = is one among the core problems of quantum scattering theory. Phase-function method (PFM) [27] is 
an alternative to the traditional Schrödinger equation approach. This technique is powerful for its capability in 
straightforward physical interpretation of its equations and basic quantities. Moreover, it introduces the same type of 
approach in the bound state problem. This methodology [27] arises from the fact in the theory that certain second order 
linear homogeneous differential equations can be reduced to their first order non-linear equations of Riccati type called 
Riccati equations. The Riccati equations are satisfied by the phase functions ( ),k rδ   that is having the meaning of the 
phase shifts at each point of the wave function for scattering by the potential ( )V r  cut-off at that point. Similar 
investigations with PFM have been made by authors treating the local [28-34] and nonlocal [35-37] potentials. With the 
Shifted Deng Fan (SDF) [23-25] potential in all partial wave treatment, we incorporate a screened centrifugal barrier 
which is repulsive term. Thus, with a modified form of SDF potential [26], the effective potential becomes 

 ( ) ( )
( )2

0 1 2 2 2

1
( ) ( )

1 1

r r

sDF N r r

e eV r V r v v v
re e

α α

α α

− −
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+
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− −

 
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Where 0v  , 1v  and 2v  are the strength parameters with dimension of fm-2 and α  is the inverse range parameter with 
dimension of fm-1 and r  is the inter nucleon distance between the particles. 

For a local potential [1-3,6-33], ( , )k rδ satisfies a first-order non-linear differential equation [27] written as 

 21 ˆ ˆ( , ) ( ) cos ( , ) ( ) sin ( , ) ( )k r k V r k r j kr k r krδ δ δ η−′  = − −      , (2) 

where ˆ ( )j kr  and ˆ ( )krη  are the Riccati–Bessel and Riccati Neuman functions [38]. 
The resulting Phase equations for S, P and D waves and corresponding 0,1&2=  values 

 ( ) 21
0 0( , ) ( ) sin ( , )k r k V r k r krδ δ−′  = − +  , (3) 

 ( ) ( ) 2
1 1 13 2

( )( , ) sin ( , ) cos ( , )V rk r k r kr kr k r kr
k r

δ δ δ′ = −  + − +    (4) 

and 

 ( ) ( )
2

1
2 2 22 2

3 3( , ) ( ) 1 sin ( , ) cos ( , )k r k V r k r kr k r kr
k r kr

δ δ δ−   ′ = − − + − +    
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The quantity k  represents the momentum of the scattering particle (center of mass momentum) and is related to the 
centre of mass energy by the relation 2mE /k =  . Thus, 2k  is the energy of the scattering particle in the limit of 1=  
and 2 1m = where m  is the mass of the particle (reduced mass of the two particle system) scattering off the considered 
potential. Phase equation is solved initializing from the origin up to the asymptotic region, given the initial condition

( ,0) 0kδ = . In the course of solving the phase equation, the phase ( , )k rδ  is built up by the potential in additive manner 
as one moves away from the origin to its asymptotic value which implies ( ) ( , )

r
k Lim k rδ δ

→∞
=  . One can also calculate the 

amplitude function ( , )A k r  by utilizing the phase function ( , )k rδ , 
 

3. RESULTS AND DISCUSSIONS 
Nuclear shifted Deng Fan potential (SDF) (Eq. (1)) is parameterized for the standard phase shifts [39, 40] of different 

states of the (n-p) and (p-p) systems by solving the differential equations (3)-(5) numerically. Proper optimization to the 
step size of the ‘ r ’ value is significant in the phase accumulation calculation within the range of the interaction. Thus, 
one has to judiciously optimize the step size in order to have proper phase parameters. The parameters for different states 
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of the (n-p) system are given in Table 1. For stated states of the (p-p) system, we have utilized the same corresponding 
(n-p) states’ parameters as it is an established fact that for nuclear force, (n-p) and (p-p) interactions are equivalent. But 
with (p-p), a Coulombic repulsion force is associated. To take care of this Coulomb force in (p-p) interaction, a Coulombic 
potential term is added to the existing nuclear SDF (Eq.1). 
Table 1. List of parameters for states of (n-p) scattering system 

System States α(fm-1) v1(fm-2) v2(fm-2) v0(fm-2) 

n-p/p-p 1S0 0.868 -0.7174 -0.050 0.014 
 3S1 0.874 -2.000 1.760 -0.235 
 1P1 0.756 -2.165 2.980 -0.006 
 3P0 0.874 -3.430 2.500 -0.045 
 3P1 0.756 -2.250 3.550 -0.010 
 3P2 0.756 -2.410 1.300 -0.010 
 1D2 0.350 -1.700 0.005 -0.060 
 3D1 0.017 -0.550 5.800 -0.0102 
 3D2 0.400 -1.682 0.050 -0.011 
 3D3 0.350 -2.865 0.003 -0.008 

Solving the equations (3)-(5), with the substitution of the values of the parameters from Table 1, we calculate the 
scattering phase shifts for neutron-proton (n-p) and (p-p) systems up to partial waves  =2. We have used the calculated 
reduced mass to be 0.5039npm amu= for the n-p system, and the value of 2 22 41.47m MeV fm= . In our numerical 
routine, the parameters are given free running to fit the desired phase shifts for the various states of the concerned systems. 
The (n-p) scattering phase shifts are presented in the Figures 1-3. 

  
Figure 1. (n-p) S-wave scattering phase shifts as a function of 

laboratory energy 
Figure 2. (n-p) P-wave scattering phase shifts as a function of 

laboratory energy 

  
Figure 3. (n-p) D-wave scattering phase shifts as a function of 

laboratory energy 
Figure 4. (p-p) S-P- and D-wave scattering phase shifts as a 

function of laboratory energy 
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And the (p-p) scattering phase shifts are presented in the Figure 4. From the figures of obtained results, one can see 
that our obtained phase shifts are in close agreement with the experimental results of Gross and Stadler [39] and Wiringa 
[40] data. Fig. 1 shows that the parameters for the 3S1 and 1S0 states from Table 1 for (n-p) system reproduces the close
experimental phase parameter results of Ref. [39] up to laboratory energy 50 MeV. Similarly, Figs. 2 & 3 depict the phase
shift values for the P- and D- wave states and show close agreement with the results of Ref. [39]. However, the P-wave
states 3P0 and 3P1 show some deviation in phase shift around the laboratory energy of 25 MeV although the trend is exactly
matching. Beyond 50 MeV, the phase shifts start differing significantly with the energy for the reason that with increasing
energy, the reaction channels come into effect dominantly over the elastic channel. Also, for (p-p) scattering in Fig. 4,
shows correct trend for different states with some deviation in the phase shift results with increasing laboratory energy.
The difference in their numerical values is for the reason that nuclear potentials are highly state dependent and cannot be
generated properly from any known interaction unlike atomic cases. And in our case, the potential is only the spherical
central term without spin-dependence and tensor potential.

For the Shifted Deng Fan Potential (SDF) model scattering of the (n-p) and (p-p) systems, the interacting potential 
forms for all the partial wave states have been presented in Figs. 5- 8. It is an well-established fact that nuclear potentials 
are highly state dependent and therefore potentials for each different states of S-, P- and D- waves are shown in Figs. 5-8, 
against the variable ‘r’ for the (n-p) and (p-p) systems. From these figures, one can notice that the potentials are fully 
consistent with the phase shifts produced. 

Figure 5. n-p S-wave potentials as a function of r Figure 6. (n-p) P- wave potentials as a function of r 

Figure 7. D- wave (n-p) potentials as a function of r Figure 8. (p-p) potentials for different states as a function of r 

4. SCATTERING CROSS SECTION
In general, two particle interactions, a beam of particles is directed at a layer of matter. The effect of this layer is 

composed additively of the effects of the individual units and the individual nuclei act as independent scattering centers. 
Upon scattering, scattered current is uniformly distributed over a sphere of radius r . The cross section of a scattering is 
then defined as the ratio of number of events of a given type per unit time per nucleus to the number of incident particles 
per unit area per unit time [41,42]. The concept of cross section cannot be used if many scattering centers are taken to act 
coherently with incident ones. Scattering cross section in core of its idea is an effective area proportional to the intrinsic 
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rate at which a given radiation-target interaction occurs. Dimensionally cross section is an area with the base unit of barn 
(10-28 meter). We desire to investigate to what extent our SDF model calculations will be able to reproduce realistic cross 
section data in view of small discrepancies between the results of our phase shift analysis and of other calculations.  

For combined coulomb and nuclear potential scattering as for charged particle interaction, the differential scattering 
amplitude is expressed as 

 ( ) ( ) ( )nC C nf f fθ θ θ= + , (6) 

where 

 2
02( ) exp ln sin ( / 2) 2 ( )

2 sin / 2Cf i iηθ η θ σ η
χ θ

 
 = − − +   

 
, (7) 

and 

 
0

1( ) (2 1)exp(2 ( )) (cos )(exp(2 ) 1)
2

n
nf i P i

i
θ σ η θ δ

χ

∞

=

= + −   


 . (8) 

The quantity nδ  is the Coulomb-distorted nuclear phase shift. The negative sign in front of Eq. (7) originates from 
the fact that the Coulomb force between two protons is repulsive. The Coulomb-distorted nuclear cross section ( )nCσ θ is 
given by 

 2 2( ) ( ) ( ) ( )nC C n nCf f fσ θ θ θ θ= + = . (10) 

For identical particle, like (p-p), scattering 

 2( ) ( ) ( )f fσ θ θ π θ= + − . (11) 

One may calculate the total scattering cross section by integrating the differential cross section ( )σ θ over the entire 
solid angle and the angle integrated cross section is  

 2
2

0

4 (2 1)sinS
L

L
k
πσ δ

∞

=

= +  , (12) 

where δ   is the total scattering phase shift. 
Note that this integrated cross section is sometimes called the total cross section because it is the total after 

integration over all angles. The elastic scattering of neutrons by proton and proton by proton have been investigated by a 
number of researchers [43-48]. In the present text we calculate differential and total scattering cross sections for the (p-p) 
& (n-p) systems and compare them with the data [47- 48] available in the literature by exploiting Eqs. (7)- (12). The (p-p) 
differential cross sections are portrayed in Figs. 9 & 10 together with the Ref. [47] over the whole angular range. However, 
the experimental results [47] are available only up to angle 50°. We have obtained satisfying data from our calculation 
for two different laboratory energies of 6.141MeV and 9.918 MeV as shown in Figs. 9 &10 consecutively. 

  

Figure 9. Differential p-p scattering cross section as a function 
of θ  at ELab=6.141 MeV 

Figure 10. Differential p-p scattering cross section as a   function 
of θ  at ELab=9.918 MeV 

The angular distributions for 6.141 MeV differ quantitatively in a narrow margin with those of Slobodrian et al. [47] 
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results for both the systems (n-p) and (p-p) have been obtained up to laboratory energies of 50 MeV (Figs. 11 & 12) and 
compared with the experimental data [48]. 

The total cross section calculations are performed including the contributions of S, P and D waves for neutron-
proton (n-p) and proton-proton (p-p) scattering systems. Our (n-p) cross sectional data are in excellent agreement with 
the Arndt data [48] while for (p-p) system it shows qualitative agreement but with a slight quantitative disagreement in 
the energy range 2- 20 MeV. 

Figure 11. (n-p) total scattering cross section as a function of 
laboratory energy Figure 12. Total p-p scattering data with laboratory energy 

5. CONCLUSIONS
We have parameterized the Shifted Deng Fan potential [23-25] for the phase shift parameters of the (n-p) and (p-p), 

spin independent, non-relativistic quantum nuclear scattering. Thus, obtained phase shifts along with the parameters are used 
to obtain total scattering cross section and differential scattering cross section values. Having obtained close agreements for 
scattering phase parameters with standard data of Gross and Stadler [38] & Wiringa [39], differential cross section data with 
Slobodrian [47], total cross section results with Arndt et al. [48], it is vivid that under standard PFM [27], Shifted Deng Fan 
potential (SDF) model scattering has the capability of producing the correct nature of phase shifts of respective states. And 
this simple minded, only three parameter attractive potential suffices to reproduce the most of the low energy nuclear 
interaction environment. In future, our group is aiming to explore this potential with other standard methodologies and 
several newer real scattering systems. We are hopeful that the present representation of the SDF potential in nuclear domain 
in the context of non-relativistic quantum scattering physics is expected to explore new possibilities. 
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НУКЛОН-НУКЛОННЕ ПРУЖНЕ РОЗСІЯННЯ ПРИ РУCІ У ЗМІЩЕНОМУ ПОТЕНЦІАЛІ ДЕНГА-ФАНА
Бідхан Хіралі, С. Лаха, Бісванат Суейн, Уджвал Лаха 

Факультет фізики, Національний технологічний інститут, Джамшедпур, 831014, Індія 
Основна мета теорії розсіювання полягає в тому, щоб зрозуміти об'єкт, якщо щось в нього кинути. Можна дізнатися подробиці 
про об’єкт, спостерігаючи, як він відскакує від інших об’єктів. Потенціал, який існує між двома частинками, - це те, що ми 
прагнемо зрозуміти. У незалежному від часу підході до розсіювання передбачається, що падаючий промінь був активований 
протягом дуже тривалого часу і що вся система перебуває в стаціонарному стані. Для короткодіючих локальних потенціалів 
методологія змінної фази дуже корисна при розв’язанні задач квантово-механічного розсіювання. Методологія змінної 
фази/техніка фазової функції була явно використана для нерелятивістського явища нуклон-нуклонного розсіювання з 
фундаментальним центральним локальним потенційним членом і без спін-орбітальної сили. Працюючи за цією методологією, 
фазові зсуви розсіювання, загальний переріз розсіювання та диференціальний переріз були досліджені для нової моделі 
ядерного потенціалу «зміщений потенціал Денга-Фана». Реальні нуклон-нуклонні системи розсіювання (n-p) і (p-p) були 
оброблені для цієї мети парціальними хвилями 2=  до в області низьких і помірних енергій. Для хвиль 0>  взаємодіючий 
бар’єрний потенціал відштовхування було включено в існуючу центральну частину. Наші результати для розглянутої 
потенційної моделі показують близьку конкуренцію з результатами експериментальних даних. 
Ключові слова: зміщений потенціал Денга-Фана; метод фазової функції; фазовий зсув розсіювання; перерізи розсіювання; 
(n-p) і (p-p) системи 




