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The scattering theory's main objective is to comprehend an object by hurling something at it. One can learn details about an object by
observing how it bounces off other objects. The potential that exists between the two particles is the thing that one seeks to comprehend.
In a time-independent approach to scattering, one assumes that the incident beam has been activated for a very long time and that the
entire system is in a stationary state. For short-range local potentials, the variable phase methodology is highly useful in solving
quantum mechanical scattering problems. Variable phase methodology/phase-function technique has been explicitly utilized for non-
relativistic nucleon-nucleon scattering phenomenon with the fundamental central local potential term and without spin-orbit force.
Working under this methodology, scattering phase shifts, total scattering cross section, and Differential cross section have been
investigated for a new nuclear potential model “Shifted Deng-Fan potential”. Real nucleon-nucleon scattering systems (n-p) and (p-p)
have been treated for this purpose with partial waves up to ¢ =2 in the low and moderate energy region. For ¢ >0 waves, interacting
repulsive barrier potential has been incorporated with the existing central part. Our results for the considered potential model show a
close contest with that of the experimental data.

Keywords: Shifted Deng-Fan Potential; Phase function method; Scattering Phase shifts; Scattering cross sections; (n-p) and (p-p)
systems
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INTRODUCTION

It is a well-known fact that the exact solution of the Schrédinger equation is significant in quantum mechanics as
they enclose all necessary information regarding the quantum system under consideration. Most of the quantum systems
can only be treated by approximation methodologies [1,2,3], as exact analytic solutions are feasible only for a few simple
cases such as the hydrogen atom, the harmonic oscillator and others [4,5,6] in all partial waves and all energies. In a quest
to find a suitable potential for diatomic interaction to describe the vibrational spectrum, Deng and Fan, in 1957, proposed
a new molecular potential model [7] that is exponential in nature and was called Generalized Morse potential [8]. This
potential is a modification of the Morse potential also known as Deng-Fan molecular potential (DF). Numerous studies
were performed for this potential by researchers in various applications [9]. This potential has been adequately utilized in
describing the nucleons’ mobility in the mean field produced from the interactions of the nuclei [10]. Dong treated the
Deng-fan potential as a pertinent alternative to the Morse potential for vibrational spectrum and electromagnetic
transitions [11,12] of the diatomic molecules. Mesa [13] applied this potential for energy spectra studies of the diatomic
molecules. Oyewumi [14] utilized the Nikiforov—Uvarov method to obtain bound state solutions of the Deng—Fan
molecular potential for several diatomic molecules like HCI, LiH, H2 and so on. Many of the other works have been
accomplished with this potential via different quantum mechanical wave equations [15-22] by utilizing several standard
approximation prescriptions to the solution in both relativistic and non-relativistic domains.

A modified form of the DF called Shifted Deng-Fan potential (SDF)was proposed by Hamzavi et al. in 2012[23]
for the calculation of ro-vibrational energy levels for few of the diatomic molecules. In the modified form, the DF potential
is shifted by the dissociation energy (D). Ref. [23] also demonstrated that DF and Morse potential are qualitatively similar
but SDF and Morse potentials are very much similar for large values of r i.e in the regions r = r. and r >1., however, they
differ at r = 0. Here, r. is the equilibrium diatomic separation. Louis [24] solved the Dirac equation for the Manning-
Rosen plus shifted Deng-Fan (MRSDF) potential in the presence of spin and pseudospin (pspin) symmetries and by
including a Coulomb-like tensor potential. All of above works [7-24] pertains to molecular spectroscopy and molecular
dynamics. Within the framework of the shifted Deng Fan potential (SDF), Sajedi [25] studied the cluster structure of
astrophysically important !°Ne nucleus. In recent past, working with the exponential class of potentials, our group
obtained exact analytical solution of the elastic Deng Fan potential [26] scattering of a particle in S-wave and obtained
the phase parameters using the Jost function methodology for the systems under consideration in the nuclear realm.

In this article, we present the study of the non-relativistic nuclear scattering treatment of the SDF potential in terms
of the fundamental nucleon-nucleon scattering both charged and uncharged. In support of our justification, we present
phase shift observables, total scattering cross section for proton-neutron (p-n) and proton-proton (p-p) scattering &
differential cross section studies for proton-proton (p-p) scattering. A comparison is drawn for the obtained data against
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the well-established experimental data. This is indirect way of knowing how much the SDF potential model treatment is
justified in nuclear realm. We make use of the standard Phase function approach (PFM) [27] for numerical solution of
the Schrodinger wave equation for motion of a particle in the SDF potential. Our study on the selected systems reproduces
well consistent data in phase parameters, elastic scattering cross section and differential cross section for partial wave
calculations up to {= 2.

2. METHODOLOGY
Computing scattering phase shifts J, (k) as a function of centre of mass energy (Ec,_m =k” >0 in the theoretical

limit of #° / 2m= 1) is one among the core problems of quantum scattering theory. Phase-function method (PFM) [27] is

an alternative to the traditional Schrédinger equation approach. This technique is powerful for its capability in
straightforward physical interpretation of its equations and basic quantities. Moreover, it introduces the same type of
approach in the bound state problem. This methodology [27] arises from the fact in the theory that certain second order
linear homogeneous differential equations can be reduced to their first order non-linear equations of Riccati type called

Riccati equations. The Riccati equations are satisfied by the phase functions &, (k,r) that is having the meaning of the

phase shifts at each point of the wave function for scattering by the potential ¥ (r) cut-off at that point. Similar

investigations with PFM have been made by authors treating the local [28-34] and nonlocal [35-37] potentials. With the
Shifted Deng Fan (SDF) [23-25] potential in all partial wave treatment, we incorporate a screened centrifugal barrier
which is repulsive term. Thus, with a modified form of SDF potential [26], the effective potential becomes

—ar —2ar f["l‘l
G T L L S )

(l_e—ar) 2(1—670”)2 V2

Where v, , v, and v, are the strength parameters with dimension of fm? and « is the inverse range parameter with

(M

dimension of fm™! and r is the inter nucleon distance between the particles.
For a local potential [1-3,6-33], J,(k, r) satisfies a first-order non-linear differential equation [27] written as

8, (k,r)= kW (1) cos 8, (k,r) J, (k) —sin &, (k, ), (k) | )

where j,(kr) and A,(kr) are the Riccati-Bessel and Riccati Neuman functions [38].

The resulting Phase equations for S, P and D waves and corresponding £ =0,1&2 values
8, (e,r) ==kv () sin (8,(k, ) + i) T, 3)
’ Vr)r . 2
S, (k,r)= —](37[5111 (8,(k,r)+kr) —krcos (6, (k,r)+kr) 4)
and
’ 3 3 2
6, (k,r)= —k—lV(r)Kk2 ~— ljsin (6,(k,r)+kr) —k—cos(§2(k,r) + kr)} i ®)
r v

The quantity k represents the momentum of the scattering particle (center of mass momentum) and is related to the
centre of mass energy by the relation k =</2mE /7 . Thus, k* is the energy of the scattering particle in the limit of 7 =1
and 2m =1 where m is the mass of the particle (reduced mass of the two particle system) scattering off the considered

potential. Phase equation is solved initializing from the origin up to the asymptotic region, given the initial condition
9,(k,0)=0. In the course of solving the phase equation, the phase J,(k,r) is built up by the potential in additive manner

as one moves away from the origin to its asymptotic value which implies 6, (k) = Lim J,(k,r) . One can also calculate the

amplitude function 4, (k,r) by utilizing the phase function 9, (k,r),

3. RESULTS AND DISCUSSIONS
Nuclear shifted Deng Fan potential (SDF) (Eq. (1)) is parameterized for the standard phase shifts [39, 40] of different
states of the (n-p) and (p-p) systems by solving the differential equations (3)-(5) numerically. Proper optimization to the
step size of the ‘ 7> value is significant in the phase accumulation calculation within the range of the interaction. Thus,

one has to judiciously optimize the step size in order to have proper phase parameters. The parameters for different states
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of the (n-p) system are given in Table 1. For stated states of the (p-p) system, we have utilized the same corresponding
(n-p) states’ parameters as it is an established fact that for nuclear force, (n-p) and (p-p) interactions are equivalent. But
with (p-p), a Coulombic repulsion force is associated. To take care of this Coulomb force in (p-p) interaction, a Coulombic

potential term is added to the existing nuclear SDF (Eq.1).

Table 1. List of parameters for states of (n-p) scattering system

System States a(fm™) v1(fm?) v2(fm2) v0(fm2)

n-p/p-p S, 0.868 207174 20.050 0.014
381 0.874 -2.000 1.760 -0.235
1P, 0.756 -2.165 2.980 -0.006
3Po 0.874 -3.430 2.500 -0.045
3Py 0.756 -2.250 3.550 -0.010
3P, 0.756 -2.410 1.300 -0.010
D, 0.350 -1.700 0.005 -0.060
3Dy 0.017 -0.550 5.800 -0.0102
3D, 0.400 -1.682 0.050 -0.011
3Ds3 0.350 -2.865 0.003 -0.008

Solving the equations (3)-(5), with the substitution of the values of the parameters from Table 1, we calculate the
scattering phase shifts for neutron-proton (n-p) and (p-p) systems up to partial waves ¢ =2. We have used the calculated
reduced mass to be m,, =0.5039 amu for the n-p system, and the value of n / 2m=41.47MeV fin® . In our numerical

routine, the parameters are given free running to fit the desired phase shifts for the various states of the concerned systems.
The (n-p) scattering phase shifts are presented in the Figures 1-3.
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Figure 1. (n-p) S-wave scattering phase shifts as a function of
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And the (p-p) scattering phase shifts are presented in the Figure 4. From the figures of obtained results, one can see
that our obtained phase shifts are in close agreement with the experimental results of Gross and Stadler [39] and Wiringa
[40] data. Fig. 1 shows that the parameters for the 3S; and 'S, states from Table 1 for (n-p) system reproduces the close
experimental phase parameter results of Ref. [39] up to laboratory energy 50 MeV. Similarly, Figs. 2 & 3 depict the phase
shift values for the P- and D- wave states and show close agreement with the results of Ref. [39]. However, the P-wave
states *Ppand *P; show some deviation in phase shift around the laboratory energy of 25 MeV although the trend is exactly
matching. Beyond 50 MeV, the phase shifts start differing significantly with the energy for the reason that with increasing
energy, the reaction channels come into effect dominantly over the elastic channel. Also, for (p-p) scattering in Fig. 4,
shows correct trend for different states with some deviation in the phase shift results with increasing laboratory energy.
The difference in their numerical values is for the reason that nuclear potentials are highly state dependent and cannot be
generated properly from any known interaction unlike atomic cases. And in our case, the potential is only the spherical
central term without spin-dependence and tensor potential.

For the Shifted Deng Fan Potential (SDF) model scattering of the (n-p) and (p-p) systems, the interacting potential
forms for all the partial wave states have been presented in Figs. 5- 8. It is an well-established fact that nuclear potentials
are highly state dependent and therefore potentials for each different states of S-, P- and D- waves are shown in Figs. 5-8,

against the variable ‘r’ for the (n-p) and (p-p) systems. From these figures, one can notice that the potentials are fully
consistent with the phase shifts produced.
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4. SCATTERING CROSS SECTION

In general, two particle interactions, a beam of particles is directed at a layer of matter. The effect of this layer is
composed additively of the effects of the individual units and the individual nuclei act as independent scattering centers.
Upon scattering, scattered current is uniformly distributed over a sphere of radius 7. The cross section of a scattering is
then defined as the ratio of number of events of a given type per unit time per nucleus to the number of incident particles
per unit area per unit time [41,42]. The concept of cross section cannot be used if many scattering centers are taken to act
coherently with incident ones. Scattering cross section in core of its idea is an effective area proportional to the intrinsic
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rate at which a given radiation-target interaction occurs. Dimensionally cross section is an area with the base unit of barn
(10" meter). We desire to investigate to what extent our SDF model calculations will be able to reproduce realistic cross
section data in view of small discrepancies between the results of our phase shift analysis and of other calculations.

For combined coulomb and nuclear potential scattering as for charged particle interaction, the differential scattering
amplitude is expressed as

Sc(0) = fc(0)+ £,(0), (6)
where
n L A
f(6)= —{m} exp[ —inInsin®(6/2) +2io,(17) ] . (7
and
£,.(0)= %i(% +1)exp(2io, (1)) F,(cos 8) (exp(2i6; ) —1) . ®)
LY =0

The quantity &, is the Coulomb-distorted nuclear phase shift. The negative sign in front of Eq. (7) originates from
the fact that the Coulomb force between two protons is repulsive. The Coulomb-distorted nuclear cross section o,.(8) is

given by
0,(0)=| 1O+ 1,6 =|/,0) . (10)
For identical particle, like (p-p), scattering
a(0)=|/ O+ f(x-0) . (11)

One may calculate the total scattering cross section by integrating the differential cross section o(6) over the entire
solid angle and the angle integrated cross section is

4rr & .
GS=F;(2L+1)sm25f , (12)

where 0, is the total scattering phase shift.

Note that this integrated cross section is sometimes called the total cross section because it is the total after
integration over all angles. The elastic scattering of neutrons by proton and proton by proton have been investigated by a
number of researchers [43-48]. In the present text we calculate differential and total scattering cross sections for the (p-p)
& (n-p) systems and compare them with the data [47- 48] available in the literature by exploiting Eqgs. (7)- (12). The (p-p)
differential cross sections are portrayed in Figs. 9 & 10 together with the Ref. [47] over the whole angular range. However,
the experimental results [47] are available only up to angle 50°. We have obtained satisfying data from our calculation
for two different laboratory energies of 6.141MeV and 9.918 MeV as shown in Figs. 9 &10 consecutively.
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The angular distributions for 6.141 MeV differ quantitatively in a narrow margin with those of Slobodrian et al. [47]
up to angle 20° while for larger energy 9.918 MeV our results are in good conformity with Ref. [47]. Total cross section
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results for both the systems (n-p) and (p-p) have been obtained up to laboratory energies of 50 MeV (Figs. 11 & 12) and
compared with the experimental data [48].

The total cross section calculations are performed including the contributions of S, P and D waves for neutron-
proton (n-p) and proton-proton (p-p) scattering systems. Our (n-p) cross sectional data are in excellent agreement with
the Arndt data [48] while for (p-p) system it shows qualitative agreement but with a slight quantitative disagreement in
the energy range 2- 20 MeV.
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Figure 11. (n-p) total scattering cross section as a function of

laboratory energy Figure 12. Total p-p scattering data with laboratory energy

5. CONCLUSIONS

We have parameterized the Shifted Deng Fan potential [23-25] for the phase shift parameters of the (n-p) and (p-p),
spin independent, non-relativistic quantum nuclear scattering. Thus, obtained phase shifts along with the parameters are used
to obtain total scattering cross section and differential scattering cross section values. Having obtained close agreements for
scattering phase parameters with standard data of Gross and Stadler [38] & Wiringa [39], differential cross section data with
Slobodrian [47], total cross section results with Arndt et al. [48], it is vivid that under standard PFM [27], Shifted Deng Fan
potential (SDF) model scattering has the capability of producing the correct nature of phase shifts of respective states. And
this simple minded, only three parameter attractive potential suffices to reproduce the most of the low energy nuclear
interaction environment. In future, our group is aiming to explore this potential with other standard methodologies and
several newer real scattering systems. We are hopeful that the present representation of the SDF potential in nuclear domain
in the context of non-relativistic quantum scattering physics is expected to explore new possibilities.

ORCID
Bidhan Khirali, https://orcid.org/0000-0001-7200-1828; ©®Biswanath Swain, https://orcid.org/0000-0002-9149-8857
Ujjwal Laha, https://orcid.org/0000-0003-4544-2358

REFERENCES

[1] C.L. Pekeris, “The Rotation-Vibration Coupling in Diatomic Molecules”, Phys. Rev. 45, 98(1934),
https://doi.org/10.1103/PhysRev.45.98

[2] W.C. Qiang, and S.H. Dong, “Analytical approximations to the solutions of the Manning-Rosen potential with centrifugal term”,
Phys. Lett. A, 363, 169 (2007), https://doi.org/10.1016/j.physleta.2007.03.057

[3] B. Khirali, A.K. Behera, J. Bhoi, and U. Laha, “Scattering with Manning-Rosen potential in all partial waves”, Ann. Phys. 412,
168044 (2020), https://doi.org/10.1016/j.a0p.2019.168044

[4] L.D.Landau and E.M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, 3rd ed. (Pergamon, 1977).

[5] R.L. Liboff, Introductory Quantum Mechanics, 4th ed. (Addison Wesley, San Francisco, 2003).

[6] M.M. Nieto, “Hydrogen atom and relativistic pi-mesic atom in N-space dimensions”, Am. J. Phys. 47, 1067 (1979),
https://doi.org/10.1119/1.11976

[71 Z.H.Deng, and Y.P. Fan, “A Potential Function of Diatomic Molecules”, J. Shandong Univ. (Natural Sci.) 1, 162 (1957)

[8] A.N. Ikot, H. Hassanabadi, B.H. Yazarloo, M.I. Umo, and S. Zarrinkamar, Dirac-Deng-Fan Problem with Coulomb-Hulthen
Tensor Interactions, Acta Phys. Polonica A, 126, 656 (2014), https://doi.org/10.12693/APhysPolA.126.656

[9] K.J. Oyewumi, O.J. Oluwadare, K.D. Sen, and O.A. Babalola, “Bound state solutions of the Deng—Fan molecular potential with
the Pekeris-type approximation using the Nikiforov-Uvarov (N-U) method”, J. Math. Chem. 51(3), 976-991 (2013),
https://doi.org/10.1007/s10910-012-0123-6

[10] E. Maghsoodi, H. Hassanabadi, and S. Zarrinkamar, “Spectrum of Dirac equation under Deng—Fan scalar and vector potentials and
a Coulomb tensor interaction by SUSYQM?”, Few-Body Syst. 53(3-4), 525-538 (2012), https://doi.org/10.1007/s00601-012-0314-5

[11] S.H. Dong, Factorization method in quantum mechanics Fundamental Theories in Physics.150 (Springer, Netherlands, 2007).
pp- 187-213.

[12] O.J. Oluwadare, K.J. Oyewumi, C.O. Akoshile, and O.A. Babalola, “Approximate analytical solutions of the relativistic equations
with the Deng-Fan molecular potential including a Pekeris-type approximation to the (pseudo) centrifugal term”, Phys. Scr. 86,
035002 (2012), https://doi.org/10.1088/0031-8949/86/03/035002



568

EEJP. 3 (2023) Bidhan Khirali, et al.

[13]

[14]

[15]
[16]

[17]

(18]

(22]

[31]

A.D.S. Mesa, C. Quesne, and Y.F. Smirnov, “Generalized Morse potential: Symmetry and satellite potentials”, J. Phys. A, 31,
321 (1998), https://doi.org/10.1088/0305-4470/31/1/028

K.J. Oyewumi, O.J. Oluwadare, K. D. Sen, and O.A. Babalola, “Bound state solutions of the Deng-Fan molecular potential with
the Pekeris-type approximation using the Nikiforov-Uvarov (N-U) method”, J. Math. Chem. 51, (2012) 976,
https://doi.org/10.1007/s10910-012-0123-6

H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar, and H. Rahimov, “Deng-Fan potential for relativistic spinless particles - An
ansatz solution”, Commun. Theor. Phys. 57 339 (2012), https://doi.org/10.1088/0253-6102/57/3/02

S.H. Dong, “Relativistic Treatment of Spinless Particles Subject to a Rotating Deng-Fan Oscillator Relativistic Treatment of Spinless
Particles Subject to a Rotating Deng-Fan Oscillator”, Commun. Theor. Phys. 55, 969 (2011), https://doi.org/10.1088/0253-6102/55/6/05
J. Oluwadare, K.J. Oyewumi, and O.A. Babalola, “Exact s-wave solution of the Klein-Gordon equation with the Deng-Fan
molecular  potential using the Nikiforov-Uvarov ~(NU) Method”, Afr. Rev. Phys. 7, 16 (2012).
http://aphysrev.ictp.it/index.php/aphysrev/article/download/543/236

B.H. Yazarloo, L. Lu, G. Liu, S. Zarrinkamar, and H. Hassanabadi, “The nonrelativistic scattering states of the Deng-Fan
potential”, Adv. High Energy Phys. 2013, 317605 (2013), https://doi.org/10.1155/2013/317605

S.H. Dong, and X.Y. Gu, “Arbitrary | state solutions of the Schrodinger equation with the Deng-Fan molecular potential”, J. Phys.
Conlf. Ser. 96, 012109 (2008), https://doi.org/10.1088/1742-6596/96/1/012109

Z. Rong, H.G. Kjaergaard, and M.L. Sage, “Comparison of the Morse and Deng-Fan potentials for X-H bonds in small
molecules”, Mol. Phys. 101 2285 (2003), https://doi.org/10.1080/0026897031000137706

L.H. Zhang, P. Li, and C.S. Jia, “Approximate analytical solutions of the Dirac equation with the generalized Morse potential
model in the presence of the spin symmetry and pseudo-spin symmetry”, Phys. Scr. 80, 035003 (2009),
https://doi.org/10.1088/0031-8949/80/03/035003

S.M. Ikhdair, “An approximate k state solutions of the Dirac equation for the generalized Morse potential under spin and
pseudospin symmetry”, J. Math. Phys. 52 052303 (2011), https://doi.org/10.1063/1.3583553

M. Hamzavi, S.M. Ikhdair, and K.E. Thylwe, “Equivalence of the empirical shifted Deng—Fan oscillator potential for diatomic
molecules”, J. Math. Chem. 51(1), 227-238 (2013), https://doi.org/10.1007/s10910-012-0075-x

H. Louis, B.I. Ita, P.I. Amos, O.U. Akakuru, M.M. Orosun, N.A. Nzeata-Ibe, and M. Philip, “Solutions to the Dirac Equation for
Manning-Rosen Plus Shifted Deng-Fan Potential and Coulomb-Like Tensor Interaction Using Nikiforov-Uvarov Method”,
Int. J. Chem.10, 3(2018), https://doi.org/10.5539/ijc.v10n3p99

M. Sajedi, and Z. Kargar, “Shifted Deng-Fan potential and cluster structure in 19Ne”, Nucl. Phys. A, 1015, 122314 (2021),
https://doi.org/10.1016/j.nuclphysa.2021.122314

D. Saha, B. Khirali, B. Swain, and J. Bhoi, “Jost states for the Deng-Fan potential”’, Phys. Scr. 98, 015303 (2023),
https://doi.org/10.1088/1402-4896/acale6

F. Calogero, Variable Phase Approach to Potential Scattering (New York: Academic1967).

U. Laha, and J. Bhoi, “Higher partial-wave potentials from supersymmetry-inspired factorization and nucleon-nucleus elastic
scattering”, Phys. Rev. C - Nucl. Phys.91,034614(2015), https://doi.org/10.1103/PhysRevC.91.034614

J. Bhoi, R. Upadhyay, and U. Laha, “Parameterization of Nuclear Hulthén Potential for Nucleus-Nucleus Elastic Scattering”,
Commun. Theor. Phys.69, 203-210 (2018),https://doi.org/10.1088/0253-6102/69/2/203

[30] U. Laha, and J. Bhoi, ‘“Parameterization of the nuclear Hulthén potentials”, Phys. At. Nucl. 79, 62-66 (2016),
https://doi.org/10.1134/S1063778816010129

A K. Behera, U. Laha, M. Majumder, and J. Bhoi, “Energy-Momentum Dependent Potential sand np Scattering”, Research and
Reviews: J. Phys. 8, 2265 (2019).https://sciencejournals.stmjournals.in/index.php/RRJoPHY /article/view/2139

A. K. Behera, J. Bhoi, U. Laha, and B. Khirali, “Study of nucleon — nucleon and alpha-nucleon elastic scattering by the Manning-
Rosen potential”, Commun. Theor. Phys. 72, 075301 (2020), https://doi.org/10.1088/1572-9494/ab8ala

P. Sahoo, A. K. Behera, B. Khirali, and U. Laha, “Nuclear Hulthén potentials for F and G partial Waves”, Research & Reviews:
J. Phys. 10, 31-37 (2021),https://doi.org/10.37591/RRJoPHY

A.K. Behera, U. Laha, M. Majumder, and J. Bhoi, “Applicability of Phase-Equivalent Energy-Dependent Potential. Case
Studies”, Phys. At. Nucl. 85, 124-138 (2020), https://doi.org/10.1134/S1063778822010057

B. Talukdar, D. Chattarji, and P. Banerjee, “A generalized approach to the phase amplitude Method”, J. Phys. G: Nucl. Phys. 3,
813-820 (1977), https://doi.org/10.1088/0305-4616/3/6/012

G.C. Sett, U. Laha, and B. Talukdar, “Phase function method for Coulomb -distorted nuclear Scattering”, J. Phys. A: Math. Gen.
21, 3643-3657 (1999), https://doi.org/10.1088/03054470/21/18/017

U. Laha, A.K. Jana, and T.K. Nandi, “Phase-function method for Hulthén -modified Separable potentials”, Pramana - J. Phys.
37(5), 387-393 (1991), https://doi.org/10.1007/BF02848506

J.M. Watson, 4 Treatise on the Theory of Bessel Functions, (Cambridge University Press, London, 1922).

F. Gross, and A. Stadler, “Covariant spectator theory of np scattering: Phase shifts obtained from precision fits to data below
350 MeV?”, Phys. Rev. C, 78, 014005 (2008), https://doi.org/10.1103/PhysRevC.78.014005

R.B. Wiringa, V.G.J. Stoks, and R. Schiavilla, “Accurate nucleon-nucleon potential with charge-independence breaking”, Phys.
Rev. C, 51, 38 (1995). https://doi.org/10.1103/PhysRevC.51.38

J.R Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions (Dover Publications INC, New York, 2006).
R.G. Newton, Scattering theory of Waves and Particles (McGraw-Hill, New York, 1982).

C.L. Bailey, W.E. Bennett, T. Bergstralth, R.G. Nuckolls, H.T. Richards, and J.H. Williams, “The neutron-proton and neutron-
carbon scattering cross sections for fast Neutrons”, Phys. Rev. 70, 583 (1946), https://doi.org/10.1103/PhysRev.70.583

F.F. Chen, C.P. Leavitt, and A.M. Shapiro, “Total p-p and “p-n” cross sections at cosmotron Energies”, Phys. Rev. 103, 211
(1956), https://doi.org/10.1103/PhysRev.103.211

B.H. Daub, V. Henzl, M.A. Kovash, J.L. Matthews, Z.W. Miller, K. Shoniyozov, and H. Yang, “Measurements of the neutron-
proton and neutron-carbon total cross sectionfroml150 to 800 keV”, Phys. Rev. C, 87, 014005 (2013),
https://doi.org/10.1103/PhysRevC.87.014005



569
Nucleon-Nucleon Elastic Scattering for Motion in The Shifted Deng-Fan Potential EEJP. 3 (2023)

[46] J.D. Jackson, and J.M. Blatt, “The interpretation of low energy proton-proton scattering”, Rev. Mod. Phys, 22, 77 (1950),
https://doi.org/10.1103/RevModPhys.22.77

[47] R.J. Slobodrian, H.E. Conzett, E. Shield, and W.F. Tivol, “Proton-proton elastic scattering between 6 and 10 MeV”, Phys. Rev.
174, 1122 (1968), https://doi.org/10.1103/PhysRev.174.1122

[48] R.A. Arndt, W.J. Briscoe, A.B. Laptev, LI. Strakovskyt, and R.L. Workman, “Absolute total np and pp cross-section
determinations”, Nucl. Sci. Eng. 162, 312 (2009), https://doi.org/10.13182/NSE162-312

HYKJUIOH-HYKJIOHHE IIPY’KHE PO3CISIHHS ITPU PYCI Y 3BMIIEHOMY INIOTEHUIAJII JEHT'A-®AHA
Binxan Xipadi, C. Jlaxa, bBiceanar Cyeiin, Y:kBaja Jlaxa
Daxynomem ¢izuxu, Hayionanrvnui mexnonoziunuil incmumym, Jocamweonyp, 831014, Inois

OcHOBHa MeTa Teopil pO3CiIOBaHHS MOJIATAE B TOMY, 1100 3p03yMiTH 00'€KT, SIKIIO II[OCh B HHOTO KUHYTH. MOXKHA Ji3HATHCS TOAPOOHII
po 00’€KT, CIIOCTEPIraloyH, sIK BiH BiICKaKye Bif iHIMX 00’€kTiB. [loTeHmian, skuii icHye MiXK BOMa YaCTUHKAMH, - 11 T€, [0 MU
MIParHeMO 3pO3yMITH. Y HE3aJIeKHOMY BiJl 4acy MiJXO[i 10 PO3CiIOBaHHS MepeadavyacThes, M0 MaJarourii IpOMiHb OyB aKTHBOBAHHI
MIPOTSTOM JIy>Ke TPHBAJIOTO 4Yacy i IO BCSI CHCTeMa IiepedyBa€e B CTalliOHApHOMY CTaHi. [T KOPOTKO/IFOUMX JIOKAJIBHUX ITOTEHIIAIB
METOJIONIOTIsl 3MiHHOI (pa3u Jy)ke KOpHCHA IpU PO3B’SI3aHHI 3aJad KBAaHTOBO-MEXaHIYHOTO PO3CiIOBaHHA. MeTomonoris 3MiHHOT
(asu/Texnika ¢Ga3oBoi (yHkIii Oyia SBHO BUKOpPHCTaHA JJIS HEPEIATHUBICTCHKOIO SIBHINA HYKJIOH-HYKJIOHHOTO PO3CIFOBAaHHS 3
(yHIaMeHTaJILHUM LIEHTPAIHUM JIOKAJILHUM ITOTEHLITHUM WICHOM i 6e3 criH-opOiTaipHoi crid. [Ipaloroun 3a i€l MeToI0JIoTi€l0,
(a30Bi 3cyBU pO3CilOBaHHI, 3arajbHHUI mepepi3 po3ciroBaHHs Ta Au(epeHLianbHuil nepepi3 Oynu JOCTiIKeHi 1Jisl HOBOI Mojeri
SZIEPHOTO TOTEHLiay «3MilneHuii noreHuian [lenra-Manay. PeanbHi HyKIOH-HYKIOHHI cucTeMu po3citoBaHHs (n-p) i (p-p) Oynu
06po0IIeH] s i€l METH TapiialbHUMU XBWIsIME ¢ =2 110 B 00J1aCTi HU3bKKX 1 IOMipHUX eHepriid. [l xBwib £ > 0 B3aeMoi09nit
Oap’epHUA TOTEHIiaNl BigIITOBXYBaHHS OyJO BKIIOYEHO B ICHYIOYY HEHTpalbHY 4YacTWHY. Hamii pe3yiabpTaTH A PO3TISIHYTOL
MOTEHIIHHOT MOZIENI TOKa3YIOTh OJM3bKY KOHKYPEHIIIO 3 pe3yIbTaTaMH €KCTIEPUMEHTAIBHAX TaHUX.

KurouoBi ciioBa: smiwenuii nomenyian [enea-®ana; memoo gazosoi hynkyii; gpazosuii 3¢cye po3cito8ants, nepepizu po3cilo8aHHs,

(n-p) i (p-p) cucmemu





