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By using generalized fractional derivative, the parametric generalized fractional Nikiforov-Uvarov (NU) method is introduced. The
second-order parametric generalized differential equation is exactly solved in the fractional form. The obtained results are applied on
the extended Cornell potential, the pesudoharmonic potential, the Mie potential, the Kratzer-Fues potential, the harmonic oscillator
potential, the Morse potential, the Woods-Saxon potential, the Hulthen potential, the deformed Rosen-Morse potential and the
Poschl-Teller potential which play an important role in the fields of molecular and hadronic physics. The special of classical cases
are obtained from the fractional cases at ¢ = f# =1 which are agreements with recent works.
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1. INTRODUCTION

Many researchers have been interested in the fractional calculus (FC) during the past three decades in the previous
and current centuries [1-2]. The importance of FC has significantly increased in a variety of scientific and technical
fields and explain the advantages of the (FC) over the other numerical methods because we can get exact solution but
numerical method can get approximate solution also, there are a lot of problems in solving partial equations. In fact,
there are many papers using symmetry methods to solve differential equations including fractional differential equations
such as in Ref. [3]. They study modified Gardner-type equation and its time fractional form. They derived these two
equations from Fermi-Pasta-Ulam model, and found that these two equations are related with nonlinear Schrodinger
equation. They not only derive these two equations, but also use perturbation analysis to find the connection between
them and the Schrodinger equation. Non- integer order differentiation and integration form the basis of FC. Numerous
definitions of the fractional differential equations have been put out in the literature. The definitions of Jumarie [4],
Riemann-Liouville [5], and Caputo [6] have gotten a lot of attention and are the most suitable for physical conditions.
Al-Raeei and El-Daher [7], used a numerical technique to rely on the definition of Riemann-Liouville fractional
derivative. Khalil et al. [8] represented a new definition of a fractional derivative, referred to as a conformable fractional
derivative (CFD) which follows to basic classical principles. Abdeljawad [9] extended the definition and established the
fundamental notions of the CFD. A new concept for the fractional derivative known as the generalized fractional
derivative (GFD) was recently proposed by Abu-Shady and Kaabar [10]. Because it offers more features than the
previous definitions [4-6,10], where the CFD may be produced as a special case from the GFD, the GFD definition is
regarded as a comprehensive type for the fractional derivative.

Solving Schrddinger equation (SE) with the intention of examining a physical system is a fundamental challenge
in quantum mechanics and particle physics [11-17]. In Ref. [18]. the conformable fractional of the Nikiforov-Uvarov
(CF-NU) method is used to analytically solve the radial Schrodinger equation and the dependent temperature potential
is used to obtain the energy eigenvalues, corresponding wave functions, and heavy quarkonium masses like
charmonium and bottomonium in a hot QCD medium in the 3D and higher dimensions. In Ref. [19], the trigonometric
Rosen-Morse potential is employed to examine the effect of the fraction-order parameter. The N-radial fractional
Schrédinger equation has analytical solutions established using the extended Nikiforov-Uvarov method. The energy
eigenvalues in the fractional forms and the masses of mesons such as charmonium and bottomonium were also
obtained.

Using the generalized fractional NU method, the fractional N-dimensional radial Schrodinger equation (SE) with
the Deng-Fan potential is evaluated in Ref. [20] in which the analytical formulas are generated for the energy
eigenvalues and corresponding eigenfunctions at three-dimensional space and higher dimensions to study the energy
spectra of various molecules. The analytical-exact iteration method with a conformable fractional derivative is used in
Ref. [21] in which the radial Schrodinger equation can be solved analytically with the trigonometric Rosen-Morse
potential. In Ref. [22], the fractional nonrelativistic potential model is used to explore the dissociation of heavy
quarkonium in a hot magnetized medium in which the energy eigenvalues and the radial wave functions are obtained.
The generalized fractional analytical iteration method is used as in Ref. [23] to solve the hyper-central Schrodinger
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equation and studied its applications on the theory baryons with single, double, and triple in the ground state. In
addition, the SE can be exactly solved, the system can be fully described as in [24, 25, 26] using the Nikiforov Uvarov
method. This method is very good because we get on a good result compared by another methods as in Refs. [22, 23].

The aim of the present work is to generalize the second-order parametric differential equation in the fractional
form by using generalized fractional derivative. The special cases are obtained at « = #=1. Many applications are
introduced such as the extended Cornell potential, the Pesudoharmonic potential, the Mie potential, the Kratzer-Fues
potential, the harmonic oscillator potential, the Morse potential, the Woods-Saxon potential, the Hulthen potential, the
Deformed Rosen-Morse potential and Péschl-Teller potential. This work is not considered in the recent works.

This paper is arranged as follows. In Sec. 2, the generalized fractional derivative is briefly introduced. In Sec. 3,
the generalized fractional Nikiforov-Uvarov (NU) method is explained. In Sec. 4, Some Applications are obtained. In
Sec. 5, the conclusion is written.

2. THE GENERALIZED FRACTIONAL DERIVATIVE
A new formula for a fractional derivative called the generalized fractional derivative (GFD) is proposed. The
generalized fractional Derivative has been suggested to provide more advantages than other classical Caputo and
Riemann-Liouville fractional derivative definitions such that the derivative of two functions, the derivative of the
quotient of two function, Rolles theorem and the mean value theorem which have been satisfied in the GFD and which
gives a new direction for simply solving fractional differential equations see Ref. [10]. For a function Z : (0,00) — R, the
generalized fractional derivative of order 0 < o < 1 of Z(t) at > 0 is defined as

Z(t+r(;#£t1_“)—z(t)

DPZ(t) = lim ““8) :B>—1,B€R* (1)
E—
The properties of the generalized fractional derivative are,
L DO Zy ()] = ky £ Zyy(0), 2
L DU[D*Z(O)] = ky™ [(1- ) £172 % Zyy () + 272 % 2, " (1)), (3)
__ I8l .
where, k; = TR with0<oa<1,0< <1

III. D% DP t™=D*Ft™ for function derivative of Z(t) =t™ ,m € R*
IV. DSFP(XY) = XDFP(Y) +YDCFP(X) where X, Y be a — differentiable function

v DGFD( i) _ YDGFD(X)—X DGFD(y)
: Y Y2
VI.  D%I,Z(t) =Z(t) for = 0 and Z is any continuous function in the domain.

where X, Y be o- differentiable function

2.1. The Generalized Fractional Nikiforov-Uvarov (NU) Method.
By using generalized fractional derivative, the parametric generalized fractional Nikiforov-Uvarov (NU) method is
introduced. The second-order parametric generalized differential equation is exactly solved in the fractional form as in
Ref. [27]

o

2 () =0, @

DD UY(s)] + 25 DUP(s) +

where O , o(s) and T(s) are polynomials of 2a —th, 2a —th and a —th degree.
where,

a _= a _3 2 _
n(s) = 220070 4 J(D TN 5 (s) + K o(s). (5)
and
A=K+ D%n(s), (6)

A is constant and 7 (s) is @ —th degree polynomial. The values of K in the square-root of Eq. (5) is possible to
determine whether the expression under the square root is square of expression. Replacing K into Eq. (5), we define

o(s) = 7(s) + 2 m(s), O]
the derivative of T should be negative [28], since p(s) > 0 and o(s) > 0 then this is solution. If A in Eq. (6) is
A= 2y=-nD%7 -2 e[ Do (s)]. (8)

The hypergeometric type equation has a particular solution with degree a. Eq. (4) has a solution which is the product of
two independent parts
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e W(s) = () ¥ (s), ©
Ya(8) =25 (D) ()" pa(s), (10)

D*[a(s) p()] = 7(s) o (s), (11

19 (12)

2.2. Second Order Parametric Generalized Differential Equation
The following equation is a general form of the Schrodinger equation which can be obtained by transforming into a
second-order parametric generalized differential equation.

D DUP(s)] + <o Do(s) +— T sy =, (13)
7(s) = a; — a, s%, (14)
o(s)=s%(1 — ag s%), (15)
F(s) ==& 52+ &, 5% — &, (16)
Substituting these into Eq. (5), we obtain
T=a,tas s* +./(as - Kas) s2¢ + (a; + K) s* +ag, (17)
where,
ay = (ko -a) (18)
a5 = (@z 2 a kyt) (19)
ag=as? +§ (20)
a;=2a,a5-& (21)
g =a, *+ & (22)
In Eq. (17), the function under square root must be the square of a polynomial according to the NU method, so that
K=-(a; + 2 asag) + 2 \/aga,, (23)
where,
g =z a; + az? ag +ag (24)
In case K is negative in the form
K=-(a; + 2 asag) -2 \Jaga, (25)

So that m becomes

= ayt s s - [(Jagtas Jag) s g (26)

From Egs. (7), (17) and (26), we get

T:al+2a4—(a2—2a5)s“—[(\/a_9+a3 \/a_g)sa-\/a_g] 27
From Egs. (2) and (27), we get,
DYt =k [-a (az -2 as) -2 a (Jagtaz Jag) 1= ki [- 2 a® az- 2 a (Jagtas \[ag)]< 0 (28)

From Egs. (6, 8), we get the equation of the energy spectrum
nky aa,-@2n+1)k; aas+@ntl)ky a (Jagtas Jag) +n@-1)k,* a? as +a; +2 az ag +2 \Jagag = 0(29)
If a=1=p then k; = 1, we get the classical equation of the energy eigenvalue as Ref. [25]
na, — (2n+1) as + (2n+1) (agtas \Jag) +n (n-1) az +a; +2 az ag +2 Jagags =0. (30)

from Eq. (11), we get
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a10-@ @11 _ @10 1
p(s) =g ki (1 — a3 Sa)akl a3z akq k1 (31)
From Eq. (10), we get
(alo—a a11  _ @10 L)
Yo =P K1 oekies ek k(1= 2azs%) (32)
where,
Ao=0a; t2a,+2 . Jag (33)
0.’11 = az -2 as +2 (,I 0.’9+a3 ~/ as) (34)
From Eq. (9), the generalized solution of the wave function becomes,
a1 —@13 _ @12 (am—a' 11 _ @10 L)
w(s) =gk (1 — as S“)zzkl az akp Pn k1 ’‘aki az akq ki (1 -2 as Sﬂ-’) (35)
where,
P, %) are Jacobi polynomials.
@1z = Ay T/ g (36)

Qi3 = ds — (\/a_9+a3 \/a_s) 37

Some problems, in case a; = 0.

(alo—a @11 _ @10 L) 10— ar
lim P, ki @k @k k(1 — @y s9) =Ly k(o2 s%) (38)

az—0 aky

—@13 @12 @13 s
O};To(l — a3 Sa)(lkl a3z aky = eakl (39)
Eq. (35), becomes
212 213 s a10-a a1

Y(s)=sk e’ Ly M (s ), (40)

Where, L,, being the Laguerre polynomials.
The second solution of Eq. (23) in the following case

K=-(a; +2azag) +2 . agay 41)

then, the wave function is,

aip” —a13" a1p” (0‘10*—!1 11" a10” L)x
1!)(5) =g k1 (1 — as S“)akl az akq Pn k1 ’aky az aky kq (1 -2 as 506) (42)

The generalized solution of the energy eigenvalue is,

nk; a a,2n k; a astQn+)k, a(\Jag — czg,\/cr_g)+n(n—1)k1 202azta, 2 azag =2 agae + k@ as =0  (43)
where,

(Xlo* = 6!1 + 20{4 -2 as,
a11*=a2—2a5+2(\/a_9—a3\/a_8)0612*= a4_\/a_8' (44)
3" = as — (\/a_‘)_aS \/a_s)-

3. SOME APPLICATIONS
Case (1): Extended Cornell potential
We note that Cornell potential has two features the Coulomb potential and the confinement potential. The
Coulomb potential describes the interaction at the short distance and confinement part describes the interaction at the
long distances, and the harmonic potential to support the confinement force and it is mainly used to describe bound
states of hadrons as in Ref. [29].

Vir)=ar?+br— g, (45)

The radial Schrodinger equation where, the interaction potential is the extended Cornell potential defined as in
Ref. [29] and s = e~*"that we get,
d’R |1 dR 1

o
dr?2 s dr s2(1-s)?

{(=§15°+ &5 —&IR(s) = 0 (46)
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where,
ZuE 4ME 2UE
é—l = hzaz tll EZ hzlz t2t $3 W t39 (47)
with,
12ua 6ub
b= Za Y ]
8ua 6ub 2uc
t; = A4K2 + BhZ  AhZ’ (48)
2ua 2ub 2puc
ts = 2apz t gz~ g HIH D,
and we get the generalized fractional radial part of the Schrodinger equation is
§15294855%¢
Da[ DaR(S)] “(1 5O DaR(S) WR(S) 0, (49)
By using the following parameters, we get
1
a, = la, =la; =1 a, = > (kia—1),
1 1 , 2uE
as = — (1—2k1a) Qg =2 (1-2k ) _ﬁ-’- ty,
4uE
a; = —(kla -1DA-2kia) +—= iz ty,
1 , 2uE 1, .,
ag = Z(kla—l) T + t3,a9 = Zkl a® +t; —ty +t3,
1 , 2uE
Ay = k1a+2 Z(kla—l) _W-I- t3, (50)
1, 1 , 2uE
a11=2k1a+2( Zkl a +t1_t2+t3+ Z(kla_l) _h212+t3)'
1 1 , 2uE
a12=§(k1a—1)+ Z(kla—l) _W-I- t3,
1 1, 1 , 2uE
a3 25(1_2](1“)_ ( Zkl a +t1_t2+t3 + Z(kia_l) _fl2/12+t3)'
We get, the generalized fractional of the energy eigenvalue is
2. 2
122 ) T t1—t3—((n+%)k1 a+ |3y a? +t1—t2+t3>
E ="tz +3(ka—1)%-—- (1)

1 1 2
2((n+5)k1 a+ ,Zkl a? +t1—t2+t3>

Where, t= tl - tz + t3,
The generalized fractional of the wave function is,

LE 2 2 iE
%(kl a-1) + —(kla 12 - 27¢2+t3 ((1 2ky @)= <J ki?a ”’f\/ z(k1 a-1) hz,12+t3)) —(k1a 1)+ —(k1a 12 - 2/12+t3

Y(s)=As ky (1s%) ki a ki a
—-a+kqia+2 (kla 1)2 - 212+t3 2kq a+2(\) —kq a2+t+J4(k1a— )2 - 212+t3) kia+2 (kla 1)2 - 212+t3 1
P, o Fra k@ B x (1-25%) (52)

where A is a normalization constant.

If a = B =1 then k; =1, so that we get the energy eigenvalue and the corresponding wave function as Ref. [29]. as
follows

2

2
1 1
2z g tl—t3—<(n+5)+ Z+t1—t2+t3)
[ t3_ —_—
2 2
K # 2<(n+%)+ E +t1—t2+t3>

[(2uE L [C2rE B
1/)(5) —As h2/12+t3 (1_5)2+ 4+tpn(2 h212+t3'2 4_+t) (1_25) (54)

E =

(53)



253
The Parametric Generalized Fractional Nikiforov-Uvarov Method and Its Applications EEJP. 3 (2023)

Case (2): Pesudoharmonic Potential
Pesudoharmonic Potential is mainly used to describe bound states of spectroscopy of die-atomic molecules and
may be used for energy spectra of linear and non-linear systems, see Refs. [30,31] for details.

V) =Vo (- =7, (55)

where, V; is dissociation energy between two atoms in a solid, 7y is the equilibrium intermolecular separation and r is
the internuclear separation.

After transformation s = A%r?, where (4 =1 (eV)), we get the generalized fractional radial part of the
Schrodinger equation is

_y2c2a a_
D[ DR(s)] +22 DeR(s) +———* £ R(s)=o0. (56)
where, the following dimensionless parameters
2 _ You )
V= oAtz '
u
€= 3 Enit2V0) (57)
U L(L + 1)h?
b=: (Voro? + T),
by using the following parameters,
fl - yzﬂfZ = 5'53 = .8'
3 1
al = E,az = 0,(13 = 0,“4 = E (kla - 3/2),
1
as = 0,ag = y4a, = —g,ag = p (kra —3/2)%+ B,
1 ; (58)
0(9=)/2,0(10=k1a+2 Z(kla_3/2)2+ ﬁ,au:Z)/,
1 1
@z = 5 (kya — 3/2) + \/Z (kya —=3/2)2+ B,a;3 = —v,
We get, the generalized fractional of the energy eigenvalue is,
£=(2n+1)yk1a+2\/% (kya —3/2)2+ B, (59)
And, the generalized fractional of the wave function is,
1(1 3y, |1 3)2 -
Y(s) = Sﬁ(f(kla_i)"' E(kla_i) +B> ekl_]zlxsa
a2 — (60)
Ln%(kl a+2 %(kl a —%) + ﬁ>—tx ( 2 Y Sa),
kia )

If @ = B =1 then k; =1, so that we get the energy eigenvalue and the corresponding wave function as Ref. [25].

£=((2n+1)+2 /1—16 + B)v, (61)
pisy sl 58] oyey (N62) 5 62)

Case (3): Mie Potential
The Mie potential possess the general features of the true interaction energy and it is special kind of exactly
solvable power-law and inverse power-law potentials other than the Coulombic and harmonic oscillator as in
Refs. [32-33]

r

v =V, G(9) -9 (©3)
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where, V; is dissociation energy, a is the positive constant which is strongly repulsive at shorter distances and r is the
internuclear separation
After transforming s = r A, (A = 1eV), we get the generalized fractional radial part of the Schrodinger equation is

2.20_p o0_
D[ DYR(s)] + = DUR(s) +——£—" R(s) = 0. (64)
where, the following dimensionless parameters:
2pu
e = h2A2 Enp
_ _2n v
B =327 Vot (65)
C2p 1, LI+ DA
‘}/—F<EV0(I +—2M .

By using the following parameters,
§ = =88 = —Bé =y,
1
a; = 2,“2 = 0,(13 == 0,0!4 == E (kla - 2),

1
as = 0,ag = —€%,a;, = B,ag = 2 (kya —=2)*+y

1
ag = —€%, a0 = kja + ZJZ (kya —3/2)%2+ vy, (66)
1 1
a11=2 _82,a12=§(k1a_2)+ Z(kla_2)2+ Y,
a13 = - _82 .
The generalized fractional of the energy eigenvalue is given,
—e2 =42 ((2n + Dkya +2 \/i (kya —2)2+ )72, (67)

The generalized fractional of the wave function is,

1 (1 1 i 1 ,1
—=(kya-2)+ |5 (k a—2)2+y) “i€ —(k a+2 |5(k a—2)2+y>—a i
Y(s)=A sk (2 1 Na vl ekia’ Lnk1 1 PR (Esa)’ (68)

kia

If « = § =1 then k; =1, so that we get the energy eigenvalue and the corresponding wave function as Ref. [25].

e2=—-p?(2n +1+ 1+ 4y)? (69)
-1 1 .
P(s) =Asz V1T e-ies VIH4Y (9 ¢, (70)

Case (4): Kratzer-Fues Potential
The Kratzer-Fues potential has a long-range attraction and a repulsive part and it is approaches infinity as the
inter-nuclear distance approaches zero and it is used to describe molecular structure between two atoms as in Ref. [34]

V() = D, (—2)? (71)

T

After transforming s = r A, A = 1eV the generalized fractional radial part of the Schrodinger equation is
22a_ a_
D[ DUR(s)] + % DUR(s) +”SZ# R(s) =0, (72)

where, the following dimensionless parameters

2 _ Zﬂ(En— De)
ARz
_ —4uD.r,
= —aw (73)
I(I + 1)h?
2u )
h? ’

2u(D, 1% +
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By using the following parameters,

61 = _82'62 = _ﬁ!f3 =%
1
a, = 2,a, = 0,03 = 0,4 = 7 (kya — 2),

1
as = 0,ag = —€%,a;, = B,ag = Z(kla -2+ y

1
ag = —e4,ay9 = kya + ZJZ (kya —2)2+ vy,

1 1
a1 = 2y —€%,a,, = E(kla - 2)+\]Z(k1a -2)2+y,

- _ _52,

the generalized fractional solution of eigenvalue is given,

—e2=82((2n + Dk;a+2 \/i (kya —2)2+ y)72,

The generalized fractional of the wave function is,

(1 o+ —2)2 —ie
w(s) _ Ask1<2 (k1 a-2)+ |z (k1 a—2) +y) ekllocsa

1 1 ,
—kia+2 /—(kla—2)2+y)—a 2i¢
L kl( * —59),

(74)

(75)

(76)

If @ = f =1 then k; =1, so that we get the energy eigenvalue and the corresponding wave function as Ref. [25]

—e2=B2(2n +1+ 1+ 4y)™?
P(s)=A 5_71+%\/1+ 4y e—igsLn,/1+ 4y 2ies),
Case (5): Harmonic Oscillator Potential
Harmonic Oscillator Potential function is as in Ref. [35]
V(r) =%mw2r2,

where, w is the angular frequency of the oscillator.
The generalized fractional radial part of the Schrodinger equation is

1 —s2@4 B2 s%—1(1+1)

D[ DP(s)] + - Y R(s) LD y(s) =0,
where,

2_2E
hw

By using the following parameters,
1 1, 1

§ = Z:fz = Zﬁ 63 = Zl(l"'l),
1 1 1
a = .0 = 0,a; = 0,y = 3 (kja — E)'

1 -1 2 1 1 2 1
a5=0,a6= Z,a7=Tﬂ,a8=Z(k1a—§) +Zl(l+1),

1
ag = 7,@0 = kia + J(epa —1/2)2+ L1+ 1),a;, = 1,

2’

1 1 1 1 2
a;; = E(kla - E) + 2 (k1 _E) i+ Da, =

the generalized fractional eigenvalue is given,

E=how[Rn+Dka+J(ka—-1/2)2+ L(+1)]

)

(78)

(79)

(80)

81

(82)

(83)
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The generalized fractional wave function is

2
%((klom (kra=3) +z(z+1)> oL sa L(k1a+1/2\/(kla—1/2)2+l(l+1))—%(_1 5%)

Y(s) =s ek X Lk (84)

ki

If @ = B =1 then k, =1, so that we get the energy eigenvalue and the corresponding wave function as Ref. [35]

E=ho[@n+1)+ E+l(l+1)] (85)
b (s) - S( 1+ /%+ 1 (1+1))e_S Ln<1/2 /%+ 1 (z+1)>(s). 86)

Case (6): Morse Potential
The Morse potential has contributed a significant role in describing the interaction of atoms in diatomic and
polyatomic molecules as in Refs. [36, 37]

V() =Dy (1— e 87)2 (87)

where D, is dissociation energy and § is the range of the potential. After transforming the generalized fractional radial
part of the Schrédinger equation is

1 - Ps%%+Q s*-R
D[ DY(s)] + — DUP(s) +————= (s) = 0. (88)
where,
_—2uE __2uDy o _ ¥ _2Y  _ &ty
&n’ = nz V= hzo’P_ﬁ’Q_ﬁ’R_ n62 ’ (89)

By using the following parameters,
$1 = P& =08 =R
1
a, = 1,0(2 = 0,0.’3 = 0,(14 = E (kla_ 1),

[EEN

as = 0,ag = P,a; = —Q,ag = Z(kla -1+ R

(90)
1
Ay = Pa;g = kya + 2 ” (kya —1)2+ R,ay; = 2P,
1 1
a12=§(k1a_1)+ Z(kla_1)2+ R,a13=_\/ﬁ;
the generalized fractional of the energy eigenvalue is given,
h252 2uD
E=Dy-"-[-(kna =D+ (@n +Dkya-2 3537 1)
The generalized fractional of the wave function is
%(kla—1)+ %(kla—1)2+R (__\/p) « kia+2 %(kla—1)2+R—a 2P
P (5)=Ny s a elte) L, “ (o) ©2)
1
where, N, is a normalization constant,
If @ = B =1 then k, =1, so that we get the energy eigenvalue and the corresponding wave function as in Ref. [36].
n%s2 24D,
E = Do~ [(@2n+1)-2 [35°] (93)
¥ (s) = NpsVR e-VP)s [ 2VF (2P ) (94)

Case (7): Woods-Saxon Potential
It is used to describe heavy-ion reactions which the interaction of a neutron with a heavy nucleus as in Refs. [26, 38-39]

V) =—m (93)

1+e a
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where Vj is the potential depth, R, is width of the potential, r — Ry = r and % =22
After transforming the generalized fractional radial part of the Schrédinger equation is

ar na 1-¢s% 4 -€q?s?%+(2eq-B @) s+ f-¢ -
DE[DY(S)] + g Dup(s) + - EE TR DTS 5y — . (96)
where,
_ —mkE _ mWp
€= gm0 B =g 7
By using the following parameters,
El = ng'fz = 28q—ﬁq,f3 = S_B'
1
a = 1,0.’2 = qa3 = qa, = E (kla - 1)!
1 1
as = Eq(l—Zkla),aG =3 q? (1 =2k, a)? + €42,
1
ar; = EQ(l_Zlﬁa)(kla’ - 1) —2eq-Bq
1 1
ag = 7 (k@ - D2 +e-Bag = Zqzklzaz,
1
a = kya + ZJZ(kla — 12 + -8, (93)

1
a1 = 3kiaq + ZqJZ(kla - 1% + -5,

1 1
ay, = E(kla -1+ \jz(kla - 12+ e-p,

1 1 1
a3 = EQ(l_Zkﬂx)‘ (E kiaq + Q\/Z(’ﬁa - D2 + e—p).

The generalized fractional of the energy eigenvalue is given,

_ 1 2. B B? (n+1)k; a\?
€= 4(k1a D +2+(2(n+1)k1a)2 +( 2 ) ’ ©9)

The generalized fractional of the wave function is,

1(1 1
— 5k -1+ |F(kga—-1)%+ s—B)
Y(s) =N, s <2 * 1-
<—(%q (1-2kq a)- <%k1 aq+q [flga-12+ S—B)) Tra-v+ [kia-12+ a—/})
qs%) X

k1aq kia
—a+ki a+2 %(kla—1)2+£—/5’3k1aq+2q %(kla—1)2+s—/5’ kia+2 %(k1u—1)z+£—/5’ 1
k1 ! kiaq kia kq «
P, X (1—2qs% (100)

If « = =1 then k, =1, and q = 1, so that we get the energy eigenvalue and the corresponding wave function as in Ref.
[26]

_B B2 (n+1))2
T2 +(2(n+1))2 +( 2 ) ’ (101)

¥ (s) =N, sVeF (1 —s) p,@EFD (1 = 25) (102)

Case (8): Hulthen Potential
The Hulthen Potential is a short-range potential and it is obtained in the form as in Ref. [40]

V(@) =—2——, (103)

eP -1

where, P, p are the strength and the range parameter of the potential function.
After transforming the generalized fractional radial part of the Schrodinger equation is
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ar na a 4 —(A4B)s%%4(2 A+B—C) s*-A _
D[ D*“P(s)] + ‘7‘(1 Sa)D Y(s) e 59?2 P(s) =0. (104)
where,
—2UE 2UEDP
A== ¥ p= e C= 1+ ). (105)

By using the following parameters,
51 = A+BIEZ = (2A+B_C),§—3 = A,

1
a, = lLa, = laz; = la, = 3 (ki — 1),

N~

1
(1—2k1a),a6=z(1—2k1a)2 +A+B,

1
a; == (kya — 1)1 —-2kja)—2A—-B+Cag = Z(kla -1+ 4

1 1
ag = Zklzaz +Ca0 = kja + ZJZ (kia —1)2+ A4,

(106)
1, 1
a11=2k1a+2(zk1 a2+C+ Z(kla_l)z'i'A),
1 1
a12=5(k1a—1)+ Z(kla—1)2+A,
1 1, 1
a13=5(1—2k1a’)—(2k1 a2+C+ Z(kia_l)z'i‘A).
The generalized fractional of the energy eigenvalue is given
2
2 ZEDP 141y —(kl at ki % a? +al (l+1))—n Ky a<(n;1)k1 at+ ki a? +41 (z+1)> —(ky a-1)%)

n= { 7 (107)

8 up?

nky a+3 (ky a+ / k12 a? +41(1+1))

The generalized fractional of the wave function is

(L= —([rka2q2 1 12 )1 1

1-2ky a k1“a?2+C+ |7 (kpa-1)2+4)) 1 _ 1 —1)2
< (-1 + i( R 12 ) (2( 1@) (J4 1 J4(1 ) ) Skia-D+ |z(k1a-1)2+A4
llJ(S) N (1 S )

k1a k1 a
<k1“+2,z(k1“—1)2+A) u2k1a+Z(J kq a2+C+J (k1a-1)2+A) kja+2 —(kla -0D2+4
P, 1 Fia fia (1 - 259 (108)

If =B =1 then k; = 1, so that we get the energy eigenvalue and the corresponding wave function as in Ref. [26]

—nz PERE-arn-ta+ /TG - n((n+1)+1/1+4l(l+1))]2}

E 109

el [+t @y TratarD)] (109)
(- Lectva))-va

W(s) =N, sVA (1 —s) (Z-frrenm) p2VA2(0) (1 25) (110)

Case (9): Deformed Rosen-Morse Potential
Deformed Rosen-Morse potential is used to describe bound state of die-atomic molecules and it is given in the
following form as in Ref. [41]

*
eZ(ZT

Vi) = 1+q e—Za == V2q (1+q e—za*r)z (11
After transforming—s = e 2%"" the generalized fractional radial part of the Schrodinger equation is
ar na 1-qs% a —£q? s2%+(2 £ q+P q-y) s*—(B+€) _
DAL DUP(s)] + arro s Dyp(s) +- I P(s)=0. (112)

where,
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_ —uE _ MkWigq _ uVaq
&€= 2a*2h?’ ‘8 T 2ar2p2’ U T 2qr2p2’ (113)

By using the following parameters,
G =€q°.5 = Qeq+Pa—y).5 = (B+o), )

1
a; = 1!“2 = q,a3 = (q,04 = E(kla - 1)’
2

as == (1-2k;a),a¢ = %(1—2]{10{)2 + €42,

N

q
a; = E(kla -1DA-2kia)—2eq—Lq+vy

1
ag = Z(kla—1)2+,8+e,

2

1
a9=qzk12a2+yq,a10=k1a+2\/z(k1a—1)2+ﬁ+s, (144)

1
a1 = 2kiqa +2(\/ k q?a? +yq +q\]z(k1a—1)2+ﬁ+e),

1 1
aq; =E(k1a— 1) +\/Z(k1a -2+ B+e¢

1 1
s = 3 (1-2k @) —(JZ kg2 a2 +yq+qu (a =17+ f+e)
we get, the generalized fractional of the energy eigenvalue is,

2
_ 2
SZTl(kla _1)2_§+ B 2+1—16<(2n+1)k1a’+ k12a2 +47'V> (115)
((2n+1)k1a+ k12 a2 +47y>

The generalized fractional of the wave function is,

Ll a1+ [Lky a-1) 2+ pre —<%(1—2 k1 a)—(J%h 2q2 a2 +yq+qJ%(k1a—1)2+ B+s)) lka-1+q /%(kla_l)zwﬂ

Y(s)=s k1 (1-gs% kiaq ki@
kia+2 %(kla—1)2+ﬂ+s—a2k1q“+2(J%k12az+7£1+q\/%(k1d—1)2+ﬁ+€) kia+2 %(kla—1)2+B+a 1
Pn( 2} g kyaq kya kr) (1-2¢qs% (116)

If « = B =1 then k, =1, so that we get the energy eigenvalue and the corresponding wave function as in Ref. [25]

2
s:—E+ﬁ—2 ((2n+1)+ ’1 + = ) (117)
2 16
((2 n+1)+ /1+ qy>

b () = VT (1 = q sy U ) p GVFRLED (g (118)

Case (10): Poschl-Teller Potential
Pdschl-Teller Potential used to describe bound state of die-atomic molecules and it is given in the following form
as in Refs. [42-43]

—2a*r
V(r) = — 4V ——— (119)
(1+q e—2a'T)

After transforming —s = e~2%'", the generalized fractional radial part of the Schrodinger equation is

-£2q?s2%+(2 €2 q—p?) s%—¢2

D[ DUY(s)] + s D(s) +—— 2 (s) = 0. (120)

where,



260
EEJP. 3 (2023) M. Abu-Shady, et al.

g2=—KE p2_Zih (121)

T 2a%2p2’ a*2h2
By using the following parameters,
& =¢e2q%& = 2e2q—P0 & = €2,
1
a; = La, = q,03 = q,04 = E(kla — 1))

. = 7 2 2 42

as = 5(1_2]{1“),(16— Z(l—Zkla) + €“q°,
a =g(ka—1)(1—2k(x)—2€2 + 2 :lk —1)2 4 ¢2
7 5 U 1 q+p°ag 4'( L a ) g2,

2

q 2 2 2 1
ag = —k “a* +B°q a0 = kia + 2 |- (kya —1)2+ €2,
4 4 S (122)

1 1
a;, =2qka +2(\]Zk12q2a2 +pB2q +qu(k1a —1)2+¢?)

1 1
(yp; = E(kla -1 + \]Z (kya —1)2 + €2,

1 1
13 =%(1—2k1a) _(\/Zlﬁzqzaz +.82(I+CI\/Z (kya —1)2 +¢£2),

the generalized fractional of the energy eigenvalue is given,

£=_Tl(k1a—1)2—i<(2n+1)k1a+ /k12a2+4qi2>. (123)

The generalized fractional of the wave function is given,

1, 2 1
%(kla—1)+ %(k1a—1)2+£2 _<%(1_2k1a)_(\/2k1 q? a? +ﬁ2q+q\lz(k1a—1)2+52)> %(kla_l)Jr %(kla_l)zﬂgz

l,b(S)=S k1 (1—q3“) kiaq ki a
kia+2 %(k1a—1)2+52—a2k1qa+2<\/%k12d2+qu+q\/%(k1d—1)2+€2> kia+2 [F(kia-12+e2
Pn( k1 ' kyaq kia kp) (1-2¢gs% (124)

If « = B =1 then k, =1, so that we get the energy eigenvalue and the corresponding wave function as in Ref. [25].

£ = —%((2n+1)+ /1 +%>, (125)

2 2
W () =s¢ (1—gq S)§(1+ 1+%) Pn(Zs, 1+4%
4. CONCLUSION
By using generalized fractional derivative, we obtained the solution the parametric second-order differential
equation by using the NU method which is more effective than the power series method, numerical methods, or
approximation methods because we get on good results by using this method as in Refs. [22,23]. The parametric
second-order differential equation is the general case and we get the special case when ¢ = § = 1 as in Ref. [25]. We
get a solution of the Schrddinger equation by using the parametric generalized fractional Nikiforov-Uvarov (NU)
method and we get the energy eigenvalues and the corresponding wave function for some known potentials such that
the Cornell potential, the pesudoharmonic potential, the Mie Potential, the Kratzer-Fues potential, the harmonic
oscillator potential, the Morse potential, the Woods-Saxon potential, the Hulthen Potential, the deformed Rosen-Morse
Potential and the Poschl-Teller Potential. At @ = § = 1, we get the special classical solutions of Refs. [25,26,29,35,36].
These applications play an important role in the fields of molecular and hadronic physics.

)(1-2q5s) (126)
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IAPAMETPUYHMI Y3ATAJTBHEHUM JPOBOBHI METO/I HIKI®OPOBA-YBAPOBA TA MOI'0O 3ACTOCYBAHHSI

M. A6y-Illagi?, X.M. ®arx-Amniax®
“Kaghedpa mamemamuxu ma Komn 1omepHux HayK, paxyromem npupoorHuyux Hayx, Yuisepcumem Menygia, €cunem
bBuwuii inorcenepno-mexnonoaiunuti incmuntym, Menygis, €zunem

3a IOIOMOroI0 y3aranbHeHOi IpoOOoBOI IOXiIHOI BBEJEHO MapaMeTPHYHUH y3arajdbHeHUH IpoboBuit Meron Hikidoposa-YBapoa
(HY). [Napamerpuune y3aranpHeHe qudepeHIiaabHe piBHIHHS JPYroTo HOPSAKY TOYHO pO3B’SI3Y€ThCs y ApoOoBiit Gpopmi. OTpumani
pe3yJbTaTH 3aCTOCOBAHO JIO PO3LIMPEHOro moreHimiany KopHenna, mecy1orapMoHiiHOTo MoTeHIiany, moteHmiany Mi, moTeHIiany
Kparnepa-®roca, nmoreHmiaay rapMOHIYHOTO OCLHIIATOpPA, oTeHniany Mopae, norenuiainy Bynca-Cakcona, motenuiany XroinbTeHa,
nedopmoBaHoro noteHuiany Posena-Mopca. i noteHuiany [onuis-Tesepa, siki BifirparoTh BaXKIMBY POJb y Taly3siX MOJICKYISIPHOT
Ta aToMHOi (i3uku. OcoOMHMBI KIAaCHYHI BUIAIKK OTPHMaHi 3 APOOOBHMX BUMAJAKIB o = f§ = [, sIKi y3rODKYIOTHCS 3 OCTaHHIMHU
poboTtamu.

Kuro4oBi ciioBa: nepensmugicmcvki moodeni; yzazanrviena 0po6osa noxiona; MonexyiapHa Qisuxa;, aopouHa Qisuxa





