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In the context of current scenario, it is crucial to look beyond Einstein’s theory, which opens the door to certain modified
theories of gravity. So, present study is devoted to investigate the various energy conditions, particularly, strong energy
condition (SEC), weak energy condition (WEC), null energy condition (NEC) and dominant energy condition (DEC)
corresponding to different functional forms of f(R) gravity. We have studied for flat, isotropic and homogeneous FLRW
cosmological model filled with interacting field i.e., perfect fluid is coupled with mass less scalar field for different models
of modified f(R) gravity in which R is the Ricci scalar. We have observed, the accelerated expansion of the Universe
which exact match with recent observational evidences.
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1. INTRODUCTION

During the past few decades, the astrophysical data from cosmic microwave background anisotropy, galaxy
clustering and high red-shift supernovae [1, 2, 3] have disclosed large scale structure and accelerated expansion
of the Universe caused by a dominated negative pressure fluid termed as dark energy (DE). According to
experimental findings, the DE acquires almost 73%, dark matter occupied 23% and baryonic matter served 4%
[4, 5, 6] of entire energy density. The vacuum energy (also known as the cosmological constant) with equation
of state (EoS) parameter w = −1 are the most straightforward and theoretically plausible candidates to explain
the existence of DE [7, 8]. But instead of introducing a dark energy it is more sensible to propose theories by
modifying the Einstein-Hilbert action with Ricci scalar R and a general function along with matter-geometry
coupling. Some of popular and important modified theories are f(R) gravity [9], f(T ) gravity [10], f(G) gravity
[11], f(R, T ) gravity [12] etc.

The f(R) gravity is one of the most powerful and interesting candidates to study the behaviour of DE
and is a modification of general relativity that alters the Lagrangian density of the theory by incorporating a
function f(R) into the gravitational action [13]. To extend and generalize Einstein’s theory of general relativity,
there exist different approaches to describe modified gravity theories such as f(R) gravity which approaches
aim to expand the understanding of gravitational interactions and their implications. Recent research has
focused on f(R) gravity as a potential explanation for the accelerated expansion of the Universe. These theories
have limitations such as instability, ghost-like degrees of freedom, and the fine-tuning problem. Despite these
limitations, f(R) gravity has been successful in explaining various phenomena, including the structure formation,
the unification of cosmic epochs, and the late accelerated expansion of the Universe [14, 15, 16, 17]. Studies in
f(R) gravity have supported observations of Type Ia supernovae and WMAP data, which indicate an accelerated
expansion of the Universe [18]. After a long period of time, the expansion will cease entirely and the Universe

will attain isotropy i.e as t → ∞, σ2

θ → 0 [19].The Hubble parameter (H) and expansion scalar (θ) have been
analyzed, revealing that the expansion rate of the Universe was higher during the Big Bang and has gradually
decreased over time [20]. Researchers have also explored the solutions of Bianchi-type cosmology in metric f(R)
gravity and compared them with Lematre-Tolman cosmology, which describes inhomogeneity in the Universe on
various scales[21]. The influence of magnetism in the early stages of the Universe’s evolution has been observed
in the investigation of Bianchi type I space-time in f(R) gravity with the presence of string clouds and domain
walls containing strange quark matter [22]. Both accelerating and decelerating phases of Bianchi type-I space-
time have been studied in f(R) gravity, with the Universe expanding in both phases. The initial expansion rate
is much faster than the later rate [23]. The expansion of model begins with zero volume, finite string density as
well pressure and continues to expand over time [24]. Fourth-order f(R) extended theories of gravity have been

†Cite as: V. Patil, J. Pawde, R. Mapari, P. Bolke, East Eur. J. Phys. 3, 62 (2023), https://doi.org/10.26565/
2312-4334-2023-3-04

© V. Patil, J. Pawde, R. Mapari, P. Bolke, 2023

https://periodicals.karazin.ua/eejp/index
https://doi.org/10.26565/2312-4334-2023-3-04
https://portal.issn.org/resource/issn/2312-4334
https://orcid.org/0000-0002-0442-3962
https://orcid.org/0000-0001-8068-6265
https://orcid.org/0000-0002-5724-9734
https://orcid.org/0000-0002-1212-5260
mailto:jeevanpawade@gmail.com
https://doi.org/10.26565/2312-4334-2023-3-04
https://doi.org/10.26565/2312-4334-2023-3-04


Energy Conditions with Interacting Field in f(R) Gravity
63

EEJP.3(2023)

examined [25], specifically the form f(R) = R+R2, which is in line with theoretical constraints and cosmological
data for static and spherically symmetric configurations. In contrast to the expansion scalar, shear scalar, and
Hubble’s parameter, the spatial volume in f(R) gravity increases exponentially with time, indicating a constant
rate of expansion that matches the present-day scenario [26]. Using a special form of the Hubble parameter,
researchers [27] have investigated exact solutions of spatially homogeneous Bianchi type-I cosmological models
in the context of f(R) theory of gravity. The models depict an expanding Universe following a power law after
the Big Bang singularity, with the presence of accelerating or decelerating phases depending on the parameters
[28]. Furthermore, the solutions of field equations have been explored for higher dimensional Kaluza-Klein
cosmological models using string models in f(R) gravity, resulting in an accelerated expanding Universe [29].

The authors [30] employed a special case proposed by Schwinger and found solutions for the model FRW
closed bulk viscous cosmological model with wet dark fluid was examined using the Nordtvedt general scalar-
tensor theory. Another investigation focused on two fluid axially symmetric cosmological models in the f(R, T )
theory of gravitation. By imposing a supplementary constraint H3 = kH1, the authors [31] obtained a de-
terministic model that exhibited an expanding and shearing Universe. Some authors [32] presented a FRW
cosmological model which satisfied the principle and considering the most recent research that suggested dark
energy is responsible for the Universe’s acceleration. The authors [33] selected a specific functional form and
explored the cosmological behavior of FRW models in the f(R,G) gravity. They discussed violations of the SEC
(strong energy condition) and NEC (null energy condition), which are necessary for bouncing models. In the
context of the Big Bang theory, researchers [34] investigated the cosmological behavior within the framework
of the f(R, T ) gravity. They obtained a solution for the FRW cosmological model, which revealed that the
Universe is accelerating and expanding according to current observations. By adopting the fractal parameter
ω = 0 and the relationship between pm and ρm, i.e. pm = (γ − 1)ρm, 1 ≤ γ ≤ 2, [35] explored the flat FRW
two-fluid cosmological models in fractal theory of gravity and discovered the answers.

By examining the plane-symmetric cosmological model in the presence of a source-free electromagnetic
field coupled with mass less scalar field [36, 37] identified an expanding, shearing and non-rotating Universe.
It is observed that the closed Universe correspond to quintessence while flat and open Universe corresponding
to the phantom model of the Universe [38]. A realistic Universe dominated by matter has been obtained using
two-fluid viscous dark energy models for an anisotropic general type of Bianchi space-time that is filled with
barotropic and dark fluid in interacting and non-interacting modes with variable EoS parameter [39]. During
investigations of the two-fluid Bianchi type-V I0 anisotropic cosmological model coupled with the zero mass scalar
field in Einstein’s theory of gravitation, some authors [40] discovered that the cosmological constant decreased
over time as the Universe expanded which supported by a recent finding from observations of type Ia supernova
explosions (SNIa). Researchers [41] have explored modified f(T ) gravity two-fluid cosmological models and
observed the expanding and shearing nature of the Universe. Some authors [42] studied both interacting and
non-interacting cases while observing the matter and radiation fluids in the scale covariant theory of gravitation
for Bianchi type I. Researchers [43] looked at a plane-symmetric cosmological model in f(R, T ) gravity with an
interacting field as a source of energy and noticed that the pressure and density behaved differently in different
models.

Energy conditions are fundamental for understanding concepts like black hole thermodynamics and the
singularity theorem. The Raychaudhuri equations [44] provide an excellent model for describing the attractive
nature of gravity and the positive energy present in the Universe. There are four different energy conditions:
the null energy condition (NEC), weak energy condition (WEC), dominant energy condition (DEC), and strong
energy condition (SEC). The weak energy condition states that the energy density measured by any observer
should not be negative. It implies that the energy density must be greater than or equal to zero at all points
in spacetime. On the other hand, the strong energy condition stipulates that the pressure observed by any
observer should be less than or equal to the energy density, and the energy density itself should not be negative.
In other words, the pressure should not counteract gravity. The dominant energy condition requires that the
energy density measured by any observer must be positive, and the energy flux measurement must not be
space-like. This means that the energy flow cannot exceed the speed of light, and the energy density at any
point in spacetime must be greater than or equal to zero.

The article follows the following structure. Section II provides an introduction to the formalism of f(R)
gravity. Section III examines the field equations for the isotropic, flat, and homogeneous FLRW Universe. In
Section IV, the solutions to the field equations for f(R) gravity are obtained and calculations are performed
for the Hubble parameter, average scale factor, spatial volume, and Scalar expansion. Section V discusses the
energy conditions for various models of f(R) gravity. Finally, Section VI presents a discussion of the findings
and concludes the article.
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2. FORMALISM OF f(R) GRAVITY

A modification to the general theory of relativity is f(R) gravity. The field equations of f(R) gravity are
obtained by varying Hilbert-Einstein action principle which is given by

S =
1

16π

∫
f(R)

√
−gd4x+

∫
Sm

√
−gd4x (1)

where f(R) is a general function of Ricci scalar R and g is the determinant of gij and Sm is Lagrangian of
matter.
The Ricci scalar R is obtained by contracting the Ricci tensor Rij as

R = gijRij (2)

Here the formulation of the Ricci tensor is given by

Rij = Γp
ij ,p −Γp

ip,j +Γp
ijΓ

q
pq − Γq

ipΓ
p
jq (3)

where Γα
βγ represents the components of the renowned Levi-Civita connection as described by

Γi
jk =

1

2
gim (gjm,k + gkm,j − gjk,m) (4)

The corresponding field equations of f(R) gravity are obtained by varying the action (1) with respect to gij as,

F (R)Rij −
1

2
f (R) gij −∇i∇jF (R) + gij□F (R) = Tij (5)

Where □ = ∇k∇k and F (R) = df(R)
dR

Here ∇i is the covariant derivative and Tij is energy momentum tensor derived from the Lagrangian Sm.
The energy momentum tensor Tij is given by

Tij =
−2√
−g

∂ (
√
−gSm)

∂gij
(6)

3. FLRW METRIC AND FIELD EQUATIONS

The observational data from Cosmic Microwave Background (CMB) [45, 46] point out that our Universe
is spatially flat at late times, therefore we considered the isotropic, flat and homogeneous FLRW metric as

ds2 = dt2 − a2(t)

3∑
i=1

dx2
i (7)

Where, a termed as cosmic scale factors used to measure the expansion of Universe, is a functions of time t
only.
from equation (3), we obtained the non-zero components of Ricci tensor as

R00 = −3
ä

a
, R11 = R22 = R33 = −

(
2ȧ2 + aȧ

)
(8)

Therefore, the resulting Ricci scalar R for the line element (7) is

R = 6
ä

a
+ 6

ȧ2

a2
= 6

[
ä

a
+

ȧ2

a2

]
(9)

Here H = ȧ
a is a Hubble parameter.

We assume the gravitational field’s energy source to be an interacting field with dark energy, which is coupling
of a perfect fluid and a mass less scalar field for the metric (7) is given by

Tij = Sij + Tij (10)

where Sij represent an energy momentum tensor for perfect fluid distribution given by

Sij = (p+ ρ)uiuj − pgij (11)
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Here, p denotes the spatially isotropic pressure, ρ is the matter-energy density, and ui = (1, 0, 0, 0) represents
the time-like four-velocity vector of the cosmic fluid satisfying uiui = 1
and

Tij = U,iU,j −
1

2
gijU,sU

,s (12)

The mass less scalar field (U) satisfies

gijU;ij = ρc (13)

where, U and ρc are mass less scalar field and charge density respectively depends on cosmic time (t) alone.
Also semicolon (;) and comma (,) denotes covariant and partial derivative respectively
The Einstein field equations (5) for the cosmological model (7) using equation (10) are given by[

2

(
ȧ

a

2)
+

ä

a

]
F (R)− 1

2
f(R) + 2

ȧ

a
Ḟ + F̈ = −p+

U̇2

2
(14)

3
ä

a
F (R)− 1

2
f(R) + 3

ȧ

a
Ḟ = ρ− U̇2

2
(15)

An over-dot (.) denotes an ordinary derivative with respect to cosmic time t.

4. SOLUTIONS TO FIELD EQUATIONS

There are two linearly independent equations with four unknowns H, p, ρ and U̇ . Therefore to find above
unknowns we have to use following plausible condition; The Hubble’s parameter variation Bermann proposed
in 1983, which provides the relationship between Hubble parameter and the average scale factor as,

H = ba−n (16)

where b is positive and n ≥ 0 are constants.
from above equation we have

q = −a
ä

ȧ2
= n− 1 (17)

where q is deceleration parameter.
Using equation (17) and equation (18) we obtained
Average scale factor as,

a(t) = (ct+ d)
1
n (18)

The Volume (V ) is

V = a3(t)

V = (ct+ d)
3
n (19)

The Hubble Parameter (H) is

H =
ȧ

a

H =
c

n(ct+ d)
(20)

The Scalar expansion (θ) is

θ = 3H

θ =
3c

n(ct+ d)
(21)

where c and d are the constants of integration.
We have consider charge density ρc = 0
Therefore, the mass less scalar field is given by

U = c1
a4

4
+ c2 = c1

(ct+ d)
4
n

4
+ c2 (22)
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5. ENERGY CONDITIONS

To understanding geodesics of the Universe it is necessary to know the energy conditions (ECs), which
are linear combinations of energy density and pressure. The well-known Raychaudhuri equations provide the
foundation for energy conditions (ECs) which are of the form [43, 44, 45, 46]

dθ

dτ
= −1

3
θ2 − σijσ

ij + ωijω
ij −Riju

iuj (23)

dθ

dτ
= −1

2
θ2 − σijσ

ij + ωijω
ij −Rijη

iηj (24)

where θ is the expansion factor, ni is the null vector and σij and ωij are shear and rotation respectively for the
vector field ui.
For attractive gravity, equations (23) & (24) satisfy the following conditions

Riju
iuj ≥ 0 (25)

Rijη
iηj ≥ 0 (26)

Hence, the energy conditions derived from standard GR for perfect fluid matter distribution are

� Strong Energy Conditions (SEC) : p+ 3ρ ≥ 0

� Weak Energy Conditions (WEC) : ρ ≥ 0, p+ ρ ≥ 0

� Null Energy Conditions (NEC) : p+ ρ ≥ 0

� Dominant Energy Conditions (DEC) : If ρ ≥ 0, |p| ≤ ρ

We have discussed the viability of energy conditions in two model.

5.1. f(R) = R

To illustrate how the aforementioned conditions can be employed to establish limits on f(R) theories, we
will present a specific example. In this case, we will focus on a particular family of theories characterized by
the form of f(R)

f(R) = R (27)

With choice of above functional form of f(R) gravity, equation (5) reduced to field equation of G. R.
Therefore, equation (14) & (15) are reduced to

p = − c2

n2

(2n− 3)

(ct+ d)2
+

c21
2
(ct+ d)

6
n (28)

ρ =
1

2
c21(ct+ d)

6
n − 3c2

n2

1

(ct+ d)2
(29)

SEC :

ρ+ 3p = 2c21(ct+ d)
6
n + 6(1− n)

c2

n2

1

(ct+ d)2
≥ 0 (30)

WEC :

ρ+ p = c21(ct+ d)
6
n − 2n

c2

n2

1

(ct+ d)2
≥ 0

ρ =
1

2
c21(ct+ d)

6
n − 3c2

n2

1

(ct+ d)2
≥ 0 (31)

NEC :

ρ+ p = c21(ct+ d)
6
n − 2n

c2

n2

1

(ct+ d)2
≥ 0 (32)

DEC :

ρ− p = 2(n− 3)
c2

n2

1

(ct+ d)2
≥ 0 (33)
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5.2. f(R) = R+ bRm

where m is an integer and b is a constant that can assume positive or negative values. To illustrate the
energy conditions, we will assume in this subsection that the function f(R) is an algebraic polynomial of R with
the independent parameters b and m.
Using above functional form of f(R) gravity, equation (14) & (15) yields,

p =− c2

n2

(2n− 3)

(ct+ d)2
+

c21
2
(ct+ d)

6
n

− b(7− n)m−1

{
(2m− 3)(2− n) +

4c

n(ct+ d)
n2m(m− 1)(2m− 1)

}[
c

n(ct+ d)

]2m
(34)

ρ =
c2

n2

3(1− n)

(ct+ d)2
+

c21
2
(ct+ d)

6
n − 9mb6m−1(2− n)m(1 + n+ nm)

[
c

n(ct+ d)

]2(m+1)

(35)

SEC :

ρ+ 3p =
c2

n2

3(4− 3n)

(ct+ d)2
+ 2c21(ct+ d)

6
n − 9mb6m−1(2− n)m(1 + n+ nm)

[
c

n(ct+ d)

]2(m+1)

− 3b(7− n)m−1

{
(2m− 3)(2− n) +

4c

n(ct+ d)
n2m(m− 1)(2m− 1)

}[
c

n(ct+ d)

]2m
≥ 0 (36)

WEC :

p+ ρ =
c2

n2

(6− 5n)

(ct+ d)2
+ c21(ct+ d)

6
n − 9mb6m−1(2− n)m(1 + n+ nm)

[
c

n(ct+ d)

]2(m+1)

− b(7− n)m−1

{
(2m− 3)(2− n) +

4c

n(ct+ d)
n2m(m− 1)(2m− 1)

}[
c

n(ct+ d)

]2m
≥ 0

ρ =
c2

n2

3(1− n)

(ct+ d)2
+

c21
2
(ct+ d)

6
n − 9mb6m−1(2− n)m(1 + n+ nm)

[
c

n(ct+ d)

]2(m+1)

≥ 0 (37)

NEC :

p+ ρ =
c2

n2

(6− 5n)

(ct+ d)2
+ c21(ct+ d)

6
n − 9mb6m−1(2− n)m(1 + n+ nm)

[
c

n(ct+ d)

]2(m+1)

− b(7− n)m−1

{
(2m− 3)(2− n) +

4c

n(ct+ d)
n2m(m− 1)(2m− 1)

}[
c

n(ct+ d)

]2m
≥ 0 (38)

DEC :

ρ− p =
−c2

n

1

(ct+ d)2
+ c21(ct+ d)

6
n − 9mb6m−1(2− n)m(1 + n+ nm)

[
c

n(ct+ d)

]2(m+1)

+ b(7− n)m−1

{
(2m− 3)(2− n) +

4c

n(ct+ d)
n2m(m− 1)(2m− 1)

}[
c

n(ct+ d)

]2m
≥ 0 (39)

From the figure we have observed that,

� The physical characteristics, such as the mean scale factor, spatial volume, Hubble parameter, expansion
scalar, pressure, and energy density, exhibit a dependence on cosmic time. As we approach the limit of
t → 0, these parameters assume constant values without variation.

� In present described model, the spatial volume (V ) undergoes a remarkable transformation, commencing
with a small value at the inception of Universe and progressively stretching towards an immeasurable
magnitude as shown in Figure 1.This conspicuous phenomenon unequivocally signifies the extraordinary
expansion of the Universe.
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Figure 1. The behavior of Spatial Volume (V ) against Cosmic Time (t) for the proper choice of constants:
c = 1 & d = 0.5

Figure 2. The behavior of Hubble parameter (H) against Cosmic Time (t) for the proper choice of constants:
c = 1 & d = 0.5

� The Hubble parameter (H) represents the pace at which the Universe is expanding, signifying the fractional
growth in its scale over a given unit of time. It possesses a positive value and exhibits a decreasing trend
as time progresses. The expansion scalar offers insights into the expansion rate, revealing that it was more
rapid during the initial stages and gradually decelerates in later phases, as depicted in Figure 2

� From Figure 3, it is observed that as time progresses, the mass less scalar field (U) also increases leading
to expansion of the Universe. As time progresses, the scalar field gradually gains energy, resulting in
an increasing mass which is responsible for the expansion rate of the Universe and overall cosmological
evolution.

� The pressure exhibits a range of variation, shifting from significantly negative values to slightly negative
values (as depicted in Figure 4 & 7). Furthermore, as time progresses towards infinity (t → ∞), the
pressure tends to approach zero. These observations hold true for both functional forms of f(R) gravity,
namely f(R) = R & f(R) = R + bRm, respectively. The negative nature of the pressure serves as an
indicates presence of dark energy and energy density for both functional form of f(R) models are increasing
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Figure 3. The behavior of Mass Less Scalar Field (U) against Cosmic Time (t) for the proper choice of
constants: c = 1, d = 0.5, c1 = 1 & c2 = 1.5

Figure 4. The behavior of energy pressure (p) for f(R) = R against Cosmic Time (t) for the proper choice of
constants: c = 1, n = 2, d = 0.5 & c1 = 0.01

function of cosmic time (t) (Figure 5 & 8).

6. DISCUSSION & CONCLUSION

The f(R) gravity offers an alternative explanation for the recent cosmic acceleration, by eliminating ad-
ditional spatial dimensions or introducing exotic dark energy term. Also, different functional forms for f(R)
introduces a challenge in constraining the numerous theories of f(R) gravity from a physical perspective.

In this this article we explored the FRW cosmological model in the presence of an interacting field. Specifi-
cally, we consider a scalar field that modifies the energy-matter content and influences the dynamics of Universe.
We found that the expansion of Universe starts with a steady state and increases gradually. At a specific time,
the Universe suddenly exploded and expanded to a large extent, which is consistent with the Big Bang scenario
and agreed with recent observational data [1, 2]. It is observed that the Hubble parameter (H) initiates with a
fixed value and gradually approaches zero as t → ∞. Consequently, under such conditions, the Universe demon-
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Figure 5. The behavior of energy Density (ρ) for for f(R) = R against Cosmic Time (t) for the proper choice
of constants: c = 1, n = 2, d = 1 & c1 = 0.5

Figure 6. The behavior of Energy Conditions for f(R) = R against Cosmic Time (t) for the proper choice of
constants: c, n, d & c1

strates a tendency towards de-Sitter space in an asymptotic manner. Concurrently, the deceleration parameter
(q) remains constant, acquire negative value when 0 < n < 1 which value signifies the accelerated expansion of
the Universe. The energy density remains consistently positive and exhibits an upward trend as cosmic time
progresses while the pressure associated with dark energy is increases negatively as time passes.Investigating
energy conditions based on the behaviour of matter and energy under gravitational theories allows researchers
to study the characteristics, evolution, and future of the Universe. These circumstances are strong tools for
exploring basic physics ideas and understanding the intricate dynamics of our cosmos.

In this article, we have provided insights into a particular inquiry by exploring various limitations imposed
on general f(R) gravity, focusing on the energy conditions. By utilizing Raychaudhuri’s equation and the
essential criterion of gravitational attraction, we establish the SEC, WEC, NEC and DEC within the framework
of f(R) gravity. Our findings reveal that while these conditions bear resemblance to those derived in the general
relativity.Based on our observations, in the present study, we find that the strong energy condition (SEC),
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Figure 7. The behavior of energy pressure (p) for f(R) = R + bRm against Cosmic Time (t) for the proper
choice of constants: c = 4, n = 0.1, d = 0.5, c1 = 0.01, b = 1.5 & m = 1

Figure 8. The behavior of energy Density (ρ) for f(R) = R + bRm against Cosmic Time (t) for the proper
choice of constants: c = 1, n = 2, d = 1.5, c1 = 0.5, b = 1.5 & m = 1

represented by the inequality ρ+3p ≥ 0, is satisfied for both the functional forms of f(R). This result indicates
that the model under consideration is non-singular, as the SEC imposes restrictions on the energy density ρ
with the pressure p to ensure non-negative values.
Furthermore, our analysis reveals that the weak energy condition (WEC), given by the inequality ρ ≥ 0, is also
satisfied. This condition indicates that the energy density is non-negative, confirming the physical viability of
the model. These conclusions can be observed from equations (29) and (35), which provide further evidence for
the fulfillment of the WEC in the present study.

Moreover, we investigate the null energy condition (NEC), expressed as ρ+p ≥ 0. Our findings demonstrate
that the NEC is preserved for both functional forms of f(R). This preservation of the NEC is evident from
equations (32) and (37), reinforcing the consistency of the model with regard to the NEC. Additionally, our
study reveals that the dominant energy condition (DEC), defined as ρ−p ≥ 0, is also preserved. The preservation
of the DEC, as indicated by equations (33) and (39), suggests an accelerated expansion of the Universe. In
summary, our observations (from Figure 6 & Figure 9) shows that the present model satisfies the SEC, WEC,
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Figure 9. The behavior of Energy Conditions for f(R) = R + bRm against Cosmic Time (t) for the proper
choice of constants: c, n, d, c1, b & m

NEC and DEC also agreed with results of [47, 48, 49] for WEC, NEC and DEC . This indicates the non-singular
nature of the model, ensures non-negative energy densities, confirms the preservation of the NEC, and suggests
an accelerated expansion of the Universe. These results contribute to our understanding of the energy conditions
in the context of f(R) gravity and provide valuable insights into the behavior of matter and evolution of the
Universe within this modified gravitational framework.

Acknowledgments

We would like to express our deepest gratitude to the referees who reviewed our research article. Their
insightful comments, suggestions have greatly contributed to improving the quality & clarity of our research
work. Furthermore, we would like to acknowledge the invaluable support and resources provided by the research
center Arts, Science and Commerce College, Chikhaldara Dist. Amravati. Their facilities, equipment
& collaborative environment. We are also grateful to the editorial board of this prestigious journal for considering
our research article.

ORCID

Vasudeo Patil, https://orcid.org/0000-0002-0442-3962; Jeevan Pawde, https://orcid.org/
0000-0001-8068-6265; Rahul Mapari, https://orcid.org/0000-0002-5724-9734; Pravin Bolke,
https://orcid.org/0000-0002-1212-5260

REFERENCES

[1] A.G. Riess, et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

[2] S. Perlmutter, et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

[3] C.L. Bennet, et al., Astrophys. J. Suppl. 148, 1 (2003). https://doi.org/10.1086/377253

[4] A.G. Riess, et al., Astrophys. J. 607, 665 (2004). https://doi.org/10.1086/383612

[5] D.J. Eisenstein, et al. Astrophys. J. 633, 560 (2005). https://doi.org/10.1103/RevModPhys.75.559

[6] P. Astier, et al., Astron. Astrophys. 447, 31 (2006). https://doi.org/10.1051/0004-6361:20054185

[7] T. Padmanabhan, Phys. Rept. 380, 235 (2003). https://doi.org/10.1016/S0370-1573

[8] P.J.E. Peebles, and B. Ratra, Rev. Mod. Phys. 75, 559 (2003). https://doi.org/10.1103/RevModPhys.75.559

[9] S. Nojiri, and S. Odintsov, Phys. Rev. D, 68, 123512 (2003). https://doi.org/10.1103/PhysRevD.68.123512

[10] R. Femaro, and F. Fiorini, Phys. Rev. D, 75, 084031 (2007). https://doi.org/10.1103/PhysRevD.75.084031

[11] S. Nojiri, S. Odinstov, and P. Tretyakov, Prog. Theor. Phys. Suppl. 172, 81 (2008).
https://doi.org/10.1143/PTPS.172.81

[12] T. Harko, F.S.N. Lobo, S. Nojiri, and S.D. Odintsov, Phys. Rev. D, 84, 024020 (2011).
https://doi.org/10.1103/PhysRevD.84.024020

https://orcid.org/0000-0002-0442-3962
https://orcid.org/0000-0001-8068-6265
https://orcid.org/0000-0001-8068-6265
https://orcid.org/0000-0002-5724-9734
https://orcid.org/0000-0002-1212-5260


Energy Conditions with Interacting Field in f(R) Gravity
73

EEJP.3(2023)

[13] H.A. Buchadahl, Mon. Not. Roy. Astron. Soc. 150, 1 (1970). https://doi.org/10.1093/mnras/150.1.1

[14] S. Nojiri, and S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007).
https://doi.org/10.1142/S0219887807001928

[15] T. Multamaki, and I. Vilja, Phys. Rev. D, 74, 064022 (2006). https://doi.org/10.1103/PhysRevD.74.064022

[16] T. Multamaki, and I. Vilja, Phys. Rev. D, 76, 064021 (2007). https://doi.org/10.1103/PhysRevD.76.064021

[17] M.F. Shamir, Astrophys. Space Sci, 330, 183 (2010). https://doi.org/10.1007/s10509-010-0371-5

[18] M. Sharif, and H.R. Kausar, Phys. Lett. B, 697, 1 (2011). https://doi.org/10.1016/j.physletb.2011.01.027

[19] M.F. Shamir, Int. J. Theor. Phys. 50, 637 (2011). https://doi.org/10.1007/s10773-010-0587-8

[20] K.S. Adhav, Bulg. J. Phys. 39, 197 (2012). https://www.bjp-bg.com/papers/bjp2012 3 197-206.pdf

[21] M.F. Shamir, and Z. Raza, Can. J. Phys. 93, 1 (2015). https://doi.org/10.1139/cjp-2014-0338

[22] S.D. Katore, S.P. Hatkar, and R.J. Baxi, Found. of Phys. 46, 409 (2016). https://doi.org/10.1007/s10701-015-9970-x

[23] S.R. Bhoyar, V.R. Chirde, and S.H. Shekh, Prespacetime J. 7(3), 456 (2016).
https://prespacetime.com/index.php/pst/article/viewFile/915/907

[24] M.V. Santhi, V.U.M. Rao and Y. Aditya, Can. J. Phys. 96, 1 (2017). https://doi.org/10.1139/cjp-2017-0256

[25] A.V. Astashenok, S.D. Odintsov, and A. Cruz-Dombriz, Class. Quantum Grav. 34, 205008 (2017).
https://doi.org/10.1088/1361-6382/aa8971

[26] M.V. Santhi, Y. Sobhanbabu, and B.J.M. Raoz, J. Phys.: Conf. Ser. 1344, 012038 (2019).
https://doi.org/1088/1742-6596/1344/1/012038

[27] A.H. Hasmani, and A.M. Al-Haysah, Appl. Appl. Math, 14, 334 (2019).
https://digitalcommons.pvamu.edu/cgi/viewcontent.cgi?article=1717andcontext=aam

[28] S.D. Katore, and S.V. Gore, J. Astrophys. Astr. 41, 12 (2020). https://doi.org/10.1007/s12036-020-09632-z

[29] A.M. Al-Haysah, and A.H. Hasmani, Heliyon, 7(9), e08063 (2021). https://doi.org/10.1016/j.heliyon.2021.e08063

[30] V.U.M. Rao, M.V. Santhi, and Y. Aditya, Prespacetime J. 6(6), 531-539 (2015).
https://prespacetime.com/index.php/pst/article/download/749/752

[31] D.D. Pawar, V.J. Dagwal, and P.K. Agrawal, Malaya J. Mat. 4(1), 111 (2016).
https://www.malayajournal.org/articles/MJM16 14.pdf

[32] G.K. Goswami, A. Pradhan, M. Mishra, and A. Beesham, New Astronomy, 73, 101284 (2019).
https://doi.org/10.1016/j.newast.2019.101284

[33] S.V. Lohakare, F. Tello-Ortiz, S.K. Tripathy, and B. Mishra, Universe, 8(12), 636 (2022).
https://doi.org/10.3390/universe8120636

[34] V.R. Patil, J.L. Pawde, and R.V. Mapari, IJIERT, 9, 4 (2022). https://dx.doi.org/10.17605/OSF.IO/QABKV

[35] D.D. Pawar, D.K. Raut, and W.D. Patil, Pramana J. Phys. 96, 133 (2022). https://doi.org/10.1007/s12043-022-
02364-5

[36] S.N. Bayskar, D.D. Pawar, and A.G. Deshmukh, Rom. Journ. Phys. 54, 763 (2009).
http://www.nipne.ro/rjp/2009 54 7-8.html

[37] D.D. Pawar, and R.V. Mapari, J. Dyn. Systems and Geom. Theories, 20(1), 115-136 (2022).
https://doi.org/10.1080/1726037X.2022.2079268

[38] B. Saha, H. Amirhashchi, and A. Pradhan, Astrophys. Space Sci. 342, 257 (2012). https://doi.org/10.1007/s10509-
012-1155-x

[39] V.R. Chirde, and S.H. Shekh, The African Rev. Phys. 9, 0050 (2014).
http://lamp.ictp.it/index.php/aphysrev/article/view/971/393

[40] J. Satish, and R. Venkateswarlu, Bulg. J. Phys. 46, 67 (2019). https://www.bjp-bg.com/papers/bjp2019 1 067-
079.pdf

[41] V.J. Dagwal, and D.D. Pawar, Mod. Phys. Lett. A, 35(04), 1950357 (2020).
https://doi.org/10.1142/S0217732319503577

[42] S.P. Hatkar, P. Agre, and S.D. Katore, Ann. Appl. Sci. 1, 659 (2022). https://doi.org/10.55085/aas.2022.659

[43] A. Raychaudhuri, Phys. Rev. 98, 1123 (1955). https://doi.org/10.1103/PhysRev.98.1123

[44] S. Nojiri, and S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007).
https://doi.org/10.1142/S0219887807001928

[45] N.W. Halverson, E.M. Leitch, and Pryke et. al., Astrophys. J. 568, 38 (2002). https://doi.org/10.1086/338879

[46] J. Ehlers, Int. J. Mod. Phys. D, 15, 1573 (2006). https://doi.org/10.1142/S0218271806008966

[47] S. Mandal, P.K. Sahoo, and J.R.L. Santos, Physical Review D, 102(2), 024057 (2020).
https://doi.org/10.1103/PhysRevD.102.024057

[48] P.K. Sahoo, S. Mandal, and S. Arora, Astron. Nachr. 342, 89 (2021). https://doi.org/10.1002/asna.202113886



74
EEJP.3(2023) Vasudeo Patil, et al.

[49] S.H. Shekh, V.R. Chirde, and P.K. Sahoo, Commun. Theor. Phys. 72, 085402 (2020). https://doi.org/10.1088/1572-
9494/ab95fd

ÅÍÅÐÃÅÒÈ×ÍI ÓÌÎÂÈ Ç ÏÎËÅÌ ÂÇÀ�ÌÎÄI� Â f(R) ÃÐÀÂIÒÀÖI�
Âàñóäåî Ïàòiëa, Äæèâàí Ïàâäåa, Ðàõóë Ìàïàðib, Ïðàâií Áîëêåc

aÊàôåäðà ìàòåìàòèêè, ìèñòåöòâ, íàóêè òà òîðãiâëi êîëåäæó, ×èêõàëäàðà, îêðóã Àìðàâàòi (MS), Iíäiÿ
bÊàôåäðà ìàòåìàòèêè, Äåðæàâíèé iíñòèòóò íàóêè òà ãóìàíiòàðíèõ íàóê Âiäàðáõà, Àìðàâàòi (MS), Iíäiÿ

cÊàôåäðà ìàòåìàòèêè, Êîëåäæ iíæåíåði¨ òà óïðàâëiííÿ ïðîô. Ðàìà Ìåãå, Àìðàâàòi (MS), Iíäiÿ

Ó ïîòî÷íîìó êîíòåêñòi ñöåíàðiþ âêðàé âàæëèâî äèâèòèñÿ çà ìåæi òåîði¨ Åéíøòåéíà, ÿêà âiäêðèâà¹ äâåði äî ñïå-
öiàëüíî ìîäèôiêîâàíèõ òåîðié ãðàâiòàöi¨. Îòæå, äàíå äîñëiäæåííÿ ïðèñâÿ÷åíå äîñëiäæåííþ ðiçíèõ åíåðãåòè÷íèõ
óìîâ, çîêðåìà ñèëüíèõ åíåðãåòè÷íèõ óìîâ (SEC), ñëàáêèõ åíåðãåòè÷íèõ óìîâ (WEC), íóëüîâèõ åíåðãåòè÷íèõ óìîâ
(NEC) i äîìiíóþ÷èõ åíåðãåòè÷íèõ óìîâ (DEC), ùî âiäïîâiäàþòü ðiçíèì ôóíêöiîíàëüíèì ôîðìàì f(R) ñèëà òÿ-
æiííÿ. Ìè äîñëiäæóâàëè ïëîñêi, içîòðîïíi òà îäíîðiäíi êîñìîëîãi÷íi ìîäåëi FLRW, çàïîâíåíi ïîëåì âçà¹ìîäi¨,
òîáòî; iäåàëüíà ðiäèíà ïî¹äíó¹òüñÿ ç áåçìàñîâèì ñêàëÿðíèì ïîëåì äëÿ ðiçíèõ ìîäåëåé ìîäèôiêîâàíî¨ f(R) ãðàâi-
òàöi¨, â ÿêié R ¹ ñêàëÿðîì Ði÷÷i. Ìè ñïîñòåðiãàëè ïðèñêîðåíå ðîçøèðåííÿ Âñåñâiòó, ùî âiäïîâiäà¹ îñòàííiì äàíèì
ñïîñòåðåæåíü.
Êëþ÷îâi ñëîâà: êîñìîëîãi÷íà ìîäåëü FLRW; ãðàâiòàöiÿ f(R); âçà¹ìîäiþ÷å ïîëå; çàêîí Õàááëà


	Introduction
	Formalism of f (R) Gravity
	FLRW Metric and field equations 
	Solutions to field Equations
	Energy Conditions 
	f(R)= R
	f(R)= R+ bRm

	Discussion & Conclusion

