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In this work, the influence of two-dimensional state density on oscillations of transverse electrical conductivity in heterostructures with
rectangular quantum wells is investigated. A new analytical expression is derived for calculating the temperature dependence of the
transverse electrical conductivity oscillation and the magnetoresistance of a quantum well. For the first time, a mechanism has been
developed for oscillating the transverse electrical conductivity and magnetoresistance of a quantum well from the first-order derivative

of the magnetic field (differential) 8( o (E.B.T.d )) /E)B at low temperatures and weak magnetic fields. The oscillations of electrical

conductivity and magnetoresistance of a narrow-band quantum well with a non-parabolic dispersion law are investigated. The proposed
theory explored the results of experiments with a narrow-band quantum well (InxGai1xSb).
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INTRODUCTION

In the presence of a quantizing magnetic field in nanoscale semiconductor structures, not only the optical or
magnetic, but also the kinetic properties of free electrons or holes change significantly. The study of the oscillation of
longitudinal and transverse magnetoresistance in heterostructures based on quantum wells, along with the Hall
measurements, can provide important information about its characteristics, such as the effective masses of free electrons
and holes [1,2], the number of occupied zones, spin degeneration, quantum relaxation time and other kinetic
parameters [3]. In a series of experiments conducted in the last decade, it was discovered that the kinetic properties of a
quantum well subjected to deformation, temperature, ultra-high frequency electromagnetic field, deformation and light in
the applied magnetic field provide even richer information for the theory of quantum physics. In particular, in the works
[4,5], in the quantum well GaAs, the semiclassical theory of magnetoresistance oscillation during irradiation with
microwaves is analyzed. In a quantizing magnetic field, the specific magnetoresistance of the system demonstrates
Shubnikov-de Haase oscillations at low temperatures. And also, experimental values were established for the quantum
pit GaAs, under the illumination of microwave radiation. In the works [6-23] various experimental techniques have been
developed for determining the temperature dependence of the Shubnikov-de Haase oscillation in heterostructures with
quantum wells with parabolic and non-parabolic laws of dispersion. For example, in the work [6], quantum oscillation
phenomena were observed in heterostructures with quantum wells Ga;«InNyAs;.y using magnetotransport measurements.
Shubnikov-de Haase oscillations are obtained at magnetic fields up to 3 T and temperatures up to 20 K, which are used
to determine the effective mass, two-dimensional density of charge and Fermi energy carriers. In the work [7],
measurements of magnetic conductivity during compression of quantum wells InxGa,;.xSb and GaSb are presented. Hall
and Van de Pau structures were manufactured and Shubnikov—de Haase oscillations in the temperature range T=2-300 K
at magnetic fields B=0-9 T were measured. In these samples, the high mobility of the charge carriers makes it possible
to observe the Shubnikov-de Haase oscillation.

And also, in work [8], in the heterostructures of GalnNAs/GaAs with quantum wells doped with modulation of n-
and p- type, magnetoresistance measurements were made, both in weak (B < 0.08 T) and in a strong magnetic field (up
to 18 T) at temperatures of 75 mK and 6 K. It is shown that quantum oscillations in pxx and the quantum Hall effect in pyy
are affected by the presence of nitrogen in the lattice of AjuBv. For such materials, in weak magnetic fields, Shubnikov-
de-Haas oscillations develop with higher mobility at a temperature of 6 K, and with an increase in the composition of
nitrogen, the amplitude of the Shubnikov-de Haas oscillation decreases.

From the above literature it can be seen that a full-fledged theory has not been built in the heterostructures of
quantum wells.

As can be seen from the literature analyzed above, there is no clear and complete theory of the dependence of
quantum oscillations on the temperature and magnetic field found in experiments in heterostructures with a quantum well.
A new mathematical model has not been developed to determine the temperature dependence of Shubnikov-de Haase
oscillations in heterostructural semiconductors with a quantum well through the density of energy states of two-
dimensional materials.
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The purpose of this work is to simulate the temperature dependence of magnetoresistance oscillation in
heterostructures based on quantum wells, taking into account the thermal widening of the two-dimensional density of
states.

MODEL
Kinetic equation of charge carriers in nanoscale semiconductor structures in the absence of a quantizing magnetic field
In nanoscale semiconductor structures, the analysis of the electrical conductivity of electrons or holes is carried out
using the Boltzmann distribution function f, (k) and in a homogeneous electric field F, this distribution function satisfies

the solutions of the following kinetic equation in the absence of a magnetic field [24,25]:

qFka (k)= 3w, (e, ) (k) = £,(F) (1)

n'k’

Here, g is the charge of the charge carriers, w,,.(k, k") is probability of scattering per unit time from the |nk> 8 |n‘k‘)

state, n and n' are the subzone or minizone numbers.
In the case of classical electric fields, when the deviation of the distribution function ¢@(k) from the equilibrium

Fermi-Dirac function fy(E) can be considered small, in the one-minizone approximation the kinetic equation (1) is
described as follows:

gFv() Do) = 3wk (k) - (b @

oE

Here, o(k)= f,(k)— f,(E); E = E,(k) is the energy of a free electron or hole in a main subzone or minizone; v(k) is

the velocity of a free electron or hole.
To solve equation (2), we can use the approximation of the relaxation time tensor taking into account the anisotropic
nature of nanoscale semiconductors and obtain the following expression, in this approximation, to solve equation (2):

o(k)=g [ %(E))Z 7 (E)E,(K) 3)

In here

1 v.(k)
_2w(k k )[ (k)] )

The relaxation time tensor component in the principal axes of the tensor is inverse of the effective mass.

Influence of two-dimensional state density on temperature dependence of electrical conductivity oscillation
in heterostructures with quantum wells at quantizing magnetic field
Now let's calculate the temperature dependence of the oscillation of longitudinal electrical conductivity in a quantum
well when exposed to a quantizing magnetic field. In heterostructures with quantum wells for a two-dimensional free
electron or hole, the addition to the distribution function (3), taking into account the symmetry, is written as:

o(k) =g [ Sul(E )]TL(E)F (k) ®)

Here, 7, =7, =7,.

In this problem, the induction of the magnetic field is directed along the thickness of the quantum plate and is
calculated perpendicular to the plane of the quantum plate (plane XY). Hence, when carrying out theoretical calculations,
we introduce transverse electrical conductivity (o, (£, B) ) perpendicular to the thickness of the quantum well (along the
plane XY), one of the kinetic quantities calculated from the thickness of the quantum well is defined as longitudinal
electrical conductivity (o, (E, B) ).

Using the expression (5) quantizing magnetic field, we can obtain the expression of the transverse electrical
conductivity of o (E,B) :

ean <TL (E,B))
o,(E,B)=0(E,B)=0,(E,B)=qnu, (E,B)=————— (6)
m
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Here, the 7, is concentration of charge carriers for a two-dimensional electron gas; ¢, mobility; m* is effective mass
of the charge carriers in a quantum well. <T ' (E, B)) is the energy-averaged relaxation time of a free electron when exposed

to a quantizing magnetic field, and is calculated by the following expression [24,25]:

TN?C’(E,B)[%}l(E)EdE
oE
(7.(E,B))=" @)

n

s

Where, N, f ‘(E,B) is the two-dimensional density of energy states in a quantizing magnetic field.
In a quantizing magnetic field, the two-dimensional density of energy states in the conduction zone of the quantum

well is taken as the sum of Gaussian peaks [26]:
222 2
E-|ha, nL+l L T -,
eH 2) 2m*d

21
Nfd(E,B,d,nZ):z—ﬂ_cz ;Eexp -2 G (8)

. eH . . . .
Where, n; is the number of Landau levels. @, =—— 1is a cyclotron frequency. G is a widening parameter that is
mc

assumed to be constant.

In a strong magnetic field, two-dimensional electron systems of non-interacting electrons are considered according
to the parabolic law of dispersion at low temperature 7. In addition to the Gaussian peak of state density, at each Landau
level there is a common multiplier of the magnetic field B before the total density of energy states. This means that as
magnetic field B increases, each Landau level can contain more and more electrons. According to (8), there is no density
of states between Landau levels if their distance s, is noticeably greater than G.

Calculation of the temperature dependence of transverse electrical conductivity in quantum wells when
exposed to a quantizing magnetic field
For the basic mechanisms, in massive semiconductors in the approximation of elastic scattering, the dependence of
7,(E,T) relaxation time on energy and temperature is of a power nature [27]:

o,(E,T)=y,(k,T) E* )

For free electrons in a quantum well, the change in the density of states and the energy spectrum, taking into account
dimensional quantization, leads to the following equation [28 ]:

* 1
7, /7, =ydk, =yd 2";2E~E2 (10)
From (10), we get:
1
TJ_:%_(koT)/}E : (11)

Here, d is the thickness of the quantum well. Taking into account (7), (8) and (11), the dependence of transverse
electrical conductivity on the quantizing magnetic field and temperature in heterostructures with quantum wells takes the
following form:

2
222
B2 E{hw‘(nﬁr;}rzﬂfdﬂ;} S (f (E,T)
o’ (E,B,T.d =e—\ﬁ— exp| -2 " kT”Ea+2(—° "2 WE (12
L( ) 2rm*c ﬂ'G'([; xP G }/L( 0 ) o (12)

Thus, we can determine the temperature dependence of the oscillation of electrical conductivity in a quantum well
when exposed to a quantizing magnetic field. And so, a new analytical expression was derived for calculating the
oscillation of electrical conductivity in heterostructures with quantum wells in the presence of temperature and a magnetic
field, based on the equation (12). Using equation (12), it is possible to analyze some experimental results at different
temperatures and magnetic fields. In addition, using the equation (12), it is possible to calculate the temperature
dependence of the oscillation of transverse magnetoresistance in the conduction zone of the quantum well in the presence
of a quantizing magnetic field. Then, for a heterostructure based on a quantum well, the change in the oscillation of the



136
EEJP. 3 (2023) Ulugbek 1. Erkaboev, et al.

transverse magnetoresistance pfd(E ,B,T,d) with respect to temperature and quantizing magnetic field is determined in

the following new analytical expression:

p*(E,B,T,d)=1/0"(E,B,T,d)

1

pZd(EsByTyd)=_ b
L ‘s 21

2rm*ec\ 7w G

(13)
1 °h
2 E-fha | mto 4 e ™  (3f (E.T)
m o=
exp| -2 kTYE 2| 2"k
!:nZL: p G v, (k,T) ( 9E
RESULTS AND DISCUSSION

Now, based on equations (12) and (13), let's consider the dependences O'f" (E,B,T,d) and pf" (E,B,T,d) on the

graph. As can be seen from the new analytical expressions obtained, the term under the integral is a very complex function
with respect to the energy E. That is, it is impossible to obtain an exact result by integrating it, and we will use a computer

program to obtain ¢>*(E,B,T,d) and p**(E,B,T,d).

Figure 1 shows the dependence of the oscillation of the transverse electrical conductivity on the magnetic field
(Figure 1a) and the reverse induction of the magnetic field (Figure 1b) in heterostructures based on the quantum well
Ing 52A1l9.484s/Ing 53Gag.474s/ Ings»AlpssAs at constant low temperatures. Here, the parameters of the quantum well
Ing53Gap.474s are equal to the following value: the thickness of the quantum well d = 16.8 nm, the effective mass of
electrons in the conduction band of the quantum well m, = 0.059m,, the widening parameter G = 0.5 melV and the
temperature 7 = 4.2K [27].
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Figure 1a. Dependence of the oscillations of the transverse electrical conductivity on the magnetic field in heterostructures based on
the Ino.s2Alo.4sAs/Ino.s3Gao47As/ Inos2Alo.asAs quantum well at temperatures T=4.2 K.
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Figure 1b. Dependence of the oscillations of the transverse electrical conductivity on the reverse magnetic field induction in
heterostructures based on the Ino.s2Alo.48As/Ino.s3Gao.47As/ Ino.s2AloasAs quantum well at temperatures T=4.2 K.
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In this case, when constructing the O'fd (E,B,T,d) graph, the number of Landau levels was taken as n; = 8, and the

number of dimensional quanta (the number of dimensional quanta) as nz = 1. In the figures, there is a sharp increase in
the amplitude of fluctuations in electrical conductivity in the conductivity zone of the quantum well Ings3Gag47As at
magnetic field induction values of 1.5 T and above. Figure 2 shows the effect of temperature on the dependence of the
oscillation of transverse electrical conductivity on the induction of the magnetic field (Figure 2a) and the reverse induction
of the magnetic field (Figure 2b) in heterostructures based on the quantum well Ing 5241y 4845/Ing s3Gag 47As/Ing 52419 48As
with a parabolic law of dispersion. As can be seen from these figures, with increasing temperature, the amplitude of the
oscillation of electrical conductivity in the conduction band of the quantum well /ng 53Gay 474s decreases. At sufficiently
high temperatures, for example, at T = 40 K, magnetoresistance oscillations do not feel the quantizing magnetic field and
do not observe oscillations of kinetic parameters. Because in nanoscale semiconductor materials to observe the effects of
quantum oscillations, the thermal energy of the free charge carriers must be much smaller than the difference between
two adjacent discrete energy levels.
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Figure 2a. Influence of temperature on the dependence of transverse electrical conductivity oscillations on magnetic field induction
in heterostructures based on quantum well Ino.s2Alo.4sAs/Ino.s3Gao.47As/Ino.s2Alo.4sAs
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Figure 2b. Influence of temperature on the dependence of the oscillation of transverse electrical conductivity on the reverse
induction of the magnetic field in heterostructures based on the quantum well Ino.s2Alo.48As/Ino.s3Gao.47As/Ing.s2Alo.4sAs

Figure 3a shows the oscillations of the transverse magnetoresistance pid (E,B,T,d) in the conduction band of the

Ings3Gag47As quantum well at low constant temperatures T=4.2K. This pf“(E,B,T,d) graph is obtained using

equation(11). If we observe fluctuations in the induction of the quantizing magnetic field in the range from 0.5 T to 3.5
T, then the maximum value of the amplitude of the magnetic resistance of the quantum coil is about 1000 Om. With
increasing temperature, a decrease in the amplitude of oscillations of the transverse conductivity is observed (Figure 3b).
When the temperature reaches 40K, when the magnitude of the quantizing magnetic field reaches almost 3 T, the

pf" (E,B,T,d) oscillations begin to disappear, that is, the influence of the quantizing magnetic field becomes not

noticeable. However, as the temperature decreases, the quantizing magnetic field begins to increase its effect. In a
simplified way, this can be explained as follows: statistical physics is applied to these quantum effects, i.e. the temperature

dependence of pfd (E,B,T,d) oscillations is studied by thermal smearing (or thermal broadening).
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Figure 3a. Oscillations of transverse magnetoresistance pfd (E,B,T,d) in the conduction zone of the quantum well Ino.s3Gao.47As

at temperatures T = 4.2 K.
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Figure 3b. Effect of temperature on oscillations of transverse magnetoresistance pid(E ,B,T,d) in the conduction zone of the

quantum well Ino.s3Gao.47As

It is known that the temperature dependence of oscillations of the density of energy states in two-dimensional and
three-dimensional semiconductor materials has been studied in detail from a theoretical point of view in works [27, 28].
At the same time, a new mathematical model was developed. The equation (8) for constantly low temperatures shows the

dependence of the energy density oscillations of the N2’ (E ,B,nL,d,nZ) states in two-dimensional semiconductor

materials on the energy and magnetic field. The energy derivative of the Fermi-Dirac distribution function gives the delta

function of (WJ at very low temperatures, with the height of (WJ decreasing and the width increasing

with increasing temperature. Hence, the thermal widening of Landau levels is determined with the help of the [Mj

function. However, as can be seen from the work [27,28], the oscillation of the quantum effect is carried out by observing

N (E,B,nL,d,nZ). Therefore, by decomposing N2 (E,B,nL,d,nZ) into a series of (%j , oscillations of the

transverse magnetoresistance of pf" (E,B,T,d) heterostructural semiconductors with a quantum well depending on
temperature are determined.
In addition, using the analytical expression (13), one can analyze the dependence of the pf" (E,B,T,d) oscillations

of the transverse magnetoresistance of heterostructural semiconductors with quantum wells. Figure 4 shows the
dependence of the oscillations of the transverse magnetoresistance of the IngsxAlp4sAs/Ings3Gaga7As/Ings2AlgagAs

heterostructure on the thickness of the Ing.s3Gag47As quantum well with a parabolic dispersion law. Here, pf" (E,B,T,d)

at a quantizing magnetic field B=3.5 T:
pf"(T =3K,d =16,8nm) =1000 Om; pfd(T =3K,d =14,8nm)=1100 Om;

P> (T =3K ,d =12,8nm) =12000m
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Thus, with a decrease in the thickness of the quantum well, the amplitude of the oscillations of the transverse
magnetoresistance increases. Hence, we can conclude that the height of discrete Landau levels in two-dimensional
semiconductor materials depends both on the temperature and on the thickness of the quantum well. In order to observe
oscillations of the quantum effect even at higher temperatures, it is proposed that the thickness of the quantum well be as
close as possible to the de Broglie length.

] P ,Om-cm

Figure 4. Dependence of the oscillation of transverse magnetoresistance of the heterostructure Ino.s2Alo.4sAs/Ino.s3Gao.47As/
Ino.s2Alo.4sAs on the thickness of the quantum well Ino.53Gao.47As with a parabolic law of dispersion.

Calculation of the temperature dependence of differential oscillations of magnetoresistance
d(p*(E.B.T.d))

0B

As mentioned above, to observe the oscillation of the quantum effect in bulk and two-dimensional semiconductor
materials, it is necessary to meet the conditions of a strong magnetic field and a very low temperature. Let's estimate the
discrete quantum energy of a quantizing magnetic field and a quantum well at very low temperatures and the thermal
energy of an electron corresponding to this energy level. In Figure 3a, the value of the induction of the magnetic field
oscillations pfd(E,B,T ,d) is calculated from 0.5T to 4T and at a temperature of 3 K. Temperature at T= 3 K

£T=2,6-104‘ el . At a magnetic field B=1, 7'“1é e=124-10"¢V .
e m

n<B

heterostructure with quantum well

m

=48 ,i.c. W s> kT Although this estimate is completely subject to the conditions for the formation
m

of quantum oscillatory effects in heterostructures with quantum wells, however, as can be seen from Figure 3a, oscillatory
processes are clearly observed starting from 1.5 T. Why is this happening? With a magnetic field of 0.6 T, 1 Tor 1.2 T,
oscillations of the transverse magnetoresistance are not formed in the conduction field of the quantum coil, or does it
seem that the obtained analytical expression (13) is not fully satisfied? This process is explained as follows. The value of
the transverse magnetoresistance of a quantum well semiconductor varies greatly due to the magnetic field induction.
From here, according to the differential law of resistance, the first derivative of the magnetic field induction is obtained
according to the equation (13).

Hence,

That is:
-1
2
222
B E—{heB*'(nL +;j+2”fd2 né} (O ED)
m m i
d| B exp| -2 " kTYE 2|22 yE
I[; Xp G V. (k,T) ( 3E
a(pfd(EnB9Tad)) 63 \/51
0B 2em*e\r G 0B
(14)

From a theoretical point of view, taking the derivative of the magnetic field induction from equation (14) and
obtaining its graph is a very difficult task. However, implementation using computer programs allows you to evaluate
both accuracy and quality. To compare the graphical results obtained by equations (13) and (14), we consider them in the
same coordinate system.
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d(p*(E.B.T.d))

0B

field at T=3 K in the heterostructure Ing s;Alg4gAs / Ing s3Gag47As / Ing s2Alp4gAs with a quantum well Ing 53Gag47As. In
this case, the number of Landau levels is n;=7, and the dimensional quantum number is nz=1. Magnetic field induction
was obtained in the range from 0.6 T to 1.22 T.

200

on the weak induction of the magnetic

In Figure 5 shows the dependence of pfd (E,B,T,d) and

BT

d(p*(E,B.T.d))

JB
heterostructures Ino.s2Alo.48As/Ino.s3Gao.47As/Ino.s2Alo.4sAs with a quantum well Ino.s3Gao.47As.

Figure 5. Dependence of pid (E,B,T,d) and on weak induction of the magnetic field at T=3 K in

As in Figure 3a, pf‘l (E,B,T,d) oscillations at 0.6+1.22 T are practically not formed due to a too low magnetic field.
d(p*(E.B.T.d))
JB
different from pfd (E,B,T,d). That is, this indicates the presence of quantum effects, that is, Landau levels, even at low

However, the graph of its first order derivative with respect to the magnetic field is completely

temperatures and weak magnetic fields. In fact, the purpose of taking the derivative of the magnetoresistance with respect
to B was the same, that is, it was necessary to feel the magnetic field increased by one standard. At the same time, both

d(p*(E,B.T.d))
0B

positive and negative magnetoresistances can be observed on the graph. In conclusion, we can say

d(p*(E.B.T.d))

JB
not only to study the sensitivity to the influence of a magnetic field in weak magnetic fields using equation (13), but also
to visually observe the number of discrete Landau levels using equation (14).

heterostructure with a quantum well makes it possible

that the differential magnetoresistance of an

d(p*(E,B.T.d))

0B
As in Figure 3b, we will change the value of the induction of the magnetic field by 4 T and the temperature from 4.2 K
to 40 K. As a result, a graph of the temperature dependence of fluctuations according to the equation (14) is obtained
(Figure 6).

Now consider how the oscillations of the differential magnetoresistance of depend on temperature.

sooo] A7 (E.B.T.0)
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— T=20K; d=16.8 nm
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(P> (E.B.T.d))

5B in quantum well Ino.53Gao47As.

Figure 6. Influence of temperature on differential magnetoresistance
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As can be seen from Figure 6, there is a decrease in the amplitude of oscillations of the differential magnetoresistance
d(p*(E,B,T,d)
2 )

0B
an increase in their width due to thermal expansion. In general, this leads to the fact that the effect of temperature on the

d(p*(E.B.T.d))
0B

with increasing temperature. This leads to a decrease in the height of the discrete landau peaks and

coincides with the above theoretical base.

differential oscillations of the magnetoresistance of

Determination of transverse magnetoresistance oscillation in heterostructures based on narrow-band quantum
wells with nonparabolic dispersion law
Let's analyze quantum oscillation phenomena for electrons and light holes in heterostructures based on narrow-band
quantum wells when exposed to a strong magnetic field, with a non-parabolic law of dispersion. For the parabolic law of
dispersion, the effective mass of charge carriers does not depend on its energy, but if the law of dispersion is non-
quadratic, then the effective masses of charge carriers vary greatly in energy in the permitted zone of the quantum well.
The energy of charge carriers in the conduction band under the action of a quantizing magnetic field for a non-
parabolic dispersion law in bulk semiconductor materials with a narrow band is calculated by the following
expression [29]:

3d 2712
B (B)=-= +%\/(E;")2+4E;"KN+%)M)U +§iiw] (15)

m 2

n

Here E ;" is the band gap of the bulk semiconductor material; g,u,H - spin energy of charge carriers.

If the induction of the quantizing magnetic field is applied along the quantum well thickness (parallel to the Z axis)
and perpendicular to the XY quantum well plane, assume that the band gap depends on the quantum well thickness, and
take into account that the value of the spin energy is much less than the sum of the quantum and the magnetic field energy,
then expression (13) takes the form:

2d Eid 1 24 \? 2d 1 L
EY (Bid)==——+7 (E) +4(E) m+ fhe sl | (16)
232
Here, i=L+L; Egz“’ :E;d+ zh —n’
Itlﬂ mll mp Zﬂnd

Equation (16) expresses the dependence of the narrow-field quantum well on the magnetic field, which quantizes
the energy of free electrons in the conduction field for the nonparabolic dispersion law. It can be seen that the energy of
free electrons in the conduction region of a narrow-gap quantum well under the action of a quantizing magnetic field
strongly varies non-squarely with the band gap and quantum well thickness. This relation certainly strongly affects the
two-dimensional energy density of states (8). Hence it follows that the oscillations of the magnetoresistance of a quantum
well with a nonparabolic dispersion law differ significantly from the parabolic law. Consequently, the

1\ 7w . . . . .

[h@ (nL +5j+mn§} term in expression (8) is the total energy of free electrons in the conduction field of a
m

quantum well in a quantizing magnetic field for the parabolic dispersion law. In the non-parabolic dispersion law, the

total energy is determined by expression (16). Then, substituting (16) into (8), we obtain an expression for the two-

dimensional energy density of states in a quantizing magnetic field for the nonparabolic dispersion law:

2
EX 1 i\ v 1 '’
E‘{‘Sw\/(’fi J o4l (g o5 e

é;exp -2 e (17

eH |2
2re \ 1w

NZd

s,noparabolic

(E.B.E}'.,n,.d.n,)=

It follows from this equation that, for a nonparabolic dispersion law, the quantum field depends on the magnetic
field, which quantizes the density of energy states in the conduction region. It can be seen that equations (8) and (17) are
fundamentally different from a mathematical point of view. In this case, if the band gap is narrow, then it is recommended
to use equation (17), otherwise equation (8), i.e. if the semiconductor is wide-gap. We can also understand this by
substituting (17) into (13) to get the following new analytic expression:
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Analytical expression (18) is suitable mainly for heterostructural materials with narrow-field quantum wells, since
the energy spectrum of narrow-gap semiconductors mainly obeys the non-parabolic dispersion law.

Now let's compare p** (E,B,T,d Ez") and p* (E,B,T,d,E;") for two dispersion laws and look at their

fluctuations at different magnetic fields and temperatures. The thickness of the InAs/GalnSb/InAs semiconductor
heterostructure with a narrow-gap quantum well (InAs - quantum well) is 3.36 nm [30], the volume band gap is 0.426 eV
at T=0 K [31], the effective mass of a free electron in the conduction field m;=0.026m,. Substituting these experimental
values into the proposed analytical expressions (13) and (18), we calculate the oscillations of the transverse
magnetoresistance of the InAs/GalnSb/InAs quantum well at T=4 K and obtain graphical results for

(E,B,T,d EZ‘]) and pwmbalw(E,B,T,d,E;d) (Figure 7). As can be seen from this figure, one can observe that

the oscillations of the transverse magnetoresistance of the quantum well obtained for the parabolic and nonparabolic
dispersion laws are fundamentally different. In conclusion, we can say that if the quantum well consists of a narrow-gap
semiconductor, it is proposed to calculate the oscillations of the transverse magnetoresistance by expression (18), and if
the material of the quantum well is classical and wide-gap, then it is proposed to calculate by equation (13).

| noparabolic | parabolic

p n noparabolz(‘

p_(B.T.d)

=7\
/ \

1- Pinoparabolic

2- Piparabolic
Figure 7. Comparison of transverse magnetoresistance oscillation for plnopmbolu (E,B,T,d,E 2d) and p’

the quantum well InAs/GalnSb/InAs at T=4 K
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Comparison of experimental results with theory and their discussion
This work mainly presents the results of a comparison of experimental and theoretical studies of the oscillations of
the transverse magnetoresistance on the example of a heterostructure with narrow quantum wells InyGa;.«Sb [7]. The band

gap and thickness of the quantum well of this material is Esd =0,49¢V [32] and d=7.5 nm, and the effective mass of

charge carriers is m,=0.06my [7]. In this work, oscillations of the transverse magnetoresistance of InyGa;.«Sb are observed
at a temperature of 2 K and at quantizing magnetic fields from 3 T to 9 T (Figure 8). Since this material is a narrow gap
semiconductor with quantum wells, it obeys a non-parabolic dispersion law. From here, using the above experimental
physical parameters, the oscillations of the transverse magnetoresistance of the InyGa;.xSb quantum well at a temperature

of 2 K are theoretically calculated using equation (18). In Figure 9 shows the p meg,w(E ,B,T,d ,E;d) graph of the

theoretically calculated InyGai.«Sb quantum well. It can be seen that the experimental (Figure 8) and theoretical (Figure
9) results are very close to each other in terms of quality. If we look at the experimental results, then the oscillations of
the InyGa;.xSb quantum well practically do not appear in the range of magnetic field induction values from 1 Tto 2.9 T.
As if, at a temperature of 2 K and a magnetic field of 2.5 T, Landau levels are not visible, there is no quantization
process. Although, on the graph obtained from a theoretical point of view, the amplitude of the magnetoresistance is
formed precisely in this magnetic field, since the condition kT<<hwc is satisfied. Even at such a very low temperature,
the induction of the magnetic field must already be a quantization process at 1.5 T. This can also be observed on the

o(p . (E.B.T.d))

0B
with respect to the magnetic field (Figure 10). Therefore, one should not rush to draw conclusions on the basis of
oscillation amplitudes not seen in the experiment, i.e. it is necessary to rework it from a theoretical point of view, check
it through quantization conditions, and in the process, it is necessary to study the state of charge carriers in perfection.
This can be seen by comparing the experimental (Figure 8) and theoretical (Figure 10) results. Let us analyze the
experimental oscillations of the transverse magnetoresistance according to the equation (18) using the dynamics of the
temperature increase (Figure 11). On Figure 11 shows a three-dimensional graph of the oscillations of the transverse
magnetoresistance of the InyGa;.xSb quantum well as a function of temperature and magnetic field. This three-dimensional

plot using equations (14) for the non-parabolic dispersion law, i.e. differentiating equation (18)
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graph is obtained from a theoretical point of view by substituting experimental values into equation (18). As can be seen
from Figure 11, with increasing temperature, the amplitude of oscillations of the transverse magnetoresistance of the
quantum coil decreases, and a broadening of the peak is observed. This is called thermal blur. This means that, due to
thermal smearing, as the temperature rises from 40 K, the discrete Landau levels are transformed into continuous energy
spectra. At the same time, it is possible to analyze the dependence of this experimental graph on the thickness of the
quantum well using equations obtained from the theoretical side. In addition, with the help of the proposed new theory or

the obtained new equation, it becomes possible to determine the dependence of external factors on experimental
oscillations of the transverse magnetoresistance in bulk heterostructures with quantum wells.
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Figure 8. Oscillations of transverse magnetoresistance of the quantum well InxGaixSb at a temperature of 2 K [7].
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Figure 9. Oscillations of transverse magnetoresistance of the quantum well InxGaixSb at a temperature of 2 K, our results
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Figure 11. View of a three-dimensional graph of the oscillation of the transverse magnetoresistance
of the quantum well InxGa1-xSb

CONCLUSIONS.
Based on the study, the following conclusions can be drawn: A new analytical expression is derived for calculating
the temperature dependence of the oscillations of the transverse electrical conductivity and magnetoresistance of a
quantum well. A mechanism has been developed for the oscillation of the transverse electrical conductivity and
d(p*(E.B.T.d))

JB
at low temperatures and weak magnetic fields. Oscillations of the electrical conductivity and magnetoresistance of a
narrow-window quantum well with a nonparabolic dispersion law are studied. The proposed theory was used to study the
results of experiments on a narrow-gap quantum well (InyGa; xSb). The Landau levels of the InyGa;xSb quantum well in
weak magnetic fields, which were not observed in the experiment, oscillate. This has been proven through the
d(p*(E,B.T.d))

oB
magnetoresistance of the InyGa;«Sb quantum filament, measured at a temperature of 2 K, transform into a continuous
energy spectrum due to thermal washing under the influence of the temperature growth dynamics.

magnetoresistance of a quantum well from the first-order derivative of the magnetic field (differential)

theory of magnetoresistance. The experiment shows that the oscillations of the transverse
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BU3HAYEHHSA 3AJIEXXHOCTI OCITJIAII MONEPEYHOI EJTEKTPOITPOBIZTHOCTI TA MATHITOOIIOPY
BII TEMIIEPATYPHU B TETEPOCTPYKTYPAX HA OCHOBI KBAHTOBUX SIM
Yayroex 1. Epkatoes, Pycramaxon I'. Paximos

Hamaneancokuii inoicenepro-mexnonoeiunu incmumym, 160115 Hamanean, Y36exucman
VY naniii poOOTI ZOCTIPKEHO BIUIUB I'yCTHHY JIBOBUMIPHOTO CTaHy Ha OCLIMJISILIT HOIEPEYHOT eJICKTPOIIPOBIIHOCTI B FE€TEPOCTPYKTYpax
3 IPSIMOKYTHHUMH KBaHTOBUMH siMamMu. OTpUMaHO HOBHUIT aHANITHYHUN BUPa3 JUIS PO3PaXyHKY TEMIIEPAaTypHOT 3aJIe)KHOCTI OCIIMIISILIIH
MONEePEeYHOl EJIEKTPONPOBIAHOCTI Ta MAarHiTOONOPY KBaHTOBOI sMU. Brmepiue po3poOieHO MeXaHi3M OCHWIBILIT MornepeyHol
€JIEKTPOIPOBIAHOCTI Ta MAarHITOONOpPY KBAaHTOBOI sSIMM BiJ IOXiZHOI MEPLIOro MOPSIIKY MarHiTHoro mois (audepeHiiana)

a( 0" (E, B,T,d)) /BB IIPY HU3BKUX TEMIIepaTypax i CIa0KMX MarHiTHHX MOJsX. JIoCHi/keHO ocHwIALii eleKTPONpOBIAHOCTI Ta
MarHiToONnopy BY3bKOCMYTOBOi KBaHTOBOI SIMM 3 HerapaOOJiYHUM 3aKOHOM AMcIepcil. I3 3anponoHOBaHOIO TEOPI€0 JTOCIIHKEHO

pe3yJIbTaTH SKCIIEPUMEHTIB 3 By3bKOCMYTOR0 KBaHTOBOKO MO0 (InxGaixSb).
Ku1rouoBi ciioBa: nanienpogionux,; npogionicms,; K6AHmMosa Ama, MazHimoonip, Mmazuimmue noje



