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Using the evolutionary approach recently developed by us, the shapes of odd s-d-shell 2Al, 3'P and **Cl nuclei in the ground and single-
particle excited states have been extracted from the experimental data on the energies, spins, and parities of these states, as well as the
measured probabilities of electromagnetic transitions between them. The key ingredient of our procedure is the evolutionary algorithm
that evolves the population of the bad-quality data-fitting nuclear shapes to the high-quality data-fitting nuclear shapes. We have found
that the studied nuclei in the ground states are abnormally weakly deformed, which is not expected for the nuclei in the shell middle.
Even in their low-laying single-particle excited states, the nuclei 2’Al and 3'P are found to be weakly deformed, too. With the increase of
the single-particle excitation energy, the change of the state of the only one nucleon — the valence proton the spin and parity of which
determine the spin and parity of the 3*Cl nucleus — causes the shape phase transition from the high-symmetry phase — spherical ground
state — to the low-symmetry phase — deformed excited states. The angular part of the 2’Al and 3'P nuclei shape is described by two
harmonics — quadrupole and hexadecapole. The angular part of the 3*Cl nucleus shape is described by three harmonics — quadrupole,
hexadecapole, and hexacontatetrapole, but the contribution of hexadecapole deformation is not independent. At present, there are no
fundamental nuclear models that account for or predict the dominant hexacontatetrapole deformation, especially for light and medium
nuclei. We have found that the spin and parity of the 2’Al, *'P and 3Cl nuclei are determined by the spin and parity of the last odd
(valence) proton. At the same time, some of the nucleons of the nucleus core change their characteristics, too. Thus, the electromagnetic
transitions between the single-particle states of the 2’Al, 3'P and **Cl nuclei are the multi-particle processes.

Keywords: Nuclear deformation; Deformed shell model; Single-particle state; s-d-shell nuclei; Evolutionary algorithm; Shape
phase transition
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1. INTRODUCTION

Complex, multi-particle nature of nuclear forces makes nuclear physics a largely eclectic science: to understand
different observable properties of nuclei, it is often necessary to use different concepts from different areas of physics
(see, e.g., Refs. [1,2] or any textbook on nuclear physics). And any new idea is always welcome.

So, to understand the origin of nuclear deformation, the concept of phase transitions and the Landau theory of
phase transitions, proposed and well developed for condensed matter physics [3], turned out to be useful (see, e.g.,
review [4] and references therein). Indeed, the very fact of the appearance of a deformation of the nucleus shape caused
by a change in, say, the number of nucleons in the nucleus can be considered as a result of phase transition from a high-
symmetry (spherical) phase to a low-symmetry (deformed) phase of a nucleus. Thus, spontaneous breaking of rotational
symmetry of a spherical nucleus can be accepted as an origin of nuclear deformation. The Landau theory of phase
transitions is well suited for describing such shape phase transitions in a phenomenological language.

Currently known applications of the Landau theory to shape phase transitions suggest that the potential energy of the
nucleus (in the form of thermodynamic potentials, Helmholtz free energy, Gibbs free energy, etc.) has the form of a
polynomial from rotationally invariant combinations of quadrupole deformation parameters introduced by Bohr and
Mottelson [5]. Such a polynomial is either the by-product of microscopic or semi-microscopic calculations (as, e.g., in the
interacting boson and boson-fermion models), or is parameterized directly (as, e.g., in geometric collective models) [4].
The coefficients of the polynomial depend on the control parameter associated with the number of nucleons in the nucleus.
Equilibrium deformation parameters minimize potential energy. A change in the control parameter leads to a transition
from a spherical phase, for which the equilibrium deformation parameters are zero, to deformed phases, for which the
equilibrium deformation parameters differ from zero. Following this recipe, interesting data were described and phase
transitions of the first and second order were identified (see, e.g., reviews [6—8] and references therein).

Presently, the dynamics of nuclear shape caused by a change in the number of nucleons in the nucleus is mainly
studied (see, e.g., [4,9,10]). However, the same nucleus in different single-particle states can have different shapes too
and, in principle, the shape phase transition can be caused not only by changing the number of nucleons in the nucleus,
but also by changing the states of nucleons in the nucleus. Regardless of the method of calculation, the shape of the
nucleus in the single-particle state strongly influences its wave function. The wave functions of the initial and final
states of the nucleus largely determine the probability of electromagnetic transition between them. Therefore, the
experimentally observed probabilities of electromagnetic transitions are a valuable source of information about the
shape of the nucleus in various single-particle states.
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The generalized nucleus model (in the form of Nilsson model [5,11]) allows, in principle, to calculate the
equilibrium deformation of the nucleus in any single-particle state. In fact, Nilsson model with spin-orbit coupling
describes the sequence of shape phase transitions because it predicts spherically symmetric equilibrium shape of the
equipotential surface of a nucleus if all states with the shell number N and the total momentum / are occupied.
However, the probabilities of electromagnetic transitions can only be calculated between single-particle states with the
same deformation. In a number of works [12—18], the modification of Nilsson model was proposed, in which the
deformation of the nucleus was considered as a dynamic parameter. That is, the initial and final states are assumed to
have different deformations. Thus, during the transition, the states of all nucleons can change.

The modified Nilsson model enabled to calculate the probabilities of electromagnetic transitions between single-
particle states, taking into account their different deformations [12—18]. The assumption of the dynamic nature of the
deformation of single-particle states of odd s-d-shell nuclei significantly reduced the discrepancy between the measured
and calculated probabilities of some E2-transitions. However, it appeared impossible to adequately describe the entire
set of experimental data, including energies, spins and parities of the ground and single-particle excited states, as well as
the probabilities of both £- and M-transitions between them.

That is why it would be highly desirable to have a procedure that could extract the angular dependence
(deformation) of the potential of the self-consistent field of the nucleus in the ground and single-particle excited states
directly from the experimental data on the energies, spins, and parities of the states of nuclei, as well as the measured
probabilities of electromagnetic transitions between these states [19]. The goal that this procedure could be aimed at is
the study of the shape of odd s-d-shell nuclei, both in the ground and low-laying single-particle excited states and the
search for possible phase transitions from spherical to deformed states of the nucleus.

2. DEFORMED-SHELL-MODEL SINGLE-PARTICLE HAMILTONIAN
We restrict ourselves to the case of an axially symmetric nucleus with an additional symmetry plane perpendicular
to the symmetry axis. We chose a single-particle harmonic-oscillator potential with the spin-orbit interaction (see, e.g.,
Refs. [5,11]). Making a direct generalization, we write the single-particle Hamiltonian in the form:

H=ha(Hy+H,), Hy=(A+r2)2, H =—r20(6)/2-2x(1-s)[1- p(6)], 1)

where r is the reduced coordinate; 1/ m is the reduced radius of the equipotential surface of the nuclear
potential; & is the polar angle, 8¢ [0;7[/ 2]; ¢(9) is the function that describes the shape of the equipotential surface,
(p(ﬂ'— 9) = ¢(9), dg/d6 =0 atthe points =0 and §=7/2; rz(p(ﬁ) is the coupling of the particle with the symmetry
axis; (l's) is the spin-orbit interaction; (l-s)(o(e) is the coupling of the spin-orbit interaction with the symmetry axis;
ho=4147"3(1+€) MeV is the energy scale; 4= N +Z is the nucleus mass number; N and Z are the numbers of

neutrons and protons in the nucleus; £ takes into account the deviation of the energy scale from its simple estimate. We
do not expect the nucleus volume to conserve because we are aimed at extracting the nucleus shape (including its
radius) directly from the available data.

In our approach, by definition, the function go(H) contains all information on the nuclear shape. Initially, no
deformation parameters are needed to determine it. The function @(@) directly and explicitly enters in the total
Hamiltonian H (1) (generally, as a numerical array). Using as a basis the eigenfunctions of the spherical harmonic
oscillator Hamiltonian H,, from Eq. (1), the matrix of the total Hamiltonian A is numerically diagonalized (see Ref. [11]

for details). As a result, the eigenfunctions of the Hamiltonian H appear as a finite mixture of the eigenfunctions of the
Hamiltonian H, . The coefficients of the mixture are calculated numerically and, in this way, contain information on the

nuclear shape. The single-particle wave function of the nucleus in a certain state is the Slater determinant constructed from
the occupied single-particle states calculated using the Hamiltonian A (1). We emphasize that this wave function directly
and explicitly depends on the mixture coefficients but not on any deformation parameters.

3. PROBABILITIES OF ELECTROMAGNETIC TRANSITIONS BETWEEN SINGLE-PARTICLE STATES
WITH DIFFERENT DEFORMATIONS
To determine the matrix element of the single-particle multipole operator

M=3. @
s=1

we consider two sets of occupied single-particle states

{u/}ij: 17'~~9N,N+1,...,N+Z

, 3
whi=1L.,NN+L.,N+Z 3)
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calculated using the Hamiltonian (1) with two different functions (p(@), which form two Slater determinants ¥{u;} and

W’{v;} . The matrix element of M, taken between ¥ {u ;) and W'{v;}, is equal to (see, e.g., [20])

A

“

N

where the elements of determinants |M°| are as follows

(&)

The reduced electric and magnetic multipole transition probabilities between the initial and final states with /K
and I’K’, where I and K are the total momentum and its projection take the form (A <K +K") [12-14]:

2
. ) YA 2A4+1
B(ELIK - IK)=e {H(—l) F}(ma)j o == > (6)
s=N+1
eh V' n Y 24+1 ’
B(MA;IK _”K):[zmcj (%j - I |Z|Z‘N‘ %)
s=N+1
o Gl i=s
N, ) Pal NS =4 MR TG 8
ii (V u; ) NN, ;amam ij { Ny, i#s. L] 3
i oS Lo i=5. . .
2, = (vl,ul) 5NI_N/_%:a1AaM,ZE(MW= Zij,iis.’l’J:N-’-Lm’N-’-Z ©)

where a], and alf/'\ are the coefficients of decomposition of the functions v; and u; in the basis of the spherical

J

harmonic oscillator [11]; N; and N are the principal quantum numbers of states / and j; / and A are the angular

momentum and its projection; Gg( wy correspond to the quantities Gp,,, calculated in Ref. [11].

Note that the matrix element of the single-particle multipole operator is taken between two determinant wave
functions. That is why the transition probabilities depend on the mixture coefficients a;A [Egs. (8) and (9)] but not on

any deformation parameters. Because the mixture coefficients are calculated numerically, it is not possible to derive
analytical dependence of the transition probabilities on the deformation in the form of deformation parameters.

The case 4> K + K’ was studied in Ref. [15]. The influence of different deformations of the initial and final states
of odd s-d-shell nuclei on the probabilities of E2-transitions was analyzed in Ref. [16]. The role of Coriolis interaction
in calculations of the probabilities of electromagnetic transitions between states with different deformations was
accounted for in Ref. [17]. The experimentally measured probabilities of M1-transitions between analogue and anti-
analogue states with different deformations in odd s-d-shell nuclei were examined in Ref. [18].

Note that the authors of Refs. [12—18] restricted themselves to the case of quadrupole deformations. Using two
different deformation parameters they plotted the area where the discrepancy between the measured and calculated
probabilities of some E2-transitions for odd s-d-shell nuclei significantly reduced. But this was done numerically.

4. EVOLVING NUCLEAR SHAPES VIA EVOLUTIONARY ALGORITHM
We chose the function that describes the shape of the equipotential surface of the nuclear potential in the i-th
single-particle state of the nucleus in the following form:

oo

Z cos(2k6) (10)
k=0
The values of the weight parameters {qDZk} (i=0 marks the ground state and i=I, ..., n mark the single-particle

excited states) are determined independently for each level of the nucleus. Additional requirements imposed on the
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weight parameters {qog)} are their minimum number for each level and their minimum value that ensures a good
description of experimental data. Note that both ¢ and {(pg )} affect the radius of spherical equipotential surface of the
potential in the Hamiltonian (1). Thus, to avoid overestimation, we set {ng)}: 0.

To determine the number and values of the weight parameters {(pg)}, an approach based on the use of an

evolutionary algorithm [21,22] to fit the calculated observables to the measured ones was developed.
Our evolutionary approach operates on a population of N individuals. Each individual is a set of parameters

(8, K, {(pg’
individual’s parameters. Using the mutation operation, the algorithm evolves the initial population of poorly fitted
individuals to the final population of the well fitted ones.

Every iteration, the so-called generation, of our procedure contains the following steps.

) }), i=0, ..., n, k=0, ..., m. Fitness of each individual reflects the quality of data fitting provided by the

1. Generating the initial population of N individuals. For each individual, the values of all parameters (E, K, {(p£’2 })

are set to zero.

2. Evaluating fitness of each individual in the population. The fitness function accounts for the quality of data
fitting, which is estimated using the standard y° magnitude per datum.

3. Letting each individual in the population produce M>>1 offspring. Replication of each parameter x; from the

set (8, K, {<p§",3 }) is performed according to the transformation:

xXj'=x;+4,C;, (1
A4,'= 4; explLN;(0,1)), (12)

where x; and x;' are the parent’s and the offspring’s parameters from the set (8, K, {¢§’2 }), 4;>0 and 4,'>0 are the

J
A C; is a Cauchy random variable with the scale

parent’s and the offspring’s mutation amplitudes, 4; € [A max], )

min >
parameter set to unity, N /-(0,1) denotes a normally distributed one-dimensional random number with mean zero and one

standard deviation, and L >0 is the learning parameter that controls the adaptation speed.

4. Evaluating fitness values of all offspring. Sort offspring in descending order according to their fitness. Select N
best offspring to form the new population.

5. Going to step 3 or stop if the best fitness in the population is sufficiently high (the y° value is small enough).

The evolutionary process should produce the best possible solution with respect to the fitness function. To achieve
this goal and avoid premature convergence in a local optimum, the lower limit of the mutation amplitude Amin behaves
as a smooth oscillatory function of generation, while the upper limit Amax remains constant [remember that the real value
of 4 is adapted according to Eq.(12)]. If the value of Amin increases and the rms deviation from the mean value of the
fitness function in the population exceeds some upper level (the diversity in the population is too high) then Amin starts
to slowly decrease. And vice versa, if the value of Amin decreases and the rms deviation of the fitness function becomes
less than some lower level (the diversity is too low) then Ami, starts to slowly increase. However, before that, the best
fitted individual is saved out of the converged population to preserve the globally best individual. Then, all individuals
in the population jump to the new point in the parameter space according to the transformation:

xj*zxj+a|xj|Cj, (13)

where x; and x;* are the individual’s parameters from the set (8, K, {<p§i,2 }) before and after the jump, C.

J ; is a Cauchy

random variable with the scale parameter set to unity, and ae [0;1] is the jump amplitude. Being transposed to the new

point in the parameter space, the population starts to explore the vicinity of this point by increasing and decreasing Amin
as described above. After finishing another cycle of evolution, the globally best individual is refreshed. Then the
population is filled with the current globally best individual, next jump is performed, and new cycle of evolution begins.

Evolutionary algorithms make up, generally, the global optimization technique that, however, cannot guarantee
that the optimum found is the global one (see, e.g., Refs. [23-25] or any textbook on evolutionary computations).
Therefore, it is necessary to run the procedure several times. Besides, there is no way to know in advance what the
minimum value of the y? magnitude will be. Thus, it is instructive to monitor the dynamics of the best, worst, and mean
fitness values and the rms deviation from the mean fitness in the population during those several runs of the procedure
in order to localize the region of the lowest  values.

Analysis of experimental data begins with the assumption of the quadrupole deformation of the shapes of nucleus in the
ground and single-particle excited states [the terms with £=0, 1 are left in Eq.(10)]. If the desired quality of data fitting is not
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achieved within this assumption, then the hexadecapole deformation comes into play [the term with k=2 is added in Eq.(10)],
and so forth. After the number of terms in Eq.(10) is determined, the contribution of the first term found (the term with A=0
that violates the volume conservation) is smoothly consistently reduced, preserving the desired quality of data fitting with that.
If this procedure produces rather different solutions that are similar in fitness, the contribution of the term next to the previous
one (say, k&=1) is gradually reduced, and so forth. Following the described prescription, it appears possible to substantially
reduce the parameter space of the problem under study and localize the region of the similar solutions.

The reason for the choice of deformation parameterization (10) is, to some extent, technological. The Hamiltonian

(1) linearly depends on the function (/)(9). The radius of equipotential surface of the potential is 1/ 1—(p(9) . Thus,

direct parameterization of the radius brings additional computational difficulties.

The decomposition (10) is analytically equivalent to the widely used decomposition of the radius of an axially
symmetric nucleus into a series of spherical harmonics (see, e.g., Ref.[5]). Note that, e.g., the Legendre polynomial
P,(cos®) contains not only the term cos(48) , but also the term cos(26) that is the kernel of the polynomial P,(cosé).
Thus, the decomposition of the function ¢(@) into the series of even Legendre polynomials gives, in fact, the term
cos(260) with two different free weight parameters. This makes additional difficulty for the search algorithm to determine

these parameters. In other words, the decomposition (10) substantially simplifies the search for the solution of our problem.
Besides, the decomposition (10) gives extremely concise description of the topological features of the nuclear shape.

After the parameters ¢§’,2 are determined, the values of conventional deformation parameters (xg,g can be
estimated using the following approximate correlation:

1 i 1 c i c i
?z1+5(p( )(9):1+EZ(p§k)cos(2k0)=1+Za§k)P2k(cos¢9) . (14)
1 ¢ (9) k=0 k=0

5.2 AINUCLEUS SHAPES IN LOW-LAYING SINGLE-PARTICLE STATES
Good quality of fit was achieved when the terms with £=0, 1, 2 were left in Eq.(10). The schemes of occupation of
single-particle states by protons (proton configurations) in the ground (g.s.) and first three single-particle excited states
(1-3 e.s.) of the 2’ Al nucleus were chosen as follows:

gs. 2 2222 210000
les. 2 22 2 2 2 01000
2es. 2 2 22 2 2 00010
3es. 2 2 22 2 2 00100

The schemes of occupation of single-particle states by neutrons (neutron configurations) were chosen to be independent
of the nucleus state:

22222220000

Figure 1 and Tables 14 present the best fitted result. Experimental data were taken from Refs. [26,27].

0,04}

1,00 | 0,00 |

Reduced radius
Reduced radius, angular part

0%f & 0,04}

6 3.0 6‘0 9‘0 ll) 3‘0 6.0 9.0
0(deg) 0(deg)

Figure 1. Shapes for four single-particle states of 2’Al nucleus, calculated by our procedure. (a) Reduced radii 1/ V1= (/)(9) of the

equipotential surface of the nuclear potential for four single-particle states of 2’Al nucleus. (b) The same as Fig. 1(a) but only for

angular part of 1/111— (pi&i . Curve marked as g.s. corresponds to the ground state. Curves marked as 1-3 e.s. present three

low-laying excited states.
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Table 1. Experimentally measured Eexper(2J7) and calculated Etneor(2J7) energies (MeV), spins 2J, and parities z of the ground and

first three low-laying single-particle excited states of 2’Al nuclei.

E. exper(2J 7[) E 1heor(2J ”)
0.0000 (5% 0.0000 (5%
0.8438 (1% 0.8438 (1)
2.9820 (3%) 2.9820 (3)
3.6804 (1) 3.6804 (1)

We are aware that the dynamics of nuclear deformation with the increase of excitation energy is better analyzed
looking at the plot of the nuclear radius as function of the angle. Therefore, instead of the function (/J(H), we show the

reduced radius of equipotential surface of the potential 1/ 1/1—(/)iﬁi [Fig. 1(a)] and its angular part

1/ x/1—(/)(49)—1/ \/1—(p0 [Fig. 1(b)] as functions of the angle. Besides, Table 4 contains the values of conventional
deformation parameters estimated with help of Eq. (14).

Table 2. Experimentally measured [yi(E2)exper and calculated Ti(E2)meor partial gamma widths (eV) for 2’Al nuclei. Ei(2J7) and
Eq(2J7) denote energies (MeV), spins 2J, and parities 7 of initial and final states.

Ei(2J7) — Ef2J7) Toi(E2)exper T (E2)heor
0.8438 (1) — 0.0000 (5) (1.30£0.20)x10°° 1.30x10°5
2.9820 (3) — 0.0000 (59 <4.55x10°° 2.60x10°5
3.6804 (1) — 0.0000 (57 (1.00£0.30)x10"2 1.00x10°2

Table 3. Experimentally measured [yi(M1)exper and calculated Tyi(M1)meor partial gamma widths (eV) for 2’Al nuclei. Ei(2J%) and
Eq(2J7) denote energies (MeV), spins 2./, and parities z of initial and final states.

E1(2J7r) I E1(2J") Fy,(Ml )exper Fy,(Ml )lheor
2.9820 (3*) — 0.0000 (5) (1.14 +0.03)x10"" 1.14x107!
2.9820 (37) — 0.8438 (1) (1.20 £0.40)x1073 1.20x1073
3.6804 (17) — 0.8438 (1) (5.20 £0.20)x102 5.20x10°2

Table 4. Deformation parameters ¢, , k=0, 1, 2, of the shape of ?’Al nucleus in its ground (g.s.) and first three low-laying single-
particle excited states (1-3 e.s.), estimated according to Eq. (14).

g.s. les. 2e.s. 3e.s.
oo 7.6x1073 6.8x1073 -2.2x1073 -5.9x1073
o2 7.4x1073 3.6x1073 1.4x1072 2.2x1072
o4 -6.7x1072 -1.3x1072 -1.0x1072 2.3x1073

Figure 1 and Table 4 show that the angular part of the ?’Al nucleus shape is described by two harmonics —
quadrupole [cos(26) or P,(cosf)] and hexadecapole [cos(46) or P,(cosd)]. In its ground and first three low-laying

single-particle excited states the 2’Al nucleus is abnormally weakly deformed. The hexadecapole deformation dominates
in the ground state of the 2’Al nucleus. Then, with the increase of the excitation energy, its contribution decreases and
almost vanishes for the third excited state. The contribution of the quadrupole deformation is small for the ground and
first excited states, but it increases with the increase of the excitation energy and becomes dominant for the third excited
state of the Al nucleus.

6.3'P NUCLEUS SHAPES IN LOW-LAYING SINGLE-PARTICLE STATES
Good quality of fit was achieved when the terms with k=0, 1, 2 were left in Eq.(10). The schemes of occupation of
single-particle states by protons (proton configurations) in the ground (g.s.) and first three single-particle excited states
(1-3 e.s.) of the *'P nucleus were chosen as follows:

gs. 2222222 1000O0°O00O0
les. 2 22 2 2220100000
2es. 2 2 222212000000
3es. 2 2 2 22 2 2 0000001

The schemes of occupation of single-particle states by neutrons (neutron configurations) were chosen to be independent
of the nucleus state:

22222222000

Figure 2 and Tables 5-9 present the best result. Experimental data were taken from Refs. [26,28].
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As in Fig. 1, we show the reduced radius of equipotential surface of the potential [Fig. 2(a)] and its angular part
[Fig. 2(b)] as function of the angle, while Table 9 contains the values of conventional deformation parameters estimated

with help of Eq. (14).

Table 5. Experimentally measured Eexper(2J7) and calculated Eteor(2J7) energies (MeV), spins 2.J, and parities z of the ground and
first three low-laying single-particle excited states of 3!P nuclei.

Eexper(zl]”) Etheor(zJ")
0.0000 (1) 0.0000 (1)
3.1343 (1) 3.1343 (1M
3.2950 (5%) 3.2950 (5%
4.4312(7) 4.4312 (7))

Table 6. Experimentally measured I'yi(E2)exper and calculated Iyi(E2)iheor partial gamma widths (eV) for 3'P nuclei. £i(2J7) and Ex(2J7)
denote energies (MeV), spins 2J, and parities z of initial and final states.

E2J7) — EA2J)

Fyi(Ez)exper

Fyi(Ez)lheor

3.2950 (5") — 0.0000 (1*)

(4.35+0.5)x1073

4.35x107°

Table 7. Experimentally measured [yi(M1)exper and calculated Tyi(M1)meor partial gamma widths (eV) for 3'P nuclei. Ei(2J7) and

Ex(2J7) denote energies (MeV), spins 2J, and parities 7 of initial and final states.

E1(2J”) —> E1(2J”) Fyz(Ml )exper F’YI(MI )theor
3.1343 (1) — 0.0000 (1°) (6.2+0.5)x102 6.2x102
(a)
104} &S 4
% 0,04}
2 5
2 =
§ 0,96 | 1 %D
=] a
g E 0,00 -
—§ les. R e g
ez | === - D 3
"I Ses ot —— 1 2 ol
2es. Pl ~
0,80 L— L L L 1 . L N
0 30 60 90 0 30 60 90
0(deg) 0(deg)

Figure 2. Shapes for four single-particle states of *'P nucleus, calculated by our procedure. (a) Reduced radii 1/ V1= ¢(0) of the
equipotential surface of the nuclear potential for four single-particle states of *'P nucleus. (b) The same as Fig. 2(a) but only for
angular part of 1/ V1= (p(49) . Curve marked as g.s. corresponds to the ground state. Curves marked as 1-3 e.s. present three low-

laying excited states.

Table 8. Experimentally measured Iyi( E3 )exper and calculated T'yi(E3 )eor partial gamma widths (eV) for 3!P nuclei. £i(2J7) and E{2J7)
denote energies (MeV), spins 2J, and parities z of initial and final states.

Ei(2J7) — E/2J7) Tyi(E3)exper Iyi(E3)theor
4.4312 (77) — 0.0000 (1) (9.80+2.1)x107°¢ 9.80x10°6
44312 (7)) — 3.1343 (1" <1.10x10°° 1.10x10°¢

Table 9. Deformation parameters ¢,, , k=0, 1, 2, of the shape of 3'P nucleus in its ground (g.s.) and first three low-laying single-

particle excited states (1-3 e.s.), estimated according to Eq. (14).

g.s. le.s. 2e.s. 3e.s.
0o -1.3x1072 -1.1x107! -1.2x107! -1.4x107!
a2 3.1x1072 1.0x1072 -2.9x1072 -2.6x1073
o4 3.6x1072 -1.6x1072 -8.2x1072 -3.1x1072

Figure 2 and Table 9 show that, as in case of >’Al nucleus, the angular part of the 3'P nucleus shape is described by

two harmonics — quadrupole and hexadecapole. In its ground and first three low-laying single-particle excited states the
3P nucleus is abnormally weakly deformed. The ground and first excited states of the 3'P nucleus are characterized by
the mixture of the quadrupole and hexadecapole deformations. Then, with the increase of the excitation energy, the
hexadecapole deformation becomes dominant in the second and third excited states.

7.3CI NUCLEUS SHAPES IN LOW-LAYING SINGLE-PARTICLE STATES
Good quality of fit was achieved when the terms with k=0, 1, 3 were left in Eq.(10). The term cos(46) (k=2)
did not influence the quality of fit. The schemes of occupation of single-particle states by protons (proton
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configurations) in the ground (g.s.) and first three single-particle excited states (1-3 e.s.) of the 3°Cl nucleus were
chosen as follows:

gs. 222 22222100000
les. 2 2 2 22222010000
2es. 22 2 2 22 2 2 000 0 01
3es. 22 2 22212200000

The schemes of occupation of single-particle states by neutrons (neutron configurations) were chosen to be
independent of the nucleus state:

22222222200

Figure 3 and Tables 10-15 present the best result. Experimental data were taken from Refs. [26,29].

As in Figs. 1 and 2, we show the reduced radius of equipotential surface of the potential [Fig. 3(a)] and its angular
part [Fig. 3(b)] as function of the angle, while Table 15 contains the values of conventional deformation parameters
estimated with help of Eq. (14). We emphasized that in order to replicate well the experimental data on 3°Cl nucleus it
was not necessary to account for the contribution of the basis function cos(46) in the decomposition (10). Thus, the

values of the parameters qogi)

were set to zero and, consequently, the values of the deformation parameters agi)

appeared to be linearly dependent on the values of the parameters ag ) (Table 15).

Reduced radius

’
’.'/'
d

//'
N3es.

08

0,70

0,35

0,00

Reduced radius, angular part

0(deg)

0(deg)

Figure 3. Shapes for four single-particle states of 3Cl nucleus, calculated by our procedure. (a) Reduced radii 1/ V1= (p(&) of the
equipotential surface of the nuclear potential for four single-particle states of *>Cl nucleus. (b) The same as Fig. 3(a) but only for
angular part of 1/ V1= (p(&) . Curve marked as g.s. corresponds to the ground state. Curves marked as 1-3 e.s. present three low-

laying excited states.

Table 10. Experimentally measured Eexper(2J7) and calculated Etneor(2J™) energies (MeV), spins 2J, and parities 7 of the ground and

first three low-laying single-particle excited

states of Cl nuclei.

Ecxpcr(an) Ethcor(zﬂ )
0.0000 (3%) 0.0000 (39
1.2193 (1) 1.2193 (1%
3.1628 (7)) 3.1628 (1)
3.9185 (31 3.9185 (31

Table 11. Experimentally measured I'yi(E2)exper and calculated Tyi(E2)ieor partial gamma widths (eV) for 33CI nuclei. Ei(2J7) and
Eq(2J7) denote energies (MeV), spins 2/, and parities 7 of initial and final states.

Ei(2J9) — E{2J7) Ti(E2)exper Tyi(E2)heor
1.2193 (1*) — 0.0000 (3°) (4.0£0.44)x10°5 4.0x10°°
3.9185 (3") — 0.0000 (3°) (3.1+0.89)x10°3 3.1x10°3

Table 12. Experimentally measured I',i(M1

)exper and calculated Tyi(M1)meor partial gam

Eq(2J7) denote energies (MeV), spins 2/, and parities 7 of initial and final states.

ma widths (eV) for 3°Cl nuclei. Ei(2J7) and

El(ZJ”) = Ef(Z]”) F«,;(Ml )exper Fyz(Ml )lheol‘
1.2193 (1) — 0.0000 (39 (3.6 £0.4)x1073 3.6x1073
3.9185 (3) — 0.0000 (3%) (7.1 £2.0)x10°2 7.1x1072
3.9185 (3") — 1.2193 (1Y) <5.0x107* 5.0x10°*
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Table 13. Experimentally measured I'yi(M2)exper and calculated T'yi(M2)meor partial gamma widths (eV) for *3Cl nuclei. Ei(2J7) and
Eq(2J7) denote energies (MeV), spins 2/, and parities 7 of initial and final states.

Ei(2J7) — E«2J7)
3.1628 (77) — 0.0000 (3%)

ryi(MZ)exper ryi(MZ)theor
(1.3 +0.03)x1073 1.3x1073

Table 14. Experimentally measured [yi(E3)exper and calculated Tyi(E3)ieor partial gamma widths (eV) for 33CI nuclei. Ei(2J7) and
Ex(2J7) denote energies (MeV), spins 2J, and parities 7 of initial and final states.

Ei(2J7) — Ex(2J7) Ty E3)exper Tyi(E3)theor
3.1628 (77) — 0.0000 (3%) (3.3+0.075)x1077 3.3x1077
3.1628 (77) — 1.2193 (1%) <3.0x107% 3.0x10°8

Table 15. Deformation parameters ¢, , k=0, 1, 2, 3, of the shape of **Cl nucleus in its ground (g.s.) and first three low-laying single-particle
excited states (1-3 e.s.), estimated according to Eq. (14). The values of the parameter a4 linearly depend on the values of the parameter .

g.s. les. 2 e.s. 3e.s.
00 1.6x1072 3.5x1073 -4.4x1073 -1.4x1072
o2 -6.1x1072 -9.0x1072 8.1x1072 -1.0x107!
o4 2.1x1072 2.2x107! 3.3x107! 1.0x107!
06 -4.8x1072 -5.0x107! -7.3x107! -2.2x107!

Figure 3 and Table 15 show that the angular part of the **Cl nucleus shape is described by three harmonics —
quadrupole [ P,(cos®) ], hexadecapole [ P,(cos#) ], and hexacontatetrapole [ P;(cos®) ]. Note again that, in case of *Cl

nucleus, the contribution of hexadecapole deformation is not independent. In its ground state the 33Cl nucleus is
abnormally weakly deformed. With the increase of excitation energy, the contribution of hexacontatetrapole deformation
sharply (by an order of magnitude) increases and becomes dominant for the first and third excited states, and especially for
the second excited state. This observation indicates that the change of the state of the only one nucleon — the valence
proton the spin and parity of which determine the spin and parity of the **Cl nucleus — causes the shape phase transition
from the high-symmetry phase — spherical ground state — to the low-symmetry phase — deformed excited states.

8. DISCUSSION

The evolutionary procedure of determining the shape of a nucleus in single-particle states presented in this article is
aimed at searching for the globally optimal solution. However, being aware of the complexity of the problem under study
and the fact that the actual number of fitting parameters is substantially greater than the actual number of data points, we
do not expect to achieve it. Therefore, we consider the obtained results (Figs.1-3, and Tables 1-15) as very promising.

The shapes of the nuclei studied in the ground and low-laying single-particle excited states obtained in different
runs of the procedure go rather close to each other. Besides, the variations of the parameter that takes into account the
deviation of the energy scale from its simple estimate ¢ and of the spin-orbit interaction strength x from run to run of the
optimization procedure are found to be insignificant. This result is a consequence of application of the requirements

imposed on the weight parameters {¢J§’,2} from the decomposition (10). Namely, the number of these parameters must be

the smallest possible for each level and the values of these parameters must be the smallest possible, ensuring a good
description of experimental data along with that. From the formally mathematical viewpoint, these requirements are

equivalent to the numerous constraints imposed on the variables {(pg)}, which leads to the substantial reduction of the

parameter space of the problem (the “effective” number of free parameters is much smaller than the “actual” one). One
should also bear in mind that the measured probabilities of electromagnetic transitions between single-particle states of
nuclei are the highly correlated data that are difficult to analyze. Thus, in this case, the belief that “anything can be
fitted with a sufficient number of parameters”, is a substantial oversimplification (see, e.g., Ref. [2]).

From the computational viewpoint, in general, the parameter space of our problem is highly dimensional, highly
nonlinear, and has unknown and unpredictable topography. This makes the choice of an appropriate search method
crucial. Evolutionary (or genetic) algorithms have many times proved very efficient in dealing with very difficult
physical problems (see, e.g., Refs. [30-35]), so we have chosen it as a key element of our procedure. Usually, in
evolutionary computations, the mutation amplitude is either constant, or decreases across the run of the evolutionary
procedure. Often this leads the search algorithm in a local optimum in the parameter space. To avoid premature
convergence in a local optimum, we have devised the special schedule of tuning the mutation amplitude, in which the
latter behaves as a smooth oscillatory function of generation. This mechanism resembles, in part, the so-called “sim-
ulated annealing” approach to solve the optimization problems of combinatorial complexity. Due to the consecutive
cycles of increasing and decreasing of the mutation amplitude, the population hops from the less fitted optimum to the
more fitted one situated in the close vicinity. To have an opportunity to explore the parameter space much further, we
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have allowed the population as a whole to periodically jump to the new point in the parameter space. As a consequence,
we have managed to localize the region of the nuclear shapes that give the lowest values to the y> magnitude: Tables 1—
15 show very good agreement between the calculated and measured observables.

In principle, our algorithm could treat go(é?) as a numerical array and evolve it as a whole quantity with help of the

diffused mutation operator devised in Refs. [21,22]. We emphasize that the devised approach of extracting nuclear
shapes from the data does not depend on the particular nuclear data and the particular analytical tools (nuclear models)
to analyze it. For instance, our approach, with minor changes, could be used to extract the matter-density distributions
in nuclei [36], the radial dependence of the nuclear potentials [37], etc. from the suitable data. Our preliminary
investigations show that our method enables to extract the radial dependence of the nuclear potentials from the set of
energy levels. Thus, our method could be applied to the wide set of nuclear problems in wide mass region.

From the physics viewpoint, our analysis of experimental data on the energies, spins, and parities of the low-laying
single-particle states and the probabilities of electromagnetic transitions between them in 2’Al, 3'P and 33CI nuclei shows
the following.

We have found that the studied nuclei in the ground states are abnormally weakly deformed, which is not expected
for the nuclei in the shell middle. Even in their low-laying single-particle excited states, the nuclei 2’Al and 3'P are found to
be weakly deformed, too. The change of the state of the only one nucleon — the valence proton the spin and parity of which
determine the spin and parity of the **Cl nucleus — causes the shape phase transition from the high-symmetry phase —
spherical ground state — to the low-symmetry phase — deformed excited states. Hence, in case of 7Al, 3'P and *Cl nuclei,
we are dealing with manifestation of the forces that are not related to the formation of nuclear shells.

The angular part of the Al and 3'P nuclei shape is described by two harmonics — quadrupole and hexadecapole.
The angular part of the **Cl nucleus shape is described by three harmonics — quadrupole, hexadecapole, and
hexacontatetrapole, but the contribution of hexadecapole deformation is not independent. It is usually assumed that
quadrupole deformations are of the most importance, while hexadecapole deformations are good but rather small
corrections to quadrupole deformations and may be important for describing the ground states of heavy nuclei (see, e.g.,
Refs. [1,2] or any textbook on nuclear physics). As for the higher multipolarity deformations, they are not considered to
have much physical significance. At present, there are no fundamental nuclear models that account for or predict the
dominant hexacontatetrapole deformation, especially for light and medium nuclei.

Analyzing quantum characteristics of the single nucleons that form the 2’Al, 3'P and *CI nuclei, we find that the
spin and parity of these nuclei are determined by the spin and parity of the last odd (valence) proton. At the same time,
some of the nucleons of the nucleus core change their characteristics, too. This means that the electromagnetic
transitions between the single-particle states of the 2’Al, 3'P and 3°Cl nuclei are the multi-particle processes.

Applications of the Landau theory of phase transitions, briefly mentioned in the Introduction, are based on the
decomposition of the radius of a nucleus, which depends on spherical angles, into a series of spherical functions [5].
Thus, the potential energy of the nucleus contains collective forces that act on the deformation parameters, but not on
the angular variables. Strictly speaking, to predict the equilibrium shape of the nucleus, the theory must contain angular
derivatives of various orders.

Spatial derivatives naturally arise in the Landau-type theory of phase transitions with a spatially inhomogeneous
order parameter (see, e.g., Ref. [38] or any textbook on phase transitions). This theory turned out to be very effective in
describing phase transitions in ferroelectrics and magnetics with incommensurate phases (see, e.g., Refs. [39-42] and
also Ref. [33]). These phases are states in which the period of spatial modulation of the order parameter is not
commensurate with (or does not depend on) the period of the crystal lattice. In this case, the Landau-type potential is a
functional of the order parameter and its derivatives. The competition and compromise of different powers of the order
parameter and its derivatives lead to the appearance of various stable spatially inhomogeneous states of the system.

Assuming that the characteristic size at which the angular function describing the deviation of the nucleus shape from
sphericity changes significantly is not commensurate with both the size of the nucleon and the distance between the nucleons,
the deformed nucleus can be considered as an incommensurate phase. Therefore, the Landau-type theory of phase transitions
with a spatially inhomogeneous order parameter could be a useful tool to study the shape of a deformed nucleus.
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JE®@OPMAIIS HEITAPHUX SJEP *7Al, 3'P TA 3C1 BOJHOYACTUHKOBUX CTAHAX
Bostopumup 0. Kopaa?, Jlapuca I1. Kopaa®, B’sauecinap @. Kaenikos?, Ipuna C. Timuenxo?

Iucmumym enekmpogizuxu i padiayitinux mexnonoeii, Hayionanvna akademis nayx, Xapkis, Yxpaina
bHayionanenuii nayxosuii yenmp “Xapxiscoxuii pizuxo-mexniunuti incmumym”, Hayionanona axademin nayx, Xapxie, Ypaina
®opmu Hemapuux spep s-d-oGosonku Al P ta ¥Cl B OCHOBHMX 1 OJHOYACTMHKOBMX 30y/UKEHHX CTaHax BHIy4eHi 3
eKCIIEPUMEHTAIBHHIX JAQHUX PO €HEeprii, CIiHM Ta MapHOCTI KX CTaHIB, a TAKOXK BUMIpPSIHI IMOBIPHOCTI €JIEKTPOMArHiTHUX TIEPEXOAIB MiXK
HIMH 32 JIOTIOMOTOI0 HEJJABHO PO3POOIICHOr0 HAMH EBOJIOMIHHOTO Mimxomy. Kiro4oBuM eneMeHTOM HaIloi MPOLeaypH € €BONIOiHHMIMA
AITOPUTM, KUK TPUBOAUTS TIOIYILAIIIO SACPHIX (HOPM, IO MOTAHO OIMICYIOTH EKCIIEPUMEHTANIBHI JIaHi, 0 OISl SaepHuX (GopM, 10
Jo0pe OIMICYIOTh eKCIIepUMEHTaNIBHI faHi. JlocmipkeHi siapa B iXHIX OCHOBHHX CTaHAX BUSIBIUINCH aHOMAJIBHO CITa0KO AeOpMOBAHIMH, IO
HE NPUTAMAHHO sJpaM B cepeauti 060s0HK). HaBiTh B iXHiX HU3BKO JIEKAUNX OJHOYACTHHKOBHX cTaHax sypa 2’Al Ta 3'P BusBuinch Tex
cnabko ehopMoBaHUMHU. I3 3pOCTAHHAM OTHOUACTHHKOBOI €Hepril 30y DKEHHS 3MiHa CTaHy €JUHOTO HyKJIOHA — BAJICHTHOTO POTOHA, CIiH
Ta NAPHICTh AKOTO BU3HAYAIOTH CIIH Ta MapHicTh sapa >Cl — BukiMkae (asoBuil Iepexifl i3 BUCOKO CUMETPHYHOT (ha3u — CHEpUIHOro
OCHOBHOTO CTaHy — Y HH3bKO cumerpuuny (asy — nedopmosani 30y mkeni cranu. Kyrosa yactuna popmu siep 2’Al ta 3'P onmcyerses
JIBOMa TapMOHIKaMH — KBAJPYIOJLHOI 1 rekcajexanonbioro. Kyrosa yactuna Gopmu sapa 33Cl onucyeThess TphOMa TapMOHIKAMU —
KBAZIPYTIOJIBHOIO, TEeKCaICKANOJIBHOIO i FeKCAKOHTATETPAIOIBHOIO, IIPOTe BHECOK IeKCajeKaroiabHOI aedopmaliii He € HesalexHuM. B
TeTepilHiIi Jac HeMae (QyHAaMEHTAJIbHOI SIepHOi Mojeni sika O BpaxoByBaja a0o mepemdadalia JOMiHYIOUY Te€KCaKOHTATETPAIONBHY
neopMalriio, 0COOIMBO I JIETKHX 1 CepeHixX sep. Mu 3Haiiumm, o cIrin Ta napHicts suep 2’Al, 3'P ta ¥*Cl BusHauaroThes CIriHOM Ta
TIAPHICTIO OCTAaHHBOTO HEMapHOro IPOTOHA. B Toif e 9ac JesKki HyKIOHM OCTOBY spa TeX 3MIHIOIOTH CBOI XapaKTEpHCTHKH. Tomy

€JIEKTPOMATHITHI IIEPEXO/IM MiK OJIHOYACTHHKOBUMU cTanamu siep 2’Al, 3P ta ¥Cl € 6ararouacTMHKOBMMM IIPOLIECAMH.
KuarouoBi cioBa: sdepna oepopmayis;, modenv Oeghopmosanux 000IOHOK; OOHOUACMUHKOBUL Cman, s0pa S-d-06010HKU,
esonoyiliHULL aneopumm, (azosutl nepexio



