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Using the evolutionary approach recently developed by us, the shapes of odd s-d-shell 27Al, 31P and 35Cl nuclei in the ground and single-
particle excited states have been extracted from the experimental data on the energies, spins, and parities of these states, as well as the 
measured probabilities of electromagnetic transitions between them. The key ingredient of our procedure is the evolutionary algorithm 
that evolves the population of the bad-quality data-fitting nuclear shapes to the high-quality data-fitting nuclear shapes. We have found 
that the studied nuclei in the ground states are abnormally weakly deformed, which is not expected for the nuclei in the shell middle. 
Even in their low-laying single-particle excited states, the nuclei 27Al and 31P are found to be weakly deformed, too. With the increase of 
the single-particle excitation energy, the change of the state of the only one nucleon – the valence proton the spin and parity of which 
determine the spin and parity of the 35Cl nucleus – causes the shape phase transition from the high-symmetry phase – spherical ground 
state – to the low-symmetry phase – deformed excited states. The angular part of the 27Al and 31P nuclei shape is described by two 
harmonics – quadrupole and hexadecapole. The angular part of the 35Cl nucleus shape is described by three harmonics – quadrupole, 
hexadecapole, and hexacontatetrapole, but the contribution of hexadecapole deformation is not independent. At present, there are no 
fundamental nuclear models that account for or predict the dominant hexacontatetrapole deformation, especially for light and medium 
nuclei. We have found that the spin and parity of the 27Al, 31P and 35Cl nuclei are determined by the spin and parity of the last odd 
(valence) proton. At the same time, some of the nucleons of the nucleus core change their characteristics, too. Thus, the electromagnetic 
transitions between the single-particle states of the 27Al, 31P and 35Cl nuclei are the multi-particle processes. 
Keywords: Nuclear deformation; Deformed shell model; Single-particle state; s-d-shell nuclei; Evolutionary algorithm; Shape 
phase transition 
PACS: 21.60.−n, 21.60.Cs, 21.60.Ev, 27.30.+t 

1. INTRODUCTION
Complex, multi-particle nature of nuclear forces makes nuclear physics a largely eclectic science: to understand 

different observable properties of nuclei, it is often necessary to use different concepts from different areas of physics 
(see, e.g., Refs. [1,2] or any textbook on nuclear physics). And any new idea is always welcome. 

So, to understand the origin of nuclear deformation, the concept of phase transitions and the Landau theory of 
phase transitions, proposed and well developed for condensed matter physics [3], turned out to be useful (see, e.g., 
review [4] and references therein). Indeed, the very fact of the appearance of a deformation of the nucleus shape caused 
by a change in, say, the number of nucleons in the nucleus can be considered as a result of phase transition from a high-
symmetry (spherical) phase to a low-symmetry (deformed) phase of a nucleus. Thus, spontaneous breaking of rotational 
symmetry of a spherical nucleus can be accepted as an origin of nuclear deformation. The Landau theory of phase 
transitions is well suited for describing such shape phase transitions in a phenomenological language. 

Currently known applications of the Landau theory to shape phase transitions suggest that the potential energy of the 
nucleus (in the form of thermodynamic potentials, Helmholtz free energy, Gibbs free energy, etc.) has the form of a 
polynomial from rotationally invariant combinations of quadrupole deformation parameters introduced by Bohr and 
Mottelson [5]. Such a polynomial is either the by-product of microscopic or semi-microscopic calculations (as, e.g., in the 
interacting boson and boson-fermion models), or is parameterized directly (as, e.g., in geometric collective models) [4]. 
The coefficients of the polynomial depend on the control parameter associated with the number of nucleons in the nucleus. 
Equilibrium deformation parameters minimize potential energy. A change in the control parameter leads to a transition 
from a spherical phase, for which the equilibrium deformation parameters are zero, to deformed phases, for which the 
equilibrium deformation parameters differ from zero. Following this recipe, interesting data were described and phase 
transitions of the first and second order were identified (see, e.g., reviews [6–8] and references therein). 

Presently, the dynamics of nuclear shape caused by a change in the number of nucleons in the nucleus is mainly 
studied (see, e.g., [4,9,10]). However, the same nucleus in different single-particle states can have different shapes too 
and, in principle, the shape phase transition can be caused not only by changing the number of nucleons in the nucleus, 
but also by changing the states of nucleons in the nucleus. Regardless of the method of calculation, the shape of the 
nucleus in the single-particle state strongly influences its wave function. The wave functions of the initial and final 
states of the nucleus largely determine the probability of electromagnetic transition between them. Therefore, the 
experimentally observed probabilities of electromagnetic transitions are a valuable source of information about the 
shape of the nucleus in various single-particle states. 
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The generalized nucleus model (in the form of Nilsson model [5,11]) allows, in principle, to calculate the 
equilibrium deformation of the nucleus in any single-particle state. In fact, Nilsson model with spin-orbit coupling 
describes the sequence of shape phase transitions because it predicts spherically symmetric equilibrium shape of the 
equipotential surface of a nucleus if all states with the shell number N and the total momentum I are occupied. 
However, the probabilities of electromagnetic transitions can only be calculated between single-particle states with the 
same deformation. In a number of works [12–18], the modification of Nilsson model was proposed, in which the 
deformation of the nucleus was considered as a dynamic parameter. That is, the initial and final states are assumed to 
have different deformations. Thus, during the transition, the states of all nucleons can change. 

The modified Nilsson model enabled to calculate the probabilities of electromagnetic transitions between single-
particle states, taking into account their different deformations [12–18]. The assumption of the dynamic nature of the 
deformation of single-particle states of odd s-d-shell nuclei significantly reduced the discrepancy between the measured 
and calculated probabilities of some E2-transitions. However, it appeared impossible to adequately describe the entire 
set of experimental data, including energies, spins and parities of the ground and single-particle excited states, as well as 
the probabilities of both E- and M-transitions between them. 

That is why it would be highly desirable to have a procedure that could extract the angular dependence 
(deformation) of the potential of the self-consistent field of the nucleus in the ground and single-particle excited states 
directly from the experimental data on the energies, spins, and parities of the states of nuclei, as well as the measured 
probabilities of electromagnetic transitions between these states [19]. The goal that this procedure could be aimed at is 
the study of the shape of odd s-d-shell nuclei, both in the ground and low-laying single-particle excited states and the 
search for possible phase transitions from spherical to deformed states of the nucleus. 

2. DEFORMED-SHELL-MODEL SINGLE-PARTICLE HAMILTONIAN
We restrict ourselves to the case of an axially symmetric nucleus with an additional symmetry plane perpendicular 

to the symmetry axis. We chose a single-particle harmonic-oscillator potential with the spin-orbit interaction (see, e.g., 
Refs. [5,11]). Making a direct generalization, we write the single-particle Hamiltonian in the form: 

( )10 HHH += ω , ( ) 2/2
0 rH +Δ−= , ( ) ( ) ( )[ ]θϕκθϕ −⋅−−= 122/2

1 slrH , (1)

where r  is the reduced coordinate; ( )θϕ−11  is the reduced radius of the equipotential surface of the nuclear
potential; θ  is the polar angle, [ ]2;0 πθ ∈ ; ( )θϕ  is the function that describes the shape of the equipotential surface,

( ) ( )θϕθπϕ ≡− , 0≡θϕ dd  at the points 0=θ  and 2πθ = ; ( )θϕ2r  is the coupling of the particle with the symmetry
axis; ( )sl ⋅  is the spin-orbit interaction; ( ) ( )θϕsl ⋅  is the coupling of the spin-orbit interaction with the symmetry axis;

( )εω += − 141 3/1A  MeV is the energy scale; ZNA +=  is the nucleus mass number; N  and Z  are the numbers of
neutrons and protons in the nucleus; ε  takes into account the deviation of the energy scale from its simple estimate. We 
do not expect the nucleus volume to conserve because we are aimed at extracting the nucleus shape (including its 
radius) directly from the available data. 

In our approach, by definition, the function ( )θϕ  contains all information on the nuclear shape. Initially, no
deformation parameters are needed to determine it. The function ( )θϕ  directly and explicitly enters in the total
Hamiltonian H  (1) (generally, as a numerical array). Using as a basis the eigenfunctions of the spherical harmonic 
oscillator Hamiltonian 0H  from Eq. (1), the matrix of the total Hamiltonian H  is numerically diagonalized (see Ref. [11] 
for details). As a result, the eigenfunctions of the Hamiltonian H  appear as a finite mixture of the eigenfunctions of the 
Hamiltonian 0H . The coefficients of the mixture are calculated numerically and, in this way, contain information on the 
nuclear shape. The single-particle wave function of the nucleus in a certain state is the Slater determinant constructed from 
the occupied single-particle states calculated using the Hamiltonian H  (1). We emphasize that this wave function directly 
and explicitly depends on the mixture coefficients but not on any deformation parameters. 

3. PROBABILITIES OF ELECTROMAGNETIC TRANSITIONS BETWEEN SINGLE-PARTICLE STATES
WITH DIFFERENT DEFORMATIONS

To determine the matrix element of the single-particle multipole operator
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calculated using the Hamiltonian (1) with two different functions ( )θϕ , which form two Slater determinants }{ juΨ  and 

}{ ivΨ′ . The matrix element of M, taken between }{ juΨ  and }{ ivΨ′ , is equal to (see, e.g., [20]) 
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where the elements of determinants sM  are as follows 
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The reduced electric and magnetic multipole transition probabilities between the initial and final states with IK  
and KI ′′ , where I  and K  are the total momentum and its projection take the form ( KK ′+<λ ) [12–14]: 
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where i
la Λ  and j

la Λ  are the coefficients of decomposition of the functions iv  and ju  in the basis of the spherical 

harmonic oscillator [11]; iN  and jN  are the principal quantum numbers of states i and j; l  and Λ  are the angular 

momentum and its projection; ij
MEG λ)(  correspond to the quantities λ)(MEG  calculated in Ref. [11].  

Note that the matrix element of the single-particle multipole operator is taken between two determinant wave 
functions. That is why the transition probabilities depend on the mixture coefficients i

la Λ  [Eqs. (8) and (9)] but not on 
any deformation parameters. Because the mixture coefficients are calculated numerically, it is not possible to derive 
analytical dependence of the transition probabilities on the deformation in the form of deformation parameters.   

The case KK ′+≥λ  was studied in Ref. [15]. The influence of different deformations of the initial and final states 
of odd s-d-shell nuclei on the probabilities of E2-transitions was analyzed in Ref. [16]. The role of Coriolis interaction 
in calculations of the probabilities of electromagnetic transitions between states with different deformations was 
accounted for in Ref. [17]. The experimentally measured probabilities of M1-transitions between analogue and anti-
analogue states with different deformations in odd s-d-shell nuclei were examined in Ref. [18]. 

Note that the authors of Refs. [12–18] restricted themselves to the case of quadrupole deformations. Using two 
different deformation parameters they plotted the area where the discrepancy between the measured and calculated 
probabilities of some E2-transitions for odd s-d-shell nuclei significantly reduced. But this was done numerically. 
 

4. EVOLVING NUCLEAR SHAPES VIA EVOLUTIONARY ALGORITHM 
We chose the function that describes the shape of the equipotential surface of the nuclear potential in the i-th 

single-particle state of the nucleus in the following form: 

 ( )( ) ( ) ( )θϕθϕ ki
k

k

i 2cos2
0


∞

=

= . (10) 

The values of the weight parameters ( ){ }i
k2ϕ  (i=0 marks the ground state and i=1, ..., n mark the single-particle 

excited states) are determined independently for each level of the nucleus. Additional requirements imposed on the 
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weight parameters ( ){ }i
k2ϕ  are their minimum number for each level and their minimum value that ensures a good

description of experimental data. Note that both ε and ( ){ }i
0ϕ  affect the radius of spherical equipotential surface of the

potential in the Hamiltonian (1). Thus, to avoid overestimation, we set ( ){ } 00
0 =ϕ .

To determine the number and values of the weight parameters ( ){ }i
k2ϕ , an approach based on the use of an

evolutionary algorithm [21,22] to fit the calculated observables to the measured ones was developed.
Our evolutionary approach operates on a population of N individuals. Each individual is a set of parameters

( ){ }( )i
k2,, ϕκε , i=0, ..., n, k=0, ..., m. Fitness of each individual reflects the quality of data fitting provided by the

individual’s parameters. Using the mutation operation, the algorithm evolves the initial population of poorly fitted
individuals to the final population of the well fitted ones.

Every iteration, the so-called generation, of our procedure contains the following steps. 
1. Generating the initial population of N individuals. For each individual, the values of all parameters ( ){ }( )i

k2,, ϕκε
are set to zero. 

2. Evaluating fitness of each individual in the population. The fitness function accounts for the quality of data
fitting, which is estimated using the standard χ2 magnitude per datum. 

3. Letting each individual in the population produce M>>1 offspring. Replication of each parameter jx  from the

set ( ){ }( )i
k2,, ϕκε  is performed according to the transformation:

jjjj CAxx +=' , (11)

( )( )1,0exp' jjj LNAA = , (12)

where jx  and 'jx  are the parent’s and the offspring’s parameters from the set ( ){ }( )i
k2,, ϕκε , 0>jA  and 0'>jA  are the

parent’s and the offspring’s mutation amplitudes, [ ]maxmin ; AAAj ∈ , jC  is a Cauchy random variable with the scale

parameter set to unity, ( )1,0jN  denotes a normally distributed one-dimensional random number with mean zero and one
standard deviation, and 0>L  is the learning parameter that controls the adaptation speed. 

4. Evaluating fitness values of all offspring. Sort offspring in descending order according to their fitness. Select N
best offspring to form the new population. 

5. Going to step 3 or stop if the best fitness in the population is sufficiently high (the χ2 value is small enough).
The evolutionary process should produce the best possible solution with respect to the fitness function. To achieve

this goal and avoid premature convergence in a local optimum, the lower limit of the mutation amplitude Amin behaves 
as a smooth oscillatory function of generation, while the upper limit Amax remains constant [remember that the real value 
of A is adapted according to Eq.(12)]. If the value of Amin increases and the rms deviation from the mean value of the 
fitness function in the population exceeds some upper level (the diversity in the population is too high) then Amin starts 
to slowly decrease. And vice versa, if the value of Amin decreases and the rms deviation of the fitness function becomes 
less than some lower level (the diversity is too low) then Amin starts to slowly increase. However, before that, the best 
fitted individual is saved out of the converged population to preserve the globally best individual. Then, all individuals 
in the population jump to the new point in the parameter space according to the transformation: 

jjjj Cxaxx +=* , (13)

where jx  and *jx  are the individual’s parameters from the set ( ){ }( )i
k2,, ϕκε  before and after the jump, jC  is a Cauchy

random variable with the scale parameter set to unity, and [ ]1;0∈a  is the jump amplitude. Being transposed to the new
point in the parameter space, the population starts to explore the vicinity of this point by increasing and decreasing Amin 
as described above. After finishing another cycle of evolution, the globally best individual is refreshed. Then the 
population is filled with the current globally best individual, next jump is performed, and new cycle of evolution begins. 

Evolutionary algorithms make up, generally, the global optimization technique that, however, cannot guarantee 
that the optimum found is the global one (see, e.g., Refs. [23–25] or any textbook on evolutionary computations). 
Therefore, it is necessary to run the procedure several times. Besides, there is no way to know in advance what the 
minimum value of the χ2 magnitude will be. Thus, it is instructive to monitor the dynamics of the best, worst, and mean 
fitness values and the rms deviation from the mean fitness in the population during those several runs of the procedure 
in order to localize the region of the lowest χ2 values. 

Analysis of experimental data begins with the assumption of the quadrupole deformation of the shapes of nucleus in the 
ground and single-particle excited states [the terms with k=0, 1 are left in Eq.(10)]. If the desired quality of data fitting is not 
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achieved within this assumption, then the hexadecapole deformation comes into play [the term with k=2 is added in Eq.(10)], 
and so forth. After the number of terms in Eq.(10) is determined, the contribution of the first term found (the term with k=0 
that violates the volume conservation) is smoothly consistently reduced, preserving the desired quality of data fitting with that. 
If this procedure produces rather different solutions that are similar in fitness, the contribution of the term next to the previous 
one (say, k=1) is gradually reduced, and so forth. Following the described prescription, it appears possible to substantially 
reduce the parameter space of the problem under study and localize the region of the similar solutions. 

The reason for the choice of deformation parameterization (10) is, to some extent, technological. The Hamiltonian 
(1) linearly depends on the function ( )θϕ . The radius of equipotential surface of the potential is ( )θϕ−11 . Thus, 
direct parameterization of the radius brings additional computational difficulties. 

The decomposition (10) is analytically equivalent to the widely used decomposition of the radius of an axially 
symmetric nucleus into a series of spherical harmonics (see, e.g., Ref.[5]). Note that, e.g., the Legendre polynomial 

)θ(cosP4  contains not only the term )θcos(4 , but also the term )θcos(2  that is the kernel of the polynomial )θ(cosP2 . 
Thus, the decomposition of the function ( )θϕ  into the series of even Legendre polynomials gives, in fact, the term 

)θcos(2  with two different free weight parameters. This makes additional difficulty for the search algorithm to determine 
these parameters. In other words, the decomposition (10) substantially simplifies the search for the solution of our problem. 
Besides, the decomposition (10) gives extremely concise description of the topological features of the nuclear shape. 

After the parameters ( )i
k2ϕ  are determined, the values of conventional deformation parameters ( )i

k2α  can be 
estimated using the following approximate correlation: 
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5. 27Al NUCLEUS SHAPES IN LOW-LAYING SINGLE-PARTICLE STATES 

Good quality of fit was achieved when the terms with k=0, 1, 2 were left in Eq.(10). The schemes of occupation of 
single-particle states by protons (proton configurations) in the ground (g.s.) and first three single-particle excited states 
(1–3 e.s.) of the 27Al nucleus were chosen as follows: 

00100222222e.s.3
01000222222e.s.2
00010222222e.s.1
00001222222g.s.

 

The schemes of occupation of single-particle states by neutrons (neutron configurations) were chosen to be independent 
of the nucleus state: 

00002222222  

Figure 1 and Tables 1–4 present the best fitted result. Experimental data were taken from Refs. [26,27]. 

 
Figure 1. Shapes for four single-particle states of 27Al nucleus, calculated by our procedure. (a) Reduced radii ( )θϕ−11  of the 
equipotential surface of the nuclear potential for four single-particle states of 27Al nucleus. (b) The same as Fig. 1(a) but only for 
angular part of ( )θϕ−11 . Curve marked as g.s. corresponds to the ground state. Curves marked as 1–3 e.s. present three low-laying excited states.  
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Table 1. Experimentally measured Eexper(2Jπ) and calculated Etheor(2Jπ) energies (MeV), spins 2J, and parities π of the ground and 
first three low-laying single-particle excited states of 27Al nuclei.  

Eexper(2Jπ) Etheor(2Jπ) 
0.0000 (5+) 0.0000 (5+) 
0.8438 (1+) 0.8438 (1+) 
2.9820 (3+) 2.9820 (3+) 
3.6804 (1+) 3.6804 (1+) 

We are aware that the dynamics of nuclear deformation with the increase of excitation energy is better analyzed 
looking at the plot of the nuclear radius as function of the angle. Therefore, instead of the function ( )θϕ , we show the

reduced radius of equipotential surface of the potential ( )θϕ−11  [Fig. 1(a)] and its angular part

( ) 01111 ϕθϕ −−−  [Fig. 1(b)] as functions of the angle. Besides, Table 4 contains the values of conventional 
deformation parameters estimated with help of Eq. (14). 
Table 2. Experimentally measured Γγi(E2)exper and calculated Γγi(E2)theor partial gamma widths (eV) for 27Al nuclei. Ei(2Jπ) and 
Ef(2Jπ) denote energies (MeV), spins 2J, and parities π of initial and final states.  

Ei(2Jπ) → Ef(2Jπ) Γγi(E2)exper Γγi(E2)theor 
0.8438 (1+) → 0.0000 (5+) (1.30±0.20)×10−5 1.30×10−5 
2.9820 (3+) → 0.0000 (5+) <4.55×10−5 2.60×10−5 
3.6804 (1+) → 0.0000 (5+) (1.00±0.30)×10−3 1.00×10−3 

Table 3. Experimentally measured Γγi(M1)exper and calculated Γγi(M1)theor partial gamma widths (eV) for 27Al nuclei. Ei(2Jπ) and 
Ef(2Jπ) denote energies (MeV), spins 2J, and parities π of initial and final states.  

Ei(2Jπ) → Ef(2Jπ) Γγi(M1)exper Γγi(M1)theor 
2.9820 (3+) → 0.0000 (5+) (1.14 ±0.03)×10−1 1.14×10−1 
2.9820 (3+) → 0.8438 (1+) (1.20 ±0.40)×10−3 1.20×10−3 
3.6804 (1+) → 0.8438 (1+) (5.20 ±0.20)×10−2 5.20×10−2 

Table 4. Deformation parameters 2kα , k=0, 1, 2, of the shape of 27Al nucleus in its ground (g.s.) and first three low-laying single-
particle excited states (1–3 e.s.), estimated according to Eq. (14). 

g.s. 1 e.s. 2 e.s. 3 e.s. 
α0 7.6×10−3 6.8×10−3 -2.2×10−3 -5.9×10−3

α2 7.4×10−3 3.6×10−3 1.4×10−2 2.2×10−2 
α4 -6.7×10−2 -1.3×10−2 -1.0×10−2 2.3×10−3 

Figure 1 and Table 4 show that the angular part of the 27Al nucleus shape is described by two harmonics – 
quadrupole [cos(2θ) or )θ(cosP2 ] and hexadecapole [cos(4θ) or )θ(cosP4 ]. In its ground and first three low-laying 
single-particle excited states the 27Al nucleus is abnormally weakly deformed. The hexadecapole deformation dominates 
in the ground state of the 27Al nucleus. Then, with the increase of the excitation energy, its contribution decreases and 
almost vanishes for the third excited state. The contribution of the quadrupole deformation is small for the ground and 
first excited states, but it increases with the increase of the excitation energy and becomes dominant for the third excited 
state of the 27Al nucleus. 

6. 31P NUCLEUS SHAPES IN LOW-LAYING SINGLE-PARTICLE STATES
Good quality of fit was achieved when the terms with k=0, 1, 2 were left in Eq.(10). The schemes of occupation of 

single-particle states by protons (proton configurations) in the ground (g.s.) and first three single-particle excited states 
(1–3 e.s.) of the 31P nucleus were chosen as follows: 

10000002222222e.s. 3
00000021222222e.s. 2
00000102222222e.s. 1
00000012222222g.s.

The schemes of occupation of single-particle states by neutrons (neutron configurations) were chosen to be independent 
of the nucleus state: 

00022222222  

Figure 2 and Tables 5-9 present the best result. Experimental data were taken from Refs. [26,28]. 
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As in Fig. 1, we show the reduced radius of equipotential surface of the potential [Fig. 2(a)] and its angular part 
[Fig. 2(b)] as function of the angle, while Table 9 contains the values of conventional deformation parameters estimated 
with help of Eq. (14). 
Table 5. Experimentally measured Eexper(2Jπ) and calculated Etheor(2Jπ) energies (MeV), spins 2J, and parities π of the ground and 
first three low-laying single-particle excited states of 31P nuclei.  

Eexper(2Jπ) Etheor(2Jπ) 
0.0000 (1+) 0.0000 (1+) 
3.1343 (1+) 3.1343 (1+) 
3.2950 (5+) 3.2950 (5+) 
4.4312 (7−) 4.4312 (7−) 

Table 6. Experimentally measured Γγi(E2)exper and calculated Γγi(E2)theor partial gamma widths (eV) for 31P nuclei. Ei(2Jπ) and Ef(2Jπ) 
denote energies (MeV), spins 2J, and parities π of initial and final states.  

Ei(2Jπ) → Ef(2Jπ) Γγi(E2)exper Γγi(E2)theor 
3.2950 (5+) → 0.0000 (1+) (4.35±0.5)×10−5 4.35×10−5 

Table 7. Experimentally measured Γγi(M1)exper and calculated Γγi(M1)theor partial gamma widths (eV) for 31P nuclei. Ei(2Jπ) and 
Ef(2Jπ) denote energies (MeV), spins 2J, and parities π of initial and final states. 

Ei(2Jπ) → Ef(2Jπ) Γγi(M1)exper Γγi(M1)theor 
3.1343 (1+) → 0.0000 (1+) (6.2 ±0.5)×10−2 6.2×10−2  

 
Figure 2. Shapes for four single-particle states of 31P nucleus, calculated by our procedure. (a) Reduced radii ( )θϕ−11  of the 
equipotential surface of the nuclear potential for four single-particle states of 31P nucleus. (b) The same as Fig. 2(a) but only for 
angular part of ( )θϕ−11 . Curve marked as g.s. corresponds to the ground state. Curves marked as 1–3 e.s. present three low-
laying excited states. 

Table 8. Experimentally measured Γγi(E3)exper and calculated Γγi(E3)theor partial gamma widths (eV) for 31P nuclei. Ei(2Jπ) and Ef(2Jπ) 
denote energies (MeV), spins 2J, and parities π of initial and final states.  

Ei(2Jπ) → Ef(2Jπ) Γγi(E3)exper Γγi(E3)theor 
4.4312 (7−) → 0.0000 (1+) (9.80±2.1)×10−6 9.80×10−6 
4.4312 (7−) → 3.1343 (1+) <1.10×10−6 1.10×10−6 

Table 9. Deformation parameters 2kα , k = 0, 1, 2, of the shape of 31P nucleus in its ground (g.s.) and first three low-laying single-
particle excited states (1–3 e.s.), estimated according to Eq. (14). 

 g.s. 1 e.s. 2 e.s. 3 e.s. 
α0 -1.3×10−2 -1.1×10−1 -1.2×10−1 -1.4×10−1 
α2 3.1×10−2 1.0×10−2 -2.9×10−2 -2.6×10−3 
α4 3.6×10−2 -1.6×10−2 -8.2×10−2 -3.1×10−2 

Figure 2 and Table 9 show that, as in case of 27Al nucleus, the angular part of the 31P nucleus shape is described by 
two harmonics – quadrupole and hexadecapole. In its ground and first three low-laying single-particle excited states the 
31P nucleus is abnormally weakly deformed. The ground and first excited states of the 31P nucleus are characterized by 
the mixture of the quadrupole and hexadecapole deformations. Then, with the increase of the excitation energy, the 
hexadecapole deformation becomes dominant in the second and third excited states. 

 
7. 35Cl NUCLEUS SHAPES IN LOW-LAYING SINGLE-PARTICLE STATES 

Good quality of fit was achieved when the terms with k=0, 1, 3 were left in Eq.(10). The term cos(4θ) (k=2) 
did not influence the quality of fit. The schemes of occupation of single-particle states by protons (proton 
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configurations) in the ground (g.s.) and first three single-particle excited states (1–3 e.s.) of the 35Cl nucleus were 
chosen as follows: 

00000221222222e.s. 3
10000022222222e.s. 2
00001022222222e.s. 1
00000122222222g.s.

The schemes of occupation of single-particle states by neutrons (neutron configurations) were chosen to be 
independent of the nucleus state: 

00222222222  

Figure 3 and Tables 10-15 present the best result. Experimental data were taken from Refs. [26,29]. 
As in Figs. 1 and 2, we show the reduced radius of equipotential surface of the potential [Fig. 3(a)] and its angular 

part [Fig. 3(b)] as function of the angle, while Table 15 contains the values of conventional deformation parameters 
estimated with help of Eq. (14). We emphasized that in order to replicate well the experimental data on 35Cl nucleus it 
was not necessary to account for the contribution of the basis function cos(4θ) in the decomposition (10). Thus, the 
values of the parameters ( )i

4ϕ  were set to zero and, consequently, the values of the deformation parameters ( )i
4α

appeared to be linearly dependent on the values of the parameters ( )i
6α  (Table 15).

Figure 3. Shapes for four single-particle states of 35Cl nucleus, calculated by our procedure. (a) Reduced radii ( )θϕ−11  of the
equipotential surface of the nuclear potential for four single-particle states of 35Cl nucleus. (b) The same as Fig. 3(a) but only for 
angular part of ( )θϕ−11 . Curve marked as g.s. corresponds to the ground state. Curves marked as 1–3 e.s. present three low-
laying excited states. 

Table 10. Experimentally measured Eexper(2Jπ) and calculated Etheor(2Jπ) energies (MeV), spins 2J, and parities π of the ground and 
first three low-laying single-particle excited states of 35Cl nuclei.  

Eexper(2Jπ) Etheor(2Jπ) 
0.0000 (3+) 0.0000 (3+) 
1.2193 (1+) 1.2193 (1+) 
3.1628 (7−) 3.1628 (7−) 
3.9185 (3+) 3.9185 (3+) 

Table 11. Experimentally measured Γγi(E2)exper and calculated Γγi(E2)theor partial gamma widths (eV) for 35Cl nuclei. Ei(2Jπ) and 
Ef(2Jπ) denote energies (MeV), spins 2J, and parities π of initial and final states.  

Ei(2Jπ) → Ef(2Jπ) Γγi(E2)exper Γγi(E2)theor 
1.2193 (1+) → 0.0000 (3+) (4.0±0.44)×10−5 4.0×10−5 
3.9185 (3+) → 0.0000 (3+) (3.1±0.89)×10−3 3.1×10−3 

Table 12. Experimentally measured Γγi(M1)exper and calculated Γγi(M1)theor partial gamma widths (eV) for 35Cl nuclei. Ei(2Jπ) and 
Ef(2Jπ) denote energies (MeV), spins 2J, and parities π of initial and final states.  

Ei(2Jπ) → Ef(2Jπ) Γγi(M1)exper Γγi(M1)theor 
1.2193 (1+) → 0.0000 (3+) (3.6 ±0.4)×10−3 3.6×10−3 
3.9185 (3+) → 0.0000 (3+) (7.1 ±2.0)×10−2 7.1×10−2 
3.9185 (3+) → 1.2193 (1+) <5.0×10−4 5.0×10−4 
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Table 13. Experimentally measured Γγi(M2)exper and calculated Γγi(M2)theor partial gamma widths (eV) for 35Cl nuclei. Ei(2Jπ) and 
Ef(2Jπ) denote energies (MeV), spins 2J, and parities π of initial and final states.  

Ei(2Jπ) → Ef(2Jπ) Γγi(M2)exper Γγi(M2)theor 
3.1628 (7−) → 0.0000 (3+) (1.3 ±0.03)×10−5 1.3×10−5 

Table 14. Experimentally measured Γγi(E3)exper and calculated Γγi(E3)theor partial gamma widths (eV) for 35Cl nuclei. Ei(2Jπ) and 
Ef(2Jπ) denote energies (MeV), spins 2J, and parities π of initial and final states.  

Ei(2Jπ) → Ef(2Jπ) Γγi(E3)exper Γγi(E3)theor 

3.1628 (7−) → 0.0000 (3+) (3.3±0.075)×10−7 3.3×10−7 
3.1628 (7−) → 1.2193 (1+) <3.0×10−8 3.0×10−8 

Table 15. Deformation parameters 2kα , k=0, 1, 2, 3, of the shape of 35Cl nucleus in its ground (g.s.) and first three low-laying single-particle 
excited states (1–3 e.s.), estimated according to Eq. (14). The values of the parameter α4 linearly depend on the values of the parameter α6. 

 g.s. 1 e.s. 2 e.s. 3 e.s. 

α0 1.6×10−2 3.5×10−3 -4.4×10−3 -1.4×10−2 
α2 -6.1×10−2 -9.0×10−2 8.1×10−2 -1.0×10−1 

 α4  2.1×10−2 2.2×10−1 3.3×10−1 1.0×10−1 
α6 -4.8×10−2 -5.0×10−1 -7.3×10−1 -2.2×10−1 

 
Figure 3 and Table 15 show that the angular part of the 35Cl nucleus shape is described by three harmonics – 

quadrupole [ )θ(cosP2 ], hexadecapole [ )θ(cosP4 ], and hexacontatetrapole [ )θ(cosP6 ]. Note again that, in case of 35Cl 
nucleus, the contribution of hexadecapole deformation is not independent. In its ground state the 35Cl nucleus is 
abnormally weakly deformed. With the increase of excitation energy, the contribution of hexacontatetrapole deformation 
sharply (by an order of magnitude) increases and becomes dominant for the first and third excited states, and especially for 
the second excited state. This observation indicates that the change of the state of the only one nucleon – the valence 
proton the spin and parity of which determine the spin and parity of the 35Cl nucleus – causes the shape phase transition 
from the high-symmetry phase – spherical ground state – to the low-symmetry phase – deformed excited states. 
 

8. DISCUSSION 
The evolutionary procedure of determining the shape of a nucleus in single-particle states presented in this article is 

aimed at searching for the globally optimal solution. However, being aware of the complexity of the problem under study 
and the fact that the actual number of fitting parameters is substantially greater than the actual number of data points, we 
do not expect to achieve it. Therefore, we consider the obtained results (Figs.1–3, and Tables 1–15) as very promising. 

The shapes of the nuclei studied in the ground and low-laying single-particle excited states obtained in different 
runs of the procedure go rather close to each other. Besides, the variations of the parameter that takes into account the 
deviation of the energy scale from its simple estimate ε and of the spin-orbit interaction strength κ from run to run of the 
optimization procedure are found to be insignificant. This result is a consequence of application of the requirements 
imposed on the weight parameters ( ){ }i

k2ϕ  from the decomposition (10). Namely, the number of these parameters must be 
the smallest possible for each level and the values of these parameters must be the smallest possible, ensuring a good 
description of experimental data along with that. From the formally mathematical viewpoint, these requirements are 
equivalent to the numerous constraints imposed on the variables ( ){ }i

k2ϕ , which leads to the substantial reduction of the 
parameter space of the problem (the “effective” number of free parameters is much smaller than the “actual” one). One 
should also bear in mind that the measured probabilities of electromagnetic transitions between single-particle states of 
nuclei are the highly correlated data that are difficult to analyze. Thus, in this case, the belief that “anything can be 
fitted with a sufficient number of parameters”, is a substantial oversimplification (see, e.g., Ref. [2]). 

From the computational viewpoint, in general, the parameter space of our problem is highly dimensional, highly 
nonlinear, and has unknown and unpredictable topography. This makes the choice of an appropriate search method 
crucial. Evolutionary (or genetic) algorithms have many times proved very efficient in dealing with very difficult 
physical problems (see, e.g., Refs. [30–35]), so we have chosen it as a key element of our procedure. Usually, in 
evolutionary computations, the mutation amplitude is either constant, or decreases across the run of the evolutionary 
procedure. Often this leads the search algorithm in a local optimum in the parameter space. To avoid premature 
convergence in a local optimum, we have devised the special schedule of tuning the mutation amplitude, in which the 
latter behaves as a smooth oscillatory function of generation. This mechanism resembles, in part, the so-called “sim-
ulated annealing” approach to solve the optimization problems of combinatorial complexity. Due to the consecutive 
cycles of increasing and decreasing of the mutation amplitude, the population hops from the less fitted optimum to the 
more fitted one situated in the close vicinity. To have an opportunity to explore the parameter space much further, we 
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have allowed the population as a whole to periodically jump to the new point in the parameter space. As a consequence, 
we have managed to localize the region of the nuclear shapes that give the lowest values to the χ2 magnitude: Tables 1–
15 show very good agreement between the calculated and measured observables. 

In principle, our algorithm could treat ( )θϕ  as a numerical array and evolve it as a whole quantity with help of the
diffused mutation operator devised in Refs. [21,22]. We emphasize that the devised approach of extracting nuclear 
shapes from the data does not depend on the particular nuclear data and the particular analytical tools (nuclear models) 
to analyze it. For instance, our approach, with minor changes, could be used to extract the matter-density distributions 
in nuclei [36], the radial dependence of the nuclear potentials [37], etc. from the suitable data. Our preliminary 
investigations show that our method enables to extract the radial dependence of the nuclear potentials from the set of 
energy levels. Thus, our method could be applied to the wide set of nuclear problems in wide mass region.  

From the physics viewpoint, our analysis of experimental data on the energies, spins, and parities of the low-laying 
single-particle states and the probabilities of electromagnetic transitions between them in 27Al, 31P and 35Cl nuclei shows 
the following. 

We have found that the studied nuclei in the ground states are abnormally weakly deformed, which is not expected 
for the nuclei in the shell middle. Even in their low-laying single-particle excited states, the nuclei 27Al and 31P are found to 
be weakly deformed, too. The change of the state of the only one nucleon – the valence proton the spin and parity of which 
determine the spin and parity of the 35Cl nucleus – causes the shape phase transition from the high-symmetry phase – 
spherical ground state – to the low-symmetry phase – deformed excited states. Hence, in case of 27Al, 31P and 35Cl nuclei, 
we are dealing with manifestation of the forces that are not related to the formation of nuclear shells. 

The angular part of the 27Al and 31P nuclei shape is described by two harmonics – quadrupole and hexadecapole. 
The angular part of the 35Cl nucleus shape is described by three harmonics – quadrupole, hexadecapole, and 
hexacontatetrapole, but the contribution of hexadecapole deformation is not independent. It is usually assumed that 
quadrupole deformations are of the most importance, while hexadecapole deformations are good but rather small 
corrections to quadrupole deformations and may be important for describing the ground states of heavy nuclei (see, e.g., 
Refs. [1,2] or any textbook on nuclear physics). As for the higher multipolarity deformations, they are not considered to 
have much physical significance. At present, there are no fundamental nuclear models that account for or predict the 
dominant hexacontatetrapole deformation, especially for light and medium nuclei. 

Analyzing quantum characteristics of the single nucleons that form the 27Al, 31P and 35Cl nuclei, we find that the 
spin and parity of these nuclei are determined by the spin and parity of the last odd (valence) proton. At the same time, 
some of the nucleons of the nucleus core change their characteristics, too. This means that the electromagnetic 
transitions between the single-particle states of the 27Al, 31P and 35Cl nuclei are the multi-particle processes. 

Applications of the Landau theory of phase transitions, briefly mentioned in the Introduction, are based on the 
decomposition of the radius of a nucleus, which depends on spherical angles, into a series of spherical functions [5]. 
Thus, the potential energy of the nucleus contains collective forces that act on the deformation parameters, but not on 
the angular variables. Strictly speaking, to predict the equilibrium shape of the nucleus, the theory must contain angular 
derivatives of various orders. 

Spatial derivatives naturally arise in the Landau-type theory of phase transitions with a spatially inhomogeneous 
order parameter (see, e.g., Ref. [38] or any textbook on phase transitions). This theory turned out to be very effective in 
describing phase transitions in ferroelectrics and magnetics with incommensurate phases (see, e.g., Refs. [39–42] and 
also Ref. [33]). These phases are states in which the period of spatial modulation of the order parameter is not 
commensurate with (or does not depend on) the period of the crystal lattice. In this case, the Landau-type potential is a 
functional of the order parameter and its derivatives. The competition and compromise of different powers of the order 
parameter and its derivatives lead to the appearance of various stable spatially inhomogeneous states of the system. 

Assuming that the characteristic size at which the angular function describing the deviation of the nucleus shape from 
sphericity changes significantly is not commensurate with both the size of the nucleon and the distance between the nucleons, 
the deformed nucleus can be considered as an incommensurate phase. Therefore, the Landau-type theory of phase transitions 
with a spatially inhomogeneous order parameter could be a useful tool to study the shape of a deformed nucleus. 
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ДЕФОРМАЦІЯ НЕПАРНИХ ЯДЕР 27Al, 31P ТА 35Cl В ОДНОЧАСТИНКОВИХ СТАНАХ 
Володимир Ю. Кордаa, Лариса П. Кордаb, В’ячеслав Ф. Клепіковa, Ірина С. Тімченкоb 

aІнститут електрофізики і радіаційних технологій, Національна академія наук, Харків, Україна 
bНаціональний науковий центр “Харківський фізико-технічний інститут”, Національна академія наук, Харків, Україна 

Форми непарних ядер s-d-оболонки 27Al, 31P та 35Cl в основних і одночастинкових збуджених станах вилучені з 
експериментальних даних про енергії, спіни та парності цих станів, а також виміряні імовірності електромагнітних переходів між 
ними за допомогою недавно розробленого нами еволюційного підходу. Ключовим елементом нашої процедури є еволюційний 
алгоритм, який приводить популяцію ядерних форм, що погано описують експериментальні дані, до популяції ядерних форм, що 
добре описують експериментальні дані. Досліджені ядра в їхніх основних станах виявились аномально слабко деформованими, що 
не притаманно ядрам в середині оболонки. Навіть в їхніх низько лежачих одночастинкових станах ядра 27Al та 31P виявились теж 
слабко деформованими. Із зростанням одночастинкової енергії збудження зміна стану єдиного нуклона – валентного протона, спін 
та парність якого визначають спін та парність ядра 35Cl – викликає фазовий перехід із високо симетричної фази – сферичного 
основного стану – у низько симетричну фазу – деформовані збуджені стани. Кутова частина форми ядер 27Al та 31P описується 
двома гармоніками – квадрупольною і гексадекапольною. Кутова частина форми ядра 35Cl описується трьома гармоніками – 
квадрупольною, гексадекапольною і гексаконтатетрапольною, проте внесок гексадекапольної деформації не є незалежним. В 
теперішній час немає фундаментальної ядерної моделі яка б враховувала або передбачала домінуючу гексаконтатетрапольну 
деформацію, особливо для легких і середніх ядер. Ми знайшли, що спін та парність ядер 27Al, 31P та 35Cl визначаються спіном та 
парністю останнього непарного протона. В той же час деякі нуклони остову ядра теж змінюють свої характеристики. Тому 
електромагнітні переходи між одночастинковими станами ядер 27Al, 31P та 35Cl є багаточастинковими процесами. 
Ключові слова: ядерна деформація; модель деформованих оболонок; одночастинковий стан; ядра s-d-оболонки; 
еволюційний алгоритм; фазовий перехід 


