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Heat transmission by ordinary fluids such as pure water, oil, and ethylene glycol is inefficient due to their low viscosity. To boost the
efficiency of conventional fluids, very small percent of nanoparticles are added to the base fluids to prepare nanofluid. The impact of
changing in viscosity can be used to investigate the rheological properties of nanofluids. In this paper, (CoFe20O4)/engine oil based
nanofluids were prepared using two steps standard methodology. In first step, CoFe204 (CF) were synthesized using the sol-gel wet
chemical process. The crystalline structure and morphology were confirmed using X-Ray diffraction analysis (XRD) and scanning
electron microscopy (SEM), respectively. In second step, the standard procedure was adapted by taking several solid volume fractions
of CF as © =0, 0.25, 0.50, 0.75, and 1.0 %. Such percent of concentrations were dispersed in appropriate volume of engine oil using
the ultrasonication for 5 h. After date, the viscosity of prepared five different nanofluids were determined at temperatures ranging from
40 to 80 °C. According to the findings, the viscosity of nanofluids (uaf) decreased as temperature increased while increased when the
volume percentage of nanofluids @ raised. Furthermore, total 25 experimental observations were considered to predict viscosity using
an artificial neural network (ANN) and response surface methodology (RSM). The algorithm for building the ideal ANN architecture
has been recommended in order to predict the fluid velocity of the CF/SAE-50 oil based nanofluid using MATLAB software. In order
to determine the validation of the predicted model, the mean square error (MSE) was calculated as 0.0136 which corresponds to the
predicted data is well correlated with experimental data.
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1. INTRODUCTION

Nanofluid is a form of fluid formed by dispersing nano-sized particles in a base fluid [1]. These nanofluids have
gotten a lot of interest in the last few decades for their applications in microelectronics, transportation, solar, nuclear, and
space technology [2].Base fluids such as motor oil, water, and ethylene glycol were commonly employed as heat
transporting fluids in a variety of industries [3]. By distributing nanoparticles in a normal fluid such as water, motor oil,
and ethylene glycol, high heat conductive nanofluids can be formed, according to Choi [4]. The most important attribute
of a nanofluid is its viscosity, which is related with heat transfer. It is obvious that when the volume percentage of
nanoparticles increases, convective heat transmission increases [5]. As a result, accurate numbers for nanofluid viscosity
are critical for industrial nanofluid demand [6].

Einstein created analytical methods for forecasting a mixture's viscosity in 1906, Brinkman in 1952, and Batchelor in
1977, but those models, which are based on the colloidal theory and contain particles on the order of micrometre, failed to
predict the viscosity of the mixture numerous times. As a result, a new model based on nanofluid viscosity has been proposed.
The majority of them were based on nanoparticle interfacial layers [7] and Brownian nanofluids nanoparticles in ordinary
liquids [8]. Brownian motion has been discovered to be the cause of additional energy transmission of nano particles.
Convection explains the relative mobility between nanoparticles and based fluids, according to Jang and Choi's first model,
which is based on Brownian motion. Ravi Prasher, on the other hand, demonstrated that Choi and Jang's correlation is
inaccurate, and he produced a new viscosity of nanofluid correlation [9]. Masoumi et al. construct an enhanced correlation
[10] for nanofluid viscosity using the Ravi Prasher Correlation [11]. Yang et al. found a temperature influence on the
viscosity of nanofluids. They experimented using graphene as a nanomaterial. They discovered that when temperature rises,
viscosity decreases [12]. Chen et al. investigated the similar impact of MWCNT-distilled water nanofluid at temperatures
ranging from 278 K to 338 K and discovered that beyond 338 K, the viscosity ratio increases dramatically [13].

He and colleagues observed that the viscosity of nanofluid increased with particle size. However, Lu and Fan
observed that as particle radius grows, so does the viscosity of the nanofluid decreases [14, 15]. Chevalier et al. evaluated
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the viscosity of SiO2-Ethanol nanofluid for particle sizes and discovered that the viscosity increases as the diameter of
the nanoparticles decreases [16]. According to [17] Chevalier et al. experimentally investigated that viscosity increases
abnormally with increasing volume concentrations. The viscosity of nanofluid grows as the volume concentration
increases, after the volume concentration of 0.4%, according to Lu and Fan. Chen et al. discovered that viscosity increases
as the volume concentration increases [18]. According to Mahbubul et al. no correlation can estimate viscosity values
across a wide range of particle volume concentrations [19].

Using various modelling tools, some researchers anticipated the rheological behavior of nanofluid [20]

To synthesize and assess nanofluid thermophysical characteristics such as viscosity [21] (Fig.1), special equipment
and experiments, as well as a significant amount of time and money, are required [22].
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Figure 1. Special apparatus for the preparation of nanofluids

There are numerous research studies that may be utilized to determine the viscosity of nanofluids. Hajir-Karimi et
al. investigated the viscosities of several nanoparticles in the temperature range 238.15-343.15 K, using a total number
of eight nanoparticles, with a nanoparticle volume fraction of up to 9.4%. An effective and precise artificial neural network
based on genetic algorithm (GA) is modelled for forecasting nanofluid viscosity using computational intelligence
approaches. To optimize the neural network variables, the genetic algorithm (GA) is applied. As input data for
computational intelligence models, they employed nanofluid temperature, nanoparticle size, nanoparticle percentage and
nanofluid density. The nanofluid viscosity was the resulting data. The findings demonstrate that the GA-NN model
matches the actual data effectively, with an absolute deviation of 2.48 % and a high degree of correlation value
(R =0.98).[23]. Majid Gholizadeh et al. properly calculated the viscosity of thermodynamic nanofluids using a robust
artificial intelligence technique known as random forest (RF). Temperature, solid volume percentage, base fluid viscosity,
nanoparticle size, and nanoparticle density were used to build the model. In addition, 2890 data points were gathered.
They utilised (R = 0.989, RMSE = 0.139, MAPE = 4.758 %) rather than the MLP (R = 0.915, RMSE = 0.377,
MPE = 16.194 %) and the SVR (R = 0.941, RMSE = 0.315, MAPE = 7.895 %) for model accuracy. They produced an
effective model based on comparative findings with other approaches [24]. Praveen Kanti et al. used a modern
computational intelligence strategy, ANN and MGGP, to enhance experimentally recorded dynamic viscosity data of
nanofluids. This study looked at the dynamic viscosity of a water-based stable fly-ash nanofluid and a fly ash—Cu (80-
20 % by volume) hybrid nanofluid at temperatures ranging from 30 to 60°C. The viscosity of flue-ash nanofluid is
determined utilizing MGGP modeling (R = 0.99988, RMSE = 0.0019, and MAPE = 0.25 %). Furthermore, experiment
also showed that the MGGP approach excels at predicting flue ash-Cu/Water hybrid nanofluid viscosity (R = 0.9975,
RMSE = 0.0063, and MAPE = 0.664 %) [25]. Abdullah et al. examined the viscosity of MWCNT-COOH nanoparticles
in water at temperatures ranging from 20 to 50° C and solid volume fractions ranging from 0 to 0.2%. As a result of the
experimental results, the unique connection that predicts the relative thermophysical properties of the nanofluids was
established. An adaptive neuro-fuzzy inference system (ANFIS) and the finest artificial neural network (ANN) were built
in addition to nonlinear regression for the least prediction error. 120 experimental measurements were submitted to the
model. Several theoretical models, predicted outcomes, and experimental findings were all compared. ANN has an RMSE
0f 0.46618, but ANFIS has an RMSE of 0.49062, and the mean absolute percentage error (MAPE) of ANN and ANFIS
is 0.00023 and 0.00047, respectively [26]. To predict the viscosity of nanoparticles, Ahmedi et. al. used optimization
techniques to simulate the fluid viscosity of silver (Ag)-water nanofluid: multivariable polynomial regression (MPR),
artificial neural network—multilayer perceptron (ANN-MLP), and multivariate adaptive regression splines (MARS). Size
of the particles, temperature, and silver nanoparticle concentration are the most essential input elements examined in the
modelling approach. The ANN-MLP, MARS, and MPR techniques have R? values of 0.9998, 0.9997, and 0.9996,
respectively.[27]

By forecasting thermophysical qualities, scholars utilized artificial neural network simulation to perform their
researches by the least amount of money and time feasible. A summary regarding the various authors have done the work
using the nanofluids with different mathematical model are shown in Table 1.

In their investigation the artificial neural network model employed by Baranitharan et al. is presented schematically in
(Fig. 2). An artificial neural network (ANN) is a computing approach that understands the relationship between input and
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output by using neurons and their connections. Input neurons send data to buried layer neurons for processing. The data is
then sent from the hidden neurons to the output neurons for processing. The letters "w" and "b" in this image reflect the
amount of weight and bias, respectively (Fig. 2).

Table 1. Summary of the researches conducting by ANN, MLP and RSM using various nanofluids

Scholar Nanofluid Technique Objective

Bahirai et al. [30] Several Nanofluids (analysis) ANN and hybrid Al Nanofluids thermal
algorithm characteristics.

Zhao et al. [31] Several Nanofluids (analysis) ANN Predicting the viscosity of a

substance in order to use it in
a radiator.

Vakili et al. [32] Water based grapheme. MLP-genetic algorithm Viscosity
Vakili et al. [33] Water based CNT. Levenberg—Marquardt Thermal properties
algorithm

Heideri et al.[34] Al208i02 and CuO nanoparticles ANN Viscosity

dispersed in water.
Alirezai et al. [35] Multiwall carbon nanotube. MLP Dynamic Viscosity
Esfe et.al. [36]

Oil based hybrid nanofluid. RSM Viscosity of nanoparticles-
Esfe et.al [37] based oil.
Esfe et al. [38] MgO-MWCNT (75-25%)/10W40 RSM Thermophysical properties
Esfe et.al.[39] Optimization of Viscosity.

Co304/EG (40/60) aqueous nanofluid. RSM
Magsood et.al.[40] CNT nanofluids.
Esfe et al.[41] Multi-walled CNT nanofluids. ANN and RSM Thermophysical properties.

Thermophysical properties.
Water based nanofluids. ANN and RSM
Hidden layer Output Layer
Input / —. Output
e
1 1

10 1
Figure 2. A schematic diagram of an artificial neural network

Many models for determining effective viscosity values have been established in the past. Some researchers, such
as Einstein [42] provided a theoretical model for forecasting nanofluid relative viscosity. When SVF is less than 0.20
percent, the Einstein model (Eq.1) yields more accurate findings, and it is based on the notion that solid suspended
particles in the base fluid are spherical:

Hnr = (1 + 2.50) ppy. (1)

Where W' stands for viscosity, '¢' for SVF, and the abbreviations "nf" and "bf" stand for nanofluid and base fluid,
respectively. Wang et al. [21] also gave the model for estimating relative viscosity shown below

Also, H. De Bruijin[43] proposed a model to predict the relative viscosity of nanofluids containing spherical nanoparticles:

On the other hand, current theoretical models fail to detect the viscosity of nanoparticles. Nanofluids were predicted
by Wang et al (1999) as a function of nanoparticle kind, particle size, volume percent, and temperature. A laboratory-
based study is presented in this paper to analyze the viscosity of a Cobalt Ferrite (40-80°C)/SAE 50 Engine oil based
nanofluid. Temperature and solid volume fraction (SVF) were employed as inputs in an ANN with two related hidden
layers, and viscosity was used as an output. The ANN findings and the experimental results are likewise at variance. After
this, the trial outcomes were compared to the RSM model and the ANN approach.
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2. METHODOLOGY
2.1. X-Ray diffraction and Scanning electron Microscopy
To do this, the sol-gel method [44] was used to create cobalt ferrite nanoparticles (CoFe;O4). The structure was
confirmed using X-Ray diffraction analysis (Fig.3) [45]. The composition of prepared Cobalt spinel ferrite is confirmed
by the EDX [46]. Using the Scherer formula (eq.4), the particle size was measured to be 15 nm. The form and size of the
particles were determined using scanning electron microscopy and the grain size of the particles is analyzed by histogram
(Fig.4) [47].

0.94 A
D= Bcos8’ “4)

where “B” is the full width and half maximum, “A" is the X-ray wavelength, and "0" is the angle suspended.
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Figure 3. XRD pattern of cobalt spinel ferrite Figure 4. (a) SEM image and (b) grain size distribution of cobalt spinel
nanoparticles ferrite nanoparticles

2.2. Surface Modification
To begin, mill the cobalt ferric oxide nanoparticles and then make an 80 ml orthoxylene in a 20 ml oleic acid solution
volume by volume ratio. The Stirring was done of the prepared solution for a few hours to achieve a homogeneous condition.
On the other hand, 2 gm of milled particles, were added to 98 gm of orthoxylene, stirred continuously for surface modification,
and placed on a heated plate. The modified particles are filtered away, and then particles are added to the oleic acid solution.

2.3. Preparation of Nanofluids
The dried powder is then mixed with SAE 50 engine oil in predetermined proportions to make different samples
with varied solid volume fractions, such as 0, 0.25, 0.50, 0.75, and 1.0% solid volume fraction. To make the concentrated
solutions that are necessary, the weight of solid Cobalt nanoparticles and the oil SAE 50 is specified in (Table 2), which
were calculated by using the relation given in (Eq. 5). Stir all the solution samples to obtain the stability of cobalt-based
nanoparticles in engine oil. The experimental work was summarized in a flow chart that was supplied in order to acquire
the greatest understanding of it (Fig.5).

P =—=2 % 100. (%)

mpyp+Mmgi|

Table 2. The composition weights for the preparation of different volume fractions of sample

Number of samples Solid volume fraction (%) Mass of cobalt nanoparticles (g) Mass of oil (g)
1 0.00 0.000 49.83
2 0.25 0.137 49.69
3 0.50 0.275 49.55
4 0.75 0.4125 49.005
5 1.00 0.550 49.77

| Nanofluid preparation by two Step Method |

Preparation of Nanoparticles

[ sot get Auto Combustion Method]

Prcparation of Nanofluid

Weighting and mixing of
nanoparticles powder and enginc oil

I
I

| Weighting and mixing Matterials |
Stirring Constantly
Ultrasonic aggitafion for
Formation of sol Stabilisation

Heat untill formation of gel then
converted into soft powder

Figure 5. Flow chart to represents the preparation of cobalt spinel ferrite-based engine oil based nanofluids in two steps methods

Magnetic Stirring Constantly

Formation of Nanoftluid

Finally, using the free-falling technique, the viscosity of the prepared samples is determined experimentally by using
relation given in (Eq.6).
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n=KT(p; — p2). (6)

where “k” is the proportionality constant, “T” is the average time taken by the free fall body through the fluid between

two fixed points, and “p;”,

p2” are the densities of ball and sample fluid respectively. The experimental viscosity is found

to be correlated with the input parameters temperature and solid volume percent in (Fig. 6).
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Figure 6. Experimental values of viscosity using various volume fractions of cobalt ferrites based nanofluids
with effect of (a) temperature and (b) solid volume fraction

2.4 Artificial Neural Network (ANN)

One of the technologies used to study human brain activity is artificial neural networks. Many numerical methods
inspired by the human brain have been presented in the subject of Artificial Neural Networks. Many industries have used
the models provided to tackle a wide range of scientific and practical issues. There are many other ANN architectures,
such as the well-known multilayer perceptron (MLP). This strategy was used to develop the present neural network. Many
training approaches may be employed to train the ANN, and one of the most prevalent (the Levenberg-Marquardt
approach) is used in this work.

In systems with various input parameters, neural networks are also utilized to anticipate output data. The viscosity
of Cobalt Ferrite/SAE 50 Engine oil based nanofluids was investigated in this research using two input parameters which
are SVF and Temperature. The ANN approach predicts output data by obtaining the problem's input parameters and
training neurons based on a number of inputs and calculating their weight and bias; errors are gathered during the testing
and validation stages. The most optimal ANN structure is shown in (Fig. 7). The ideal structure contains two inputs, nine
neurons in the first hidden layer, five neurons in the second hidden layer, and one output.

First Hidden Layer

Temperature
ity

Solid Volume Fraction
—_—

Figure 7. The design of the most ideal ANN network

The formulas in Eq. 7, 8 and 9 may be used to compute the most efficient number of hidden layers, neuron counts
in each layer, neuron weighting, and the optimal combination of transfer functions.

_1\" 2
MSE = i=1(Tij -PB). @)
n
1
MAE = ﬁzizl(Tij - B), ®)
N (1..-7)% = (P;: —P)?
RZ — z:1=1(T1] T) (Pll P) . (9)

=N (Ty-1)*

where Tj; and Pjj are the expected and estimated values, and the total number of observations is N.

2.5. Mathematical Correlation Model
The exact viscosity of nanofluid cannot be predicted using theoretical models. As a result of analyzing the
experimental data and applying the RSM method, a new quadratic equation for predicting viscosity has been constructed
(Eq. 10). Experimental data was used to predict viscosity changes when SVF and temperature varied, as well as curve
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fitting rates. The correlation coefficient R? of this equation is 0.9663, indicating that the prediction is correct based on the

experimental results.

p=28.62—3.95T+ 0.3412¢ — 0.2504T¢ + 1.25T* — 0.1313¢*+1.25T2—0.1313¢2

(10)

The results acquired by analysis variance indicate the correctness of the expected model using response surface
technique. In the recommended equation (Eq. 7), the relevance of each variable is shown in (Tables 4 and 5). The
parameter's relevance in the equation is high if the p-value is less than 0.05; if the p-value is more than 0.05, the
parameter's importance in the equation is low, and the parameter's effect can be removed from the equation.

Table 4. ANOVA for nanofluid viscosity

Source Square sum Df Square Mean F-value p-value
Design 99.500 5 9.90 576.52 <0.0001 Significant
A-TEMP 93.840 1 93.84 2718.71 <0.0001
B-SVF 0.6983 1 0.6983 20.23 0.0028
AB 0.2508 1 0.2508 7.27 0.0308
A2 4.320 1 4.32 125.24 <0.0001
B? 0.0476 1 0.0476 125.24 0.2785
Residual 0.2416 7 0.0345 1.38
Cor Total 99.740 12
Table 5. The present numerical model's evaluation of variance

Std. Dev. 0.1858 R? 0.9976

Mean 9.14 Adjusted R? 0.9958

CV. % 2.03 Predicted R* 0.9767

Adeq Precision 68.0720

Fig. 8 (a) shows the excellent agreement between the experimental and predicted daya using the RSM developed
model which reveal the accuracy of the developed model.
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Figure 8. Experimental validation with RSM results
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Fig. 8 (b) represent the graph between the deviation bwteen the reference point and viscosity. This graph is provide
the central point (O) of the deviation which ultemetialy gives the overall influence of all process factors on the response
function. The contrast effect of two factors such as solid volume fraction and temperature at the referece point provides
the operating range's of the perturbation presented graph. The residual graph based on run number nad projected data can
be seen in Fig. 8 (c). Only one data points at runs 2 is out from the other data points in between the red lines which is
clear evidence the developed theoretical model has a significant and well adapted to predict the viscosity of the nanofluids.
No abnormality in the random distribution of residuals can be seen in Fig. 8 (d)

3. RESULTS AND DISCUSSION
3.1. ANN Accuracy Evaluation
The coefficients were obtained using the Levenberg-Marquardt learning procedures, which were utilized to train the
network. In this case, the neural network repeats the prediction cycle, altering the weight and bias as well as the training
stage to achieve the desired error rates. In this study, the error value is fully provided in (Table 3), which shows the
relationship between eq. 7 and 9. The fact that R? is so near to 1 (0.9999) demonstrates the constructed neural network's
exceptional accuracy (Fig. 9).
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Figure 9. Confirmation of ANN results with experimental results
Table 3. The results of an ANN model to measure viscosity of cobalt ferrite / SAE 50 Engine Oil
Train Step accuracy analysis
3.896 x 10°° MSE
0.037611 MAE
0.9995 R?
Test step accuracy
0.3122 MSE
4.028138 MAE
0.9946 R?
Total accuracy analysis by ANN predicted topology
0.9941 R?

The experimental data is compared to the ANN's predicted data in the Fig. 10. In this comparison, the trial, train,
and total network data were compared. The ANN's projected values are well-trained, resulting in appropriate test data,
validation, and total data correctness, as shown in this diagram.
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Figure 10. The correlation of intended ANN outputs with the experimental set of data during training, testing, and all data phases

3.2 Prediction Accuracy of Artificial Neural network against Mathematical Model

The validation of the ANN and RSM techniques in estimating viscosity at different temperature and solid volume
fractions is compared in this section. The ANN forecast, on the other side, closely matches the patterns of experimental
results. It can be concluded that the prediction of ANN method is better than the RSM prediction with experimental results.
The outcomes of the ANN and RSM are compared in (Fig.11)
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The relationship average absolute percent deviation (AAD) is used to compare expected and observed data

in (Eq.11).

AAD% = 1 ﬂzlw X 100.
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Eq. 11 specifies the number of experiments (N), experimental calculated viscosity (exp), and expected viscosity
(pre). Calculations revealed that the AAD% is 1.7112%, indicating that the results are accurate. Fig. 12 (a) depicts the
experimental data that back up ANN predictions. Maximum margin of deviation (MOD) percent reported (-7% and 9%).
The symbol placement on the bisector line also indicates whether the experimental data matches the neural network's
predicted outcomes. Fig.12 (b) depicts the experimental data that back up RSM predictions, that’s confirmed the RSM
prediction is correlated with the experimental values. Maximum margin of deviation (MOD) percent reported (-8% and
10%) for RSM. The comparison of MOD% for ANN was observed less than the MOD% observed in RSM, indicates that
the ANN model much better than RSM.

Another method for comparing experimental data with data produced from the suggested correlation is to use Eq.12
to calculate the percentage of data deviation from experimental data.

MOD% = 1 — “Pred
HEXp

(12)

Another comparison chart for nf versus temperature and Solid volume fraction is shown in 3D space to evaluate the trained
ANN method for estimating the viscosity par. (Fig. 13a). Fig. 13b depicts another 3D space for estimating viscosity using the
RSM model. We may deduce from the diagram that a well-trained ANN can be utilized to simulate viscosity. Furthermore,
solid volume fraction has a larger impact on viscosity than temperature, which has a smaller impact on the output values.
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Figure 12. Margin of deviation for RSM and ANN projected data compared with experimental data
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Figure 13. 3D graph of viscosity against temperature and SVF using the (a) ANN and (b) RSM methodology

4. CONCLUSION

Under this research, 25 experimental results for the viscosity of cobalt ferrite/SAE 50 engine oil based nanofluids
in all temperature ranges from 40, 50, 60, 70, and 80°C, at SVFs of 0, 0.25, 0.50, 0.75, and 1.0%, were tried to compare
with the simulated values by the neural network, with their insignificant difference (-7%, +9%) representing a precise
model for forecasting nanofluid viscosity. The sample's viscosity is significantly influenced by the parameters of the
nanoparticle's temperature and solid volume fraction (SVF), therefore an increase in SVF across the range results in a
notable increase in viscosity. For all SVF ranges, rising temperature will result in a decrease in dynamic viscosity. From
a collection of 25 ANN data, the best optimum structure was chosen after analysis by two hidden layers that each had 9
and 5 neurons. For the first and second hidden layers, respectively, logsig and tansig are the ideal transfer functions.
Another appropriate technique to use the RSM method was to build a mathematical relationship between the input
parameters temperature and solid volume percentage. The correlation model's accuracy (R? = 0.9663) was lower than the
neural network model's (R? = 0.9941). Furthermore, the experimental findings were compared to the data collected from
the RSM and neural network data. The gap between experimental and anticipated model data is quite small, with the
greatest difference occurring at temperature 50°C and SVF of 1.0. The MOD% for ANN was observed to be lower than
the MOD% for RSM suggests that ANN is a much better model than RSM for predicting the viscosity.
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IPOTHO3 B'SI3KOCTI HAHOPITMH HA OCHOBI KOFAJIbTOBOI'O ®EPUTY/SAES0 TA MOTOPHOI OJIUBH 3A
JOIMOMOI'OI0 HABUEHOI HITYYHOI HEUTPAJIBHOI MEPEXKI (ANN)
TA METOJIOJIOTTi BIATYKY IIOBEPXHI (RSM)
Mauik Myxamman Xadizyuax®S, Aoayn Padaii®, Cynam Mycrada?, Myxamman Xaumin®,
3y6aiip Axmen Kanxopo®, A6aya Bacim [laiix?, Axmen Aui Papxnyr®
“Incmumym ingpopmamuxu ma mamemamuxu, Yuieepcumem Cinoa, [Joicamwopo, Ilakucman
bKagpeopa dizuxu, Yuisepcumem Kapaui, 75270, Kapaui, Iaxucman
“fenapmamenm mamemamuxu, bBenyoocucmancoruil ynisepcumem ingpopmayiiinux mexnonozii, indcenepii ma meneodcmenmy,
Keemma, Ilaxucman

dKagedpa ¢izuxu, Yuisepcumem ingicenepii ma mexnonoeii NED, 75270, Kapaui, Haxucman
[epenaua Termna 3BUYaliHIMH PiIMHAMY, TAKHMMH SIK YHCTa BOAA, MACJIO Ta CTHUIICHIIIIKOIb, € Hee(EKTHUBHOIO Yepe3 X HU3BKY B'SI3KICTb.
{06 migBuImKTH e(EKTUBHICTH 3BUYAHUX PiZHH, TyKe MU BiICOTOK HAHOYACTUHOK JI0A€ThCs 0 0A30BUX PiMH IS IPUTOTYBaHHS
HAHOPIAMHU. BB 3MiHM B'I3KOCTI MOXKHAa BHKOPHCTOBYBATU VIS JOCII/DKEHHS PEOJIOTTYHUX BIACTHBOCTEH HAHODIIOINIB. Y mpOMY
JociimkeHHi HaHopiauHN HA ocHOBI (CoFe2O4)/MoTOpHA onmBa OyiiM BUTOTOBJIEHI 3a CTAaHIAPTHOIO METOMOJNOTIEI0 y 1Ba eranmd. Ha
nepmiomy ertami CoFe:0s (CF) cuHTe3yBamu 3a JOMOMOTOIO 30Ib-T€lb BOJOIOr0 XiMiYHOrO mporecy. KpucramidHa CTpykTypa Ta
mopooris Oynu MiATBEpKEHI 3a JOMOMOIOI0 peHTreHiBcbkoro audpakmiiiHoro anamizy (XRD) Ta ckaHyouoi eneKTpOHHOI
mikpockorii (SEM), Biamnosiguo. Ha npyromy erami crangapTHa npoueaypa Oyna ananTtoBaHa, B3sBILIH KiJIbKa TBEPAUX 00’ EMHUX 4aCTOK
CF sx @ =0, 0,25, 0,50, 0,75 i 1,0 %. Taxi BiZCOTKM KOHLEHTpaLii IMCHEpryBajd Yy BiNOBIIHOMY 00’€Mi MOTOPHOrO Macnia 3a
JIOIIOMOT'OI0 YJIBTPa3BYKOBOI 00pOOKH mpoTsiroM 5 roauH. I1icis 1boro B'SI3KICTh MiATOTOBICHUX IT'SITH Pi3HUX HAaHO(IIIOINIB BU3HAYAIM
nipu Temmepatypax Bix 40 no 80 °C. BianoBiqHo 10 OTpUMaHKUX JaHUX, B’s3KiCTh HaHO(II0IAIB (Unf) 3MeHIIIyBaIacs B Mipy MiJABUIICHHS
TeMIeparypu, ane 30iTblioyBanacs, Koau 00 eMHHMil BincoTok Hanoduioinis ¢ minsuiryBaBcs. Kpim Toro, Oyino BpaxoBano 25
eKCIIePUMEHTATBHUX CIIOCTEPEKEeHb JUIsl IPOTHO3YBAaHHS B’SI3KOCTI 3a JOMOMOTOI0 IITY4HOI HeiiponHoi Mepexi (ANN) i meromosorii
Binryky mosepxHi (RSM). Anroput™M moOynoBH ineanbHOi apXiTEKTypH IITY4HOI HEHpPOHHOI Mepexi OyB pPEeKOMEHIOBAHWM UL
MPOrHO3YBaHHSI MBUIKOCTI piauau HaHodroiny Ha ocHoBi HadTi CF/SAE-50 3a nomomororo nporpaMuoro 3abesneucuuass MATLAB.
11106 Br3HAYMTH HPABHIBHICTH IPOrHO30BAHOI MOJIENI, OYIJI0 po3paxoBaHO cepenHro kBaapaTnuny nomuwiky (MSE) 0,0136.
Kurwuosi ciioBa: gpepum xobanemy; nano@ioiou, é'szkicms; meepoa 06'emna uacmra;, ANN,; RSM





