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Heat transmission by ordinary fluids such as pure water, oil, and ethylene glycol is inefficient due to their low viscosity. To boost the 
efficiency of conventional fluids, very small percent of nanoparticles are added to the base fluids to prepare nanofluid. The impact of 
changing in viscosity can be used to investigate the rheological properties of nanofluids. In this paper, (CoFe2O4)/engine oil based 
nanofluids were prepared using two steps standard methodology. In first step, CoFe2O4 (CF) were synthesized using the sol-gel wet 
chemical process. The crystalline structure and morphology were confirmed using X-Ray diffraction analysis (XRD) and scanning 
electron microscopy (SEM), respectively. In second step, the standard procedure was adapted by taking several solid volume fractions 
of CF as Ø = 0, 0.25, 0.50, 0.75, and 1.0 %. Such percent of concentrations were dispersed in appropriate volume of engine oil using 
the ultrasonication for 5 h. After date, the viscosity of prepared five different nanofluids were determined at temperatures ranging from 
40 to 80 °C. According to the findings, the viscosity of nanofluids (µnf) decreased as temperature increased while increased when the 
volume percentage of nanofluids Ø raised. Furthermore, total 25 experimental observations were considered to predict viscosity using 
an artificial neural network (ANN) and response surface methodology (RSM). The algorithm for building the ideal ANN architecture 
has been recommended in order to predict the fluid velocity of the CF/SAE-50 oil based nanofluid using MATLAB software. In order 
to determine the validation of the predicted model, the mean square error (MSE) was calculated as 0.0136 which corresponds to the 
predicted data is well correlated with experimental data. 
Keywords: Cobalt Ferrite; Nanofluids; Viscosity; Solid volume fraction; ANN; RSM 
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1. INTRODUCTION
Nanofluid is a form of fluid formed by dispersing nano-sized particles in a base fluid [1]. These nanofluids have 

gotten a lot of interest in the last few decades for their applications in microelectronics, transportation, solar, nuclear, and 
space technology [2].Base fluids such as motor oil, water, and ethylene glycol were commonly employed as heat 
transporting fluids in a variety of industries [3]. By distributing nanoparticles in a normal fluid such as water, motor oil, 
and ethylene glycol, high heat conductive nanofluids  can be formed, according to Choi [4]. The most important attribute 
of a nanofluid is its viscosity, which is related with heat transfer. It is obvious that when the volume percentage of 
nanoparticles increases, convective heat transmission increases [5]. As a result, accurate numbers for nanofluid viscosity 
are critical for industrial nanofluid demand [6]. 

Einstein created analytical methods for forecasting a mixture's viscosity in 1906, Brinkman in 1952, and Batchelor in 
1977, but those models, which are based on the colloidal theory and contain particles on the order of micrometre, failed to 
predict the viscosity of the mixture numerous times. As a result, a new model based on nanofluid viscosity has been proposed. 
The majority of them were based on nanoparticle interfacial layers [7] and Brownian nanofluids nanoparticles in ordinary 
liquids [8]. Brownian motion has been discovered to be the cause of additional energy transmission of nano particles. 
Convection explains the relative mobility between nanoparticles and based fluids, according to Jang and Choi's first model, 
which is based on Brownian motion. Ravi Prasher, on the other hand, demonstrated that Choi and Jang's correlation is 
inaccurate, and he produced a new viscosity of nanofluid correlation [9]. Masoumi et al. construct an enhanced correlation 
[10] for nanofluid viscosity using the Ravi Prasher Correlation [11]. Yang et al. found a temperature influence on the
viscosity of nanofluids. They experimented using graphene as a nanomaterial. They discovered that when temperature rises,
viscosity decreases [12]. Chen et al. investigated the similar impact of MWCNT-distilled water nanofluid at temperatures
ranging from 278 K to 338 K and discovered that beyond 338 K, the viscosity ratio increases dramatically [13].

He and colleagues observed that the viscosity of nanofluid increased with particle size. However, Lu and Fan 
observed that as particle radius grows, so does the viscosity of the nanofluid decreases [14, 15]. Chevalier et al. evaluated 
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the viscosity of SiO2-Ethanol nanofluid for particle sizes  and discovered that the viscosity increases as the diameter of 
the nanoparticles decreases [16]. According to [17] Chevalier et al. experimentally investigated that viscosity increases 
abnormally with increasing volume concentrations. The viscosity of nanofluid grows as the volume concentration 
increases, after the volume concentration of 0.4%, according to Lu and Fan. Chen et al. discovered that viscosity increases 
as the volume concentration increases [18]. According to Mahbubul et al. no correlation can estimate viscosity values 
across a wide range of particle volume concentrations [19]. 

Using various modelling tools, some researchers anticipated the rheological behavior of nanofluid [20] 
To synthesize and assess nanofluid thermophysical characteristics such as viscosity [21] (Fig.1), special equipment 

and experiments, as well as a significant amount of time and money, are required [22]. 

Figure 1. Special apparatus for the preparation of nanofluids 

There are numerous research studies that may be utilized to determine the viscosity of nanofluids. Hajir-Karimi et 
al. investigated the viscosities of several nanoparticles in the temperature range 238.15–343.15 K, using a total number 
of eight nanoparticles, with a nanoparticle volume fraction of up to 9.4%. An effective and precise artificial neural network 
based on genetic algorithm (GA) is modelled for forecasting nanofluid viscosity using computational intelligence 
approaches. To optimize the neural network variables, the genetic algorithm (GA) is applied. As input data for 
computational intelligence models, they employed nanofluid temperature, nanoparticle size, nanoparticle percentage and 
nanofluid density. The nanofluid viscosity was the resulting data. The findings demonstrate that the GA-NN model 
matches the actual data effectively, with an absolute deviation of 2.48 % and a high degree of correlation value 
(R = 0.98).[23]. Majid Gholizadeh et al. properly calculated the viscosity of thermodynamic nanofluids using a robust 
artificial intelligence technique known as random forest (RF). Temperature, solid volume percentage, base fluid viscosity, 
nanoparticle size, and nanoparticle density were used to build the model. In addition, 2890 data points were gathered. 
They utilised (R = 0.989, RMSE = 0.139, MAPE = 4.758 %) rather than the MLP (R = 0.915, RMSE = 0.377, 
MPE = 16.194 %) and the SVR (R = 0.941, RMSE = 0.315, MAPE = 7.895 %) for model accuracy. They produced an 
effective model based on comparative findings with other approaches [24]. Praveen Kanti et al. used a modern 
computational intelligence strategy, ANN and MGGP, to enhance experimentally recorded dynamic viscosity data of 
nanofluids. This study looked at the dynamic viscosity of a water-based stable fly-ash nanofluid and a fly ash–Cu (80-
20 % by volume) hybrid nanofluid at temperatures ranging from 30 to 60°C. The viscosity of flue-ash nanofluid is 
determined utilizing MGGP modeling (R = 0.99988, RMSE = 0.0019, and MAPE = 0.25 %). Furthermore, experiment 
also showed that the MGGP approach excels at predicting flue ash-Cu/Water hybrid nanofluid viscosity (R = 0.9975, 
RMSE = 0.0063, and MAPE = 0.664 %) [25]. Abdullah et al. examined the viscosity of MWCNT-COOH nanoparticles 
in water at temperatures ranging from 20 to 50° C and solid volume fractions ranging from 0 to 0.2%. As a result of the 
experimental results, the unique connection that predicts the relative thermophysical properties of the nanofluids was 
established. An adaptive neuro-fuzzy inference system (ANFIS) and the finest artificial neural network (ANN) were built 
in addition to nonlinear regression for the least prediction error. 120 experimental measurements were submitted to the 
model. Several theoretical models, predicted outcomes, and experimental findings were all compared. ANN has an RMSE 
of 0.46618, but ANFIS has an RMSE of 0.49062, and the mean absolute percentage error (MAPE) of ANN and ANFIS 
is 0.00023 and 0.00047, respectively [26]. To predict the viscosity of nanoparticles, Ahmedi et. al. used optimization 
techniques to simulate the fluid viscosity of silver (Ag)-water nanofluid: multivariable polynomial regression (MPR), 
artificial neural network–multilayer perceptron (ANN-MLP), and multivariate adaptive regression splines (MARS). Size 
of the particles, temperature, and silver nanoparticle concentration are the most essential input elements examined in the 
modelling approach. The ANN-MLP, MARS, and MPR techniques have R² values of 0.9998, 0.9997, and 0.9996, 
respectively.[27] 

By forecasting thermophysical qualities, scholars utilized artificial neural network simulation to perform their 
researches by the least amount of money and time feasible. A summary regarding the various authors have done the work 
using the nanofluids with different mathematical model are shown in Table 1. 

In their investigation the artificial neural network model employed by Baranitharan et al. is presented schematically in 
(Fig. 2). An artificial neural network (ANN) is a computing approach that understands the relationship between input and 
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output by using neurons and their connections. Input neurons send data to buried layer neurons for processing. The data is 
then sent from the hidden neurons to the output neurons for processing. The letters "w" and "b" in this image reflect the 
amount of weight and bias, respectively (Fig. 2). 

Table 1. Summary of the researches conducting by ANN, MLP and RSM using various nanofluids 

Scholar Nanofluid Technique Objective 
Bahirai et al. [30] Several Nanofluids (analysis) ANN and hybrid Al 

algorithm 
Nanofluids thermal 
characteristics. 

Zhao et al. [31] Several Nanofluids (analysis) ANN Predicting the viscosity of a 
substance in order to use it in 
a radiator. 

Vakili et al. [32] Water based grapheme.  MLP-genetic algorithm Viscosity 
Vakili et al. [33] Water based CNT. Levenberg–Marquardt 

algorithm 
Thermal properties  

Heideri et al.[34] Al20Si02 and CuO nanoparticles 
dispersed in water. 

ANN Viscosity

Alirezai et al. [35] 
Esfe et.al. [36] 

Esfe et.al [37] 
Esfe et al. [38] 
Esfe et.al.[39] 

Maqsood et.al.[40] 

Esfe et al.[41] 

Multiwall carbon nanotube.  

Oil based hybrid nanofluid. 

MgO-MWCNT (75–25%)/10W40 

Co3O4/EG (40/60) aqueous nanofluid. 
CNT nanofluids. 

Multi-walled CNT nanofluids. 

Water based nanofluids. 

MLP 

RSM 

RSM 

RSM 

ANN and RSM 

ANN and RSM 

Dynamic Viscosity 

Viscosity of nanoparticles-
based oil. 
Thermophysical properties 
Optimization of Viscosity.  

Thermophysical properties. 
Thermophysical properties. 

Figure 2. A schematic diagram of an artificial neural network 

Many models for determining effective viscosity values have been established in the past. Some researchers, such 
as Einstein [42] provided a theoretical model for forecasting nanofluid relative viscosity. When SVF is less than 0.20 
percent, the Einstein model (Eq.1) yields more accurate findings, and it is based on the notion that solid suspended 
particles in the base fluid are spherical: μ୬ = ሺ1 + 2.5∅ሻμୠ. (1)

Where 'μ' stands for viscosity, 'φ' for SVF, and the abbreviations "nf" and "bf" stand for nanofluid and base fluid, 
respectively. Wang et al. [21] also gave the model for estimating relative viscosity shown below μ୬ = ሺ1 + 7.3∅ + 123∅ଶሻμୠ. (2)

Also, H. De Bruijin[43] proposed a model to predict the relative viscosity of nanofluids containing spherical nanoparticles: μ୬ = ሺ1 − 2.5∅ +  1.552∅ଶሻμୠ. (3)

On the other hand, current theoretical models fail to detect the viscosity of nanoparticles. Nanofluids were predicted 
by Wang et al (1999) as a function of nanoparticle kind, particle size, volume percent, and temperature. A laboratory-
based study is presented in this paper to analyze the viscosity of a Cobalt Ferrite (40-80°C)/SAE 50 Engine oil based 
nanofluid. Temperature and solid volume fraction (SVF) were employed as inputs in an ANN with two related hidden 
layers, and viscosity was used as an output. The ANN findings and the experimental results are likewise at variance. After 
this, the trial outcomes were compared to the RSM model and the ANN approach. 
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2. METHODOLOGY 
2.1. X-Ray diffraction and Scanning electron Microscopy 

To do this, the sol-gel method [44] was used to create cobalt ferrite nanoparticles (CoFe2O4). The structure was 
confirmed using X-Ray diffraction  analysis (Fig.3) [45]. The composition of prepared Cobalt spinel ferrite is confirmed 
by the EDX [46]. Using the Scherer formula (eq.4), the particle size was measured to be 15 nm. The form and size of the 
particles were determined using scanning electron microscopy and the grain size of the particles is analyzed by histogram 
(Fig.4) [47]. 
 D = .ଽସ ஒ ୡ୭ୱ. (4) 

where “β” is the full width and half maximum, “λ" is the X-ray wavelength, and "θ" is the angle suspended. 

  
Figure 3. XRD pattern of cobalt spinel ferrite 
nanoparticles 

Figure 4. (a) SEM image and (b) grain size distribution of cobalt spinel 
ferrite nanoparticles 

 
2.2. Surface Modification 

To begin, mill the cobalt ferric oxide nanoparticles and then make an 80 ml orthoxylene in a 20 ml oleic acid solution 
volume by volume ratio. The Stirring was done of the prepared solution for a few hours to achieve a homogeneous condition. 
On the other hand, 2 gm of milled particles, were added to 98 gm of orthoxylene, stirred continuously for surface modification, 
and placed on a heated plate. The modified particles are filtered away, and then particles are added to the oleic acid solution. 
 

2.3. Preparation of Nanofluids 
The dried powder is then mixed with SAE 50 engine oil in predetermined proportions to make different samples 

with varied solid volume fractions, such as 0, 0.25, 0.50, 0.75, and 1.0% solid volume fraction. To make the concentrated 
solutions that are necessary, the weight of solid Cobalt nanoparticles and the oil SAE 50 is specified in (Table 2), which 
were calculated by using the relation given in (Eq. 5). Stir all the solution samples to obtain the stability of cobalt-based 
nanoparticles in engine oil. The experimental work was summarized in a flow chart that was supplied in order to acquire 
the greatest understanding of it (Fig.5). 

 ∅ = ୫ొౌ୫ొౌା୫ౢ × 100. (5) 

Table 2. The composition weights for the preparation of different volume fractions of sample 

Number of samples Solid volume fraction (%) Mass of cobalt nanoparticles (g) Mass of oil (g) 
1 0.00 0.000 49.83 
2 0.25 0.137 49.69 
3 0.50 0.275 49.55 
4 0.75 0.4125 49.005 
5 1.00 0.550 49.77 

 
Figure 5. Flow chart to represents the preparation of cobalt spinel ferrite-based engine oil based nanofluids in two steps methods 

Finally, using the free-falling technique, the viscosity of the prepared samples is determined experimentally by using 
relation given in (Eq.6). 
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 ƞ = 𝐾𝑇ሺ𝜌ଵ − 𝜌ଶ ሻ. (6) 

where “k” is the proportionality constant, “T” is the average time taken by the free fall body through the fluid between 
two fixed points, and “ρ1”, “ρ2” are the densities of ball and sample fluid respectively. The experimental viscosity is found 
to be correlated with the input parameters temperature and solid volume percent in (Fig. 6). 

 
Figure 6. Experimental values of viscosity using various volume fractions of cobalt ferrites based nanofluids 

with effect of (a) temperature and (b) solid volume fraction 
 

2.4 Artificial Neural Network (ANN) 
One of the technologies used to study human brain activity is artificial neural networks. Many numerical methods 

inspired by the human brain have been presented in the subject of Artificial Neural Networks. Many industries have used 
the models provided to tackle a wide range of scientific and practical issues. There are many other ANN architectures, 
such as the well-known multilayer perceptron (MLP). This strategy was used to develop the present neural network. Many 
training approaches may be employed to train the ANN, and one of the most prevalent (the Levenberg-Marquardt 
approach) is used in this work.  

In systems with various input parameters, neural networks are also utilized to anticipate output data. The viscosity 
of Cobalt Ferrite/SAE 50 Engine oil based nanofluids was investigated in this research using two input parameters which 
are SVF and Temperature. The ANN approach predicts output data by obtaining the problem's input parameters and 
training neurons based on a number of inputs and calculating their weight and bias; errors are gathered during the testing 
and validation stages. The most optimal ANN structure is shown in (Fig. 7). The ideal structure contains two inputs, nine 
neurons in the first hidden layer, five neurons in the second hidden layer, and one output. 

 
Figure 7. The design of the most ideal ANN network 

The formulas in Eq. 7, 8 and 9 may be used to compute the most efficient number of hidden layers, neuron counts 
in each layer, neuron weighting, and the optimal combination of transfer functions. 

 MSE = ଵே ൫𝑇 − P୧୨൯ଶୀଵ , (7) 

 MAE = ଵ ൫T୧୨ − P୧୨൯ୀଵ , (8) 

 Rଶ =  ∑ ൫ౠି൯మ ొసభ ି ൫ౠି൯మ ∑ ൫ౠି൯మ ొసభ  . (9) 

where Tij and Pij are the expected and estimated values, and the total number of observations is N. 
 

2.5. Mathematical Correlation Model 
The exact viscosity of nanofluid cannot be predicted using theoretical models. As a result of analyzing the 

experimental data and applying the RSM method, a new quadratic equation for predicting viscosity has been constructed 
(Eq. 10). Experimental data was used to predict viscosity changes when SVF and temperature varied, as well as curve 
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fitting rates. The correlation coefficient R2 of this equation is 0.9663, indicating that the prediction is correct based on the 
experimental results. μ = 8.62 − 3.95T + 0.3412∅ − 0.2504T∅ + 1.25Tଶ − 0.1313∅ଶ+1.25T2−0.1313∅2 (10) 

The results acquired by analysis variance indicate the correctness of the expected model using response surface 
technique. In the recommended equation (Eq. 7), the relevance of each variable is shown in (Tables 4 and 5). The 
parameter's relevance in the equation is high if the p-value is less than 0.05; if the p-value is more than 0.05, the 
parameter's importance in the equation is low, and the parameter's effect can be removed from the equation.  
Table 4. ANOVA for nanofluid viscosity 

Source Square sum Df Square Mean F-value p-value
Design 99.500 5 9.90 576.52 <0.0001 Significant 
A-TEMP 93.840 1 93.84 2718.71 < 0.0001
B-SVF 0.6983 1 0.6983 20.23 0.0028
AB 0.2508 1 0.2508 7.27 0.0308
A² 4.320 1 4.32 125.24 < 0.0001
B² 0.0476 1 0.0476 125.24 0.2785
Residual 0.2416 7 0.0345 1.38
Cor Total 99.740 12

Table 5. The present numerical model's evaluation of variance 

Std. Dev. 0.1858 R² 0.9976 
Mean 9.14 Adjusted R² 0.9958 
C.V. % 2.03 Predicted R² 0.9767 

Adeq Precision 68.0720 

Fig. 8 (a) shows the excellent agreement between the experimental and predicted daya using the RSM developed 
model which reveal the accuracy of the developed model. 

Figure 8. Experimental validation with RSM results 
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Fig. 8 (b) represent the graph between the deviation bwteen the reference point and viscosity. This graph is provide 
the central point (O) of the deviation which ultemetialy gives the overall influence of all process factors on the response 
function. The contrast effect of two factors such as solid volume fraction and temperature at the referece point provides 
the operating range's of the perturbation presented graph.  The residual graph based on run number nad projected data can 
be seen in Fig. 8 (c). Only one data points at runs 2 is out from the other data points in between the red lines which is 
clear evidence the developed theoretical model has a significant and well adapted to predict the viscosity of the nanofluids. 
No abnormality in the random distribution of residuals can be seen in Fig. 8 (d) 
 

3. RESULTS AND DISCUSSION 
3.1. ANN Accuracy Evaluation 

The coefficients were obtained using the Levenberg-Marquardt learning procedures, which were utilized to train the 
network. In this case, the neural network repeats the prediction cycle, altering the weight and bias as well as the training 
stage to achieve the desired error rates. In this study, the error value is fully provided in (Table 3), which shows the 
relationship between eq. 7 and 9. The fact that R2 is so near to 1 (0.9999) demonstrates the constructed neural network's 
exceptional accuracy (Fig. 9). 

 
Figure 9. Confirmation of ANN results with experimental results 

Table 3. The results of an ANN model to measure viscosity of cobalt ferrite / SAE 50 Engine Oil  

Train Step accuracy analysis   

3.896 x 10-6 MSE 
0.037611 MAE 
0.9995 R2 
Test step accuracy  
0.3122 MSE 
4.028138 MAE 
0.9946 R2 
Total accuracy analysis by ANN predicted topology   
0.9941 R2 

 

The experimental data is compared to the ANN's predicted data in the Fig. 10. In this comparison, the trial, train, 
and total network data were compared. The ANN's projected values are well-trained, resulting in appropriate test data, 
validation, and total data correctness, as shown in this diagram. 
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Figure 10. The correlation of intended ANN outputs with the experimental set of data during training, testing, and all data phases 

3.2 Prediction Accuracy of Artificial Neural network against Mathematical Model 
The validation of the ANN and RSM techniques in estimating viscosity at different temperature and solid volume 

fractions is compared in this section. The ANN forecast, on the other side, closely matches the patterns of experimental 
results. It can be concluded that the prediction of ANN method is better than the RSM prediction with experimental results. 
The outcomes of the ANN and RSM are compared in (Fig.11) 

Figure 11. RSM and ANN predictions of viscosity compared with experimental values 

The relationship average absolute percent deviation (AAD) is used to compare expected and observed data 
in (Eq.11). AAD% = ଵே ∑ ஜ ୣ୶୮ିஜ  ୮୰ୣஜ ୣ୶୮  𝑋 100ୀଵ . (11)
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Eq. 11 specifies the number of experiments (N), experimental calculated viscosity (exp), and expected viscosity 
(pre). Calculations revealed that the AAD% is 1.7112%, indicating that the results are accurate. Fig. 12 (a) depicts the 
experimental data that back up ANN predictions. Maximum margin of deviation (MOD) percent reported (-7% and 9%). 
The symbol placement on the bisector line also indicates whether the experimental data matches the neural network's 
predicted outcomes. Fig.12 (b) depicts the experimental data that back up RSM predictions, that’s confirmed the RSM 
prediction is correlated with the experimental values. Maximum margin of deviation (MOD) percent reported (-8% and 
10%) for RSM. The comparison of MOD% for ANN was observed less than the MOD% observed in RSM, indicates that 
the ANN model much better than RSM. 

Another method for comparing experimental data with data produced from the suggested correlation is to use Eq.12 
to calculate the percentage of data deviation from experimental data. 

 MOD% = 1 − ஜ୰ୣୢஜ୶୮ . (12) 

Another comparison chart for nf versus temperature and Solid volume fraction is shown in 3D space to evaluate the trained 
ANN method for estimating the viscosity µnf. (Fig. 13a). Fig. 13b depicts another 3D space for estimating viscosity using the 
RSM model. We may deduce from the diagram that a well-trained ANN can be utilized to simulate viscosity. Furthermore, 
solid volume fraction has a larger impact on viscosity than temperature, which has a smaller impact on the output values. 

 
Figure 12. Margin of deviation for RSM and ANN projected data compared with experimental data 

 

 
Figure 13. 3D graph of viscosity against temperature and SVF using the (a) ANN and (b) RSM methodology 

 
4. CONCLUSION 

Under this research, 25 experimental results for the viscosity of cobalt ferrite/SAE 50 engine oil based nanofluids 
in all temperature ranges from 40, 50, 60, 70, and 80°C, at SVFs of 0, 0.25, 0.50, 0.75, and 1.0%, were tried to compare 
with the simulated values by the neural network, with their insignificant difference (-7%, +9%) representing a precise 
model for forecasting nanofluid viscosity. The sample's viscosity is significantly influenced by the parameters of the 
nanoparticle's temperature and solid volume fraction (SVF), therefore an increase in SVF across the range results in a 
notable increase in viscosity. For all SVF ranges, rising temperature will result in a decrease in dynamic viscosity. From 
a collection of 25 ANN data, the best optimum structure was chosen after analysis by two hidden layers that each had 9 
and 5 neurons. For the first and second hidden layers, respectively, logsig and tansig are the ideal transfer functions. 
Another appropriate technique to use the RSM method was to build a mathematical relationship between the input 
parameters temperature and solid volume percentage. The correlation model's accuracy (R2 = 0.9663) was lower than the 
neural network model's (R2 = 0.9941). Furthermore, the experimental findings were compared to the data collected from 
the RSM and neural network data. The gap between experimental and anticipated model data is quite small, with the 
greatest difference occurring at temperature 50°C and SVF of 1.0. The MOD% for ANN was observed to be lower than 
the MOD% for RSM suggests that ANN is a much better model than RSM for predicting the viscosity. 
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ПРОГНОЗ В'ЯЗКОСТІ НАНОРІДИН НА ОСНОВІ КОБАЛЬТОВОГО ФЕРИТУ/SAE50 ТА МОТОРНОЇ ОЛИВИ ЗА 

ДОПОМОГОЮ НАВЧЕНОЇ ШТУЧНОЇ НЕЙТРАЛЬНОЇ МЕРЕЖІ (ANN) 
ТА МЕТОДОЛОГІЇ ВІДГУКУ ПОВЕРХНІ (RSM) 

Малік Мухаммад Хафізуллахa,c, Абдул Рафайb, Гулам Мустафаd, Мухаммад Халідb, 
Зубайр Ахмед Калхороc, Абдул Васім Шайхa, Ахмед Алі Раджпутb 

aІнститут інформатики та математики, Університет Сінда, Джамшоро, Пакистан 
bКафедра фізики, Університет Карачі, 75270, Карачі, Пакистан 
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Передача тепла звичайними рідинами, такими як чиста вода, масло та етиленгліколь, є неефективною через їх низьку в'язкість. 
Щоб підвищити ефективність звичайних рідин, дуже малий відсоток наночастинок додається до базових рідин для приготування 
нанорідини. Вплив зміни в'язкості можна використовувати для дослідження реологічних властивостей нанофлюїдів. У цьому 
дослідженні нанорідини на основі (CoFe2O4)/моторна олива були виготовлені за стандартною методологією у два етапи. На 
першому етапі CoFe2O4 (CF) синтезували за допомогою золь-гель вологого хімічного процесу. Кристалічна структура та 
морфологія були підтверджені за допомогою рентгенівського дифракційного аналізу (XRD) та скануючої електронної 
мікроскопії (SEM), відповідно. На другому етапі стандартна процедура була адаптована, взявши кілька твердих об’ємних часток 
CF як Ø = 0, 0,25, 0,50, 0,75 і 1,0 %. Такі відсотки концентрацій диспергували у відповідному об’ємі моторного масла за 
допомогою ультразвукової обробки протягом 5 годин. Після цього в'язкість підготовлених п'яти різних нанофлюїдів визначали 
при температурах від 40 до 80 °C. Відповідно до отриманих даних, в’язкість нанофлюїдів (µnf) зменшувалася в міру підвищення 
температури, але збільшувалася, коли об’ємний відсоток нанофлюїдів Ø підвищувався. Крім того, було враховано 25 
експериментальних спостережень для прогнозування в’язкості за допомогою штучної нейронної мережі (ANN) і методології 
відгуку поверхні (RSM). Алгоритм побудови ідеальної архітектури штучної нейронної мережі був рекомендований для 
прогнозування швидкості рідини нанофлюїду на основі нафти CF/SAE-50 за допомогою програмного забезпечення MATLAB. 
Щоб визначити правильність прогнозованої моделі, було розраховано середню квадратичну помилку (MSE) 0,0136. 
Ключові слова: ферит кобальту; нанофлюїди; в'язкість; тверда об'ємна частка; ANN; RSM 




