HOLE-HOLE COLLECTIVE EXCITATIONS IN 106, 112, 130Sn ISOTOPES[†]

Fahima A. Saber, Ali H. Taqi*

Department of Physics, College of Science, Kirkuk University, Kirkuk, Iraq *Corresponding Author e-mail: alitaqi@uokirkuk.edu.iq Received April 24, 2023; revised May 9, 2023; accepted May 10, 2023

In this paper, energy-level schemes of neutron rich and reduced electric transition strengths of Tin isotopes ¹⁰⁶Sn, ¹¹²Sn and ¹³⁰Sn were studied using collective models, i.e., hole-hole Tamm-Dancoff Approximation (*hh* TDA) and hole-hole Random Phase Approximation (*hh* RPA). According to these models, the excited states of closed core *A*-2 systems with multipolarity *J* and isospin *T* can be described as a linear combination of hole-hole (*hh*) pairs. Therefore, in our approach, the low-lying states of the investigated isotopes ¹⁰⁶Sn, ¹¹²Sn and ¹³⁰Sn are obtained by acting two-hole operators on a correlated core ¹⁰⁸Sn, ¹¹⁴Sn and ¹³²Sn, respectively. The Hamiltonian is diagonalized within the model space include {1g_{7/2}, 2d_{5/2}, 2d_{3/2}, 3s_{1/2} and 1h_{11/2}} orbits, using the matrix elements of neutron-neutron (N-N) interaction and modified surface delta interaction (MSDI). The *hh* TDA and *hh* RPA are checked by using the resultant eigenvalues and eigenvectors to calculate the excitation energies and reduced electric transition strengths. A comparison had been made between our theoretical predictions and the recent available experimental data. Reasonable agreements were obtained from these comparisons.

Keywords: energy-level schemes; collective excitations; hh RPA; hh TDA

PACS: 21.00.00; 21.60.Ev; 21.60.Cs; 21.60.-n; 21.10.Pc.

1. INTRODUCTION

The study of the Sn isotopes is intriguing from a theoretical perspective because they provide a special testing ground for calculations of nuclear structure. In the literature, several theories have been proposed to explain the shell model calculations, for neutron-deficient Sn isotopes by Engeland et al. [1], Covello et al. [2] and Schubert et al. [3] taking ¹⁰⁰Sn as core, for ^{106,107,108,109}Sn isotopes using CD-Bonn and Nijmegen1 interactions by E. Dikman [4], for exotic ^{134,136,138,140}Sn isotopes with a realistic effective interaction [5], for even ¹⁰²⁻¹⁰⁸Sn and odd ^{103–107}Sn isotopes using different interactions by T. Trivedi, et.al. [6], for ^{104,106,108}Sn based on the CD-Bonn nucleon-nucleon interaction by Khalid S. Jassim [7], for even-even ¹⁰⁰⁻¹⁰⁸Sn isotopes by with the effective interactions Snet, SN100PN Delta interaction by Khalid H.H. Al-Attiah et.al. [8].

Fouad A. Majeed and Sarah M. calculated the energy levels, binding energy, and reduced transition probabilities $B(E2;0^+ \rightarrow 2^+)$ for even-even ^{134, 136}Sn, and ^{134, 136}Te around doubly magic core ¹³²Sn by using shell model code Nushellx@MSU for Windows and employing the effective interactions jj56pna, jj56pnb, kh5082, cw5082, jj56cdb, and khhe [9]. Fatema H. Obeed and Baneen S. Abed, used the surface delta and modified surface delta interactions by applying the nuclear shell model to calculate values of excitation energies for isotopes of equal mass number containing two nucleons outside the closed core ¹¹⁴Sn, these nuclei are; the isotope (Tin) ¹¹⁶Sn contains two neutrons within the model space ($3s_{1/2}, 2d_{3/2}, 1h_{11/2}$) and the other isotope is ¹¹⁶Te (Tellurium) contains two protons within the model space ($1g_{7/2}, 2d_{3/2}, 3s_{1/2}, 2d_{3/2}, 1h_{11/2}$) [10]. A. K. Hasan et al., investigated on the energy levels and transition probabilities $B(E2; \downarrow)$ and $B(M1; \downarrow)$ for ^{21,23}Na isotopes by using the (USDA and USDB) interactions in the (*sd*-shell) model space [11]. S. Akkoyun, investigated the nuclear structure properties of A=49 isobars, the double-magic ⁴⁰Ca nucleus was considered an inert core, and fp model space was taken into account for the valance nucleons [12]. In 2022, Mustafa M. Jabbar and Fatema H. Obeed, used the surface delta and modified surface delta interactions by applying the nuclear shell model to calculate values of excitation energies for ⁹²Nb and ⁹²Mo [13].

One of the significant and practical models that became a widely accepted theoretical model in the nuclear physics structure is the nuclear shell model [14, 10]. According to the Pauli principle, we fill the shells in this model in order of increasing energy, resulting in an inert core of filled shells and a certain number of valence nucleons. The model then presupposes that the valence nucleons are primarily responsible for determining nuclear properties [16].

The excited states of A-2 nuclei can be characterized as a linear combination of hole-hole (hh) pairs, such an approximation named Tamm-Dancoff Approximation hh TDA [17, 18]. When the ground states and excited states are treated more symmetrically, i.e., both the ground state and the excited states may be characterized as linear combinations of hole-hole states, both the ground state and the excited states are treated equally in this scenario, such an approximation is referred as the hole-hole Random Phase Approximation hh RPA [19-21].

In this paper, hole-hole excitations of some ^{106, 112, 130}Sn (Z=50) isotopes were investigated using PPRPA code version 1, 2015 [22] in the presence of MSDI and N-N interactions. Our approach assumes that the low-lying states of ¹⁰⁶Sn, ¹¹²Sn and ¹³⁰Sn by acting two-hole operators on a correlated core ¹⁰⁸Sn, ¹¹⁴Sn and ¹³²Sn, respectively. A comparison had been made between our theoretical predictions and the recent available experimental data.

2. THEORY

A TDA generalization is the RPA. Bohm and Pines first presented this approach for investigating the plasma oscillations of the electron gas [20]. By using annihilation operators on the ground state $|A,0\rangle$ of the A-nucleon system, collective excited states of A-2 systems with multipolarity J and isospin T are produced [24],

[†] Cite as: F.A. Saber, and Ali H. Taqi, East Eur. J. Phys. 2, 329 (2023), https://doi.org/10.26565/2312-4334-2023-2-38
© F.A. Saber, A.H. Taqi, 2023

$$|A - 2,\lambda, JT\rangle = \left(\sum_{i \le j} X_{ij}^{\lambda,JT} a_i a_j - \sum_{m \le n} Y_{mn}^{\lambda,JT} a_m a_n\right) |A,0\rangle \tag{1}$$

where a is annihilation operator, X and Y are amplitudes. indices ij and mn represent the quantum numbers of hole and particle stats, respectively. The compact matrix form of hh RPA equations has the following form [23, 24],

$$\begin{pmatrix} A_{iji'j'}^{\lambda,JT} & B_{ijmn}^{\lambda,JT} \\ B_{ijmn}^{\dagger,\lambda,JT} & C_{mnm'n'}^{\lambda,JT} \end{pmatrix} \begin{pmatrix} X_{ij}^{\lambda,JT} \\ Y_{mn}^{\lambda,JT} \end{pmatrix} = E_x \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X_{ij}^{\lambda,JT} \\ Y_{mn}^{\lambda,JT} \end{pmatrix}$$
(2)

with

$$A_{iji'j'}^{\lambda,JT} = -(\varepsilon_i + \varepsilon_j)\delta_{ii'}\delta_{jj'} + V_{iji'j'}$$
$$B_{ijmn}^{\lambda,JT} = -V_{ijmn}$$
$$C_{mnm'n'}^{\lambda,JT} = (\varepsilon_m + \varepsilon_n)\delta_{mm'}\delta_{nn'} + V_{mnm'n'}$$
(3)

where E_x is the excitation energy, ε_i is single particle energy and V_{ijmn} is antisymmetrized two-body matrix elements. A, B and C are submatrices of dimensions $n_h \times n_h$, $n_h \times n_p$, $n_p \times n_p$, respectively. If the sub-matrices C and B are vanished, the RPA equations will be reduced to TDA equation.

The antisymmetric matrix elements of the modified surface delta interaction (MSDI) used in this work has the form [25],

$$V_{ab,cd}^{JT} = \frac{1}{2} A_T (-1)^{n_a + n_b + n_c + n_d} \times \sqrt{\frac{(2j_a + 1)(2j_b + 1)(2j_c + 1)(2j_d + 1)}{(1 + \delta_{ab})(1 + \delta_{cd})}} \times \left\{ (-1)^{j_a + j_b + j_c + j_d} \begin{pmatrix} j_a & j_b & J \\ \frac{1}{2} & \frac{-1}{2} & 0 \end{pmatrix} \times \begin{pmatrix} j_c & j_d & J \\ \frac{1}{2} & \frac{-1}{2} & 0 \end{pmatrix} [1 - (-1)^{J + T + l_c + l_d}] - \begin{pmatrix} j_a & j_b & J \\ \frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} j_c & j_d & J \\ \frac{1}{2} & \frac{1}{2} & -1 \end{pmatrix} [1 + (-1)^T] + \{[2T(T + 1) - 3]B + C\}\delta_{ac}\delta_{bd} \right\}$$
(4)

where A_0, A_1, B and C are the strength parameters of the (MSDI) and $A_0 = 0$ or 1 for T = 0 (isoscalar) or T = 1 (isovector), respectively.

In terms of RPA amplitudes X and Y, the radial transition density of state $|\tau, JT\rangle$ is [20,21],

$$\rho_{\tau,JT} = \sqrt{\frac{2T+1}{8\pi(2J_i+1)}} e(T) \sum_{T=0,1} (-)^{T_f - T_z} \begin{pmatrix} T_f & T & T_i \\ -T_z & 0 & T_z \end{pmatrix} \times \sum_{ab} [X_{ab}^{\omega,JT} + Y_{ab}^{\omega,JT}] \langle a \| Y_j \| b \rangle R_{n_{a\ell_a}}(r) R_{n_{b\ell_b}}(r)$$
(5)

Where $e(T) = e\left(\frac{1}{2}\right) + (-1)^T e\left(-\frac{1}{2}\right)$, $T_z = \frac{A-N}{2}$. The reduced matrix elements of spherical harmonic can be written as [20],

$$\langle a \| Y_{J} \| b \rangle = (-1)^{j_{a} + \frac{1}{2}} \sqrt{\frac{(2j_{a} + 1)(2j_{b} + 1)(2J + 1)}{4\pi}} \times \begin{pmatrix} j_{a} & J & j_{b} \\ \frac{1}{2} & 0 & -\frac{1}{2} \end{pmatrix}^{\frac{1}{2}} [1 - (-1)^{\ell_{a} + J + \ell_{b}}]$$
(6)

and the radial wave function R of harmonic oscillator potential is given by [6],

$$R_{n\ell} = \frac{1}{(2\ell+1)!!} \sqrt{\frac{2^{\ell-n+3}(2n+2\ell-1)}{b^3 \pi^{\frac{1}{2}}(n-1)!}} \left(\frac{r}{b}\right)^{\ell} e^{-\frac{r^2}{2b^2}} \times \sum_{k=0}^{n=1} (-1)^k \frac{(n-1)!2^k}{(n-k-1)!k!} \frac{(2\ell+1)!!}{(2\ell+2k+1)!!} \left(\frac{r}{b}\right)^{2k}$$
(7)

Thus, the reduced transition probability becomes [22],

$$B(EJ) = (2J+1) \left| \int r^{J+2} \rho_{\tau,JT} dr \right|^2$$
(8)

3. RESULTS AND DISCUSSIONS

In the present study, the nuclear structures of Tin isotopes: ¹⁰⁶Sn, ¹¹²Sn, ¹³⁰Sn are studied in the framework of *hh* TDA and *hh* RPA using PPRPA code version 1, 2015 [22]. The Hamiltonian is diagonalized within the model space include {1g_{7/2}, 2d_{5/2}, 2d_{3/2}, 3s_{1/2} and 1h_{11/2}} orbits, using N-N interaction and modified surface delta interaction (MSDI), by choosing the coefficients values of the interaction strengths A_T by the values of {A₁ = 0.40 MeV, A₂=0.42 MeV, B = 0.5 MeV, C = 0 MeV} for ¹⁰⁶Sn, {A₁ = 0.20 MeV, A₂=0.35 MeV, B = 0.0 MeV, C = 0.0 MeV} for ¹¹²Sn and {A₁ = 0.20 MeV, A₂=0.25 MeV, B = 0.0 MeV, B = 0.0 MeV} for ¹³⁰Sn are obtained by acting *hh* operator on a correlated core of ¹¹⁴Sn isotope, of ¹³⁰Sn are obtained by acting *hh* operator on a correlated core of ¹³²Sn isotope. The single particle energies are given in Table 1.

Table 1.	. Single	particle er	ergies us	sed in	different	shell	model	approach	ies.

Orbits (nlj)	S.P. Energy (MeV)
1g7/2	5.6014
2d5/2	5.2819
2d _{3/2}	3.7090
$3s_{1/2}$	3.7077
$1h_{11/2}$	3.9843

The calculated eigenvalues and experimentally known energy levels for 106 Sn and 112 Sn are tabulated in Tables 2 and 3, and are also plotted in Figs. 1 and 2. The *hh* RPA results are plotted in columns (second and third) for both interactions MSDI and N-N respectively, while the *hh* TDA results are plotted in columns (fourth and fifth) for both interactions MSDI and N-N respectively. The calculated results are compared with the experimental data (first column). Both the interactions predict very well the ordering of levels.

Table 2. Our calculated low-lying states (MeV) of ¹⁰⁶Sn using MSDI and N-N interactions for the *hh* RPA and *hh* TDA in comparison with the experimental data [26].

Jπ	EXP.	J ^π	RPA, MSDI	Jπ	RPA, N-N	Jπ	TDA, MSDI	Jπ	TDA, N-N
0+	0	0+	0	0+	0	0+	0	0+	0
2+	1.208	1+	1.201	1+	0.638	1+	0.842	1+	0.635
4+	2.019	7+	1.532	7+	0.968	7+	1.027	7+	0.821
6+	2.325	2+	1.74	2+	1.173	2+	1.28	2+	1.035
		3+	1.768	3+	1.205	3+	1.285	3+	1.079
		5+	1.807	5+	1.244	5+	1.304	5+	1.098
		4+	1.979	4+	1.617	4+	1.484	4+	1.472
		6+	2.086	6+	1.796	6+	1.582	6+	1.648

Table 3. Our calculated low-lying states (MeV) of ¹¹²Sn using MSDI and N-N interactions for the *hh* RPA and *hh* TDA in comparison with the experimental data [26].

Jπ	EXP.	Jπ	RPA, MSDI	Jπ	RPA, N-N	Jπ	TDA MSDI	J^{π}	TDA, N-N
0+	0	0+	0	0+	0	0+	0	0+	0
2+	1.256	1+	1.408	1+	0.772	1+	1.064	1+	0.637
2+	2.15	2+	2.113	2+	1.522	2+	1.729	2+	1.327
4+	2.247	2+	2.568	2+	1.932	2+	2.161	2+	1.733
2+	2.476	4+	2.692	0+	2.024	4+	2.279	4+	1.852
6+	2.549	6+	2.706	4+	2.056	6+	2.293	0+	1.855
0+	2.617	3+	2.735	6+	2.263	0+	2.618	6+	2.061
3+	2.756	4+	2.83	2+	2.377	3+	2.703	2+	2.192
4+	2.783	2+	2.895	3+	2.478	2+	2.736	3+	2.276
		0+	3.025	4+	2.592	4+	2.802	4+	2.391

Figure 1. Energy level scheme of ¹⁰⁶Sn using MSDI and N-N interactions for the *hh* RPA and *hh* TDA in comparison with the experimental data [26].

For ¹⁰⁶Sn, Experimentally, only few excited states with $J^{\pi}=2^+$, 4^+ and 6^+ are known, *hh* TDA and *hh* RPA calculations for MSDI and N-N predicted more states than those of experimental data. See Fig. 1.

For ¹¹²Sn the obtained theoretical energy level for 1^+ cannot be predicted by experiment. For example, the first experimental 2^+ excited states occur at 1.256 MeV, while using *hh* RPA with the MSDI this state was found at 2.113 MeV, but with the N-N interaction the same state was found at 1.522 MeV, and using *hh* TDA with the MSDI this state was found at 1.729 MeV, but with the N-N interaction the same state was found at 1.327 MeV.

Figure 2. Energy level scheme of ¹¹²Sn using MSDI and N-N interactions for the *hh* RPA and *hh* TDA in comparison with the experimental data [26].

In Table 4, we have tabulated all the calculated eigenvalues and experimentally known levels for ¹³⁰Sn and corresponding energy levels are also plotted in Fig. 3.

Table 4. Our calculated low-lying states (MeV) of ¹³⁰Sn using MSDI and N-N interactions for the *hh* TDA in comparison with the experimental data [26].

J ^π	EXP.	Jπ	TDA, MSDI	Jπ	TDA, N-N	
0+	0	0+	0	0+	0	
2+	1.221	1+	1.081	1+	1.222	
2+	2.028	2+	1.847	2+	1.933	
6+	2.256	4+	2.257	6+	2.378	
4+	2.490	5+	2.274	5+	2.415	
4+,5+	2.492	2+	2.298	2+	2.438	
3+	3.167	6+	2.367	4+	2.442	
4+	3.425	4+	2.544	4+	2.684	
2-	4.119	3+	2.986	3+	3.126	
9-	4.206	4+	3.145	4+	3.242	
3-	4.224	9-	3.811	2-	3.633	
4+	4.405	2-	4.184	9-	3.951	
4+	4.463	3-	4.222	3-	4.226	
4+	5.262	4+	4.459	4+	4.275	
		4+	4.460	4+	4.640	
		4+	5.688	4+	5.768	

The *hh* TDA results are plotted in columns (second and third) for both interactions MSDI and N-N respectively. The calculated results are compared with the experimental data [26] (first column).

For ¹³⁰Sn, one gets the ground state and low-lying excited states very nicely for both interactions (MSDI and N-N). But the obtained theoretical energy level for 1⁺ is not recorded by experiment.

Table 5 gives the calculated values of the reduced electric transition strengths B(E2) of transition $4^+ \rightarrow 2^+$ for the investigated isotopes without and with the effective charge's $e_p = 1.5e$ and $e_n = 0.5e$. Good agreements were obtained.

Figure 3. energy levels scheme of ¹³⁰Sn isotope using *hh* TDA with MSDI and N-N interactions in comparison with the experimental energies [26]

 Table 5. reduced electric transition strengths B(E2) in units (e².fm⁴) based on particle-particle calculations using different effective charge values.

Isotono	Exp.	TDA		R	PA	Effective charges	
Isotope		MSDI	N-N	MSDI	N-N	ep	en
1060	811	470	470	450	480	1.0	0.0
Sil		930	930	890	960	1.5	0.5
¹¹² Sn	990	340	460	350	470	1.0	0.0
		670	910	690	950	1.5	0.5
	1264	450	480	440	510	1.0	0.0
		910	960	890	1000	1.5	0.5
¹³⁰ Sn	774	500	600			1.0	0.0
		990	1200			1.5	0.5

4. CONCLUSIONS

When the Hamiltonian is diagonalized in the presence of N-N interactions and modifies surface delta interactions (MSDI), the calculated results of *hh* RPA and *hh* TDA are obtained in reasonable agreements to those of experimental data for the investigated Sn isotopes. Both the interactions predict very well the ordering of levels. But for ¹⁰⁶Sn, the N-N interaction have the same experimental 2^+ state. The ground states of ¹¹²Sn and ¹³⁰Sn are very nicely predicted. The calculated electric transition strengths B(E2) for the investigated isotopes are well-obtained for the transition $4^+ \rightarrow 2^+$.

ORCID ID

[®]Ali H. Taqi, https://orcid.org/0000-0001-5007-4858, [®]Fahima A. Saber, https://orcid.org/0009-0001-6804-2915

REFERENCES

- T. Engeland, M. Hjorth-Jensen, A. Holt, and E. Osnes, "Large Shell Model Calculations with Realistic Effective Interaction," Physica Scripta, 1995(T56), 58 (1995). https://doi.org/10.1088/0031-8949/1995/T56/009
- [2] A. Covello, F. Andreozzi, L. Coraggio and A. Gargano, T.T.S. Kuo, and A. Porrino, "Nuclear Structure Calculations With Realistic Effective Interactions", Progress in Particle And Nuclear Physics, 38, 165 (1997). https://doi.org/10.1016/S0146-6410(97)00023-9
- [3] R. Schubart, H. Grawe, J. Heese, H. Kluge, K. H. Maier, and M. Schramm, "Shell Model Structure at ¹⁰⁰Sn the Nuclides ⁹⁸Ag, ¹⁰³In, and ^{104, 105}Sn", Zeitschrift Für Physik A Hadrons And Nuclei, **352**, 373-390 (1995). https://doi.org/10.1007/BF01299755
- [4] E. Dikmen, "Shell Model Description of Neutron-Deficient Sn Isotopes," Communications in Theoretical Physics, 51(5), 899 (2009). https://doi.org/10.1088/0253-6102/51/5/28
- [5] A. Covello, L. Coraggio, A. Gargano, and N. Itaco, "Shell-model study of exotic Sn isotopes with a realistic effective interaction," Journal of Physics: Conference Series, 267, 012019 (2011). https://doi.org/10.1088/1742-6596/267/1/012019
- [6] T. Trivedi, P.C. Srivastava, D. Negi, and I. Mehrotra, "Shell Model Description of ¹⁰²⁻¹⁰⁸Sn Isotopes," International Journal of Modern Physics E, 21(4), 1250049 (2012). https://doi.org/10.1142/S0218301312500498
- [7] K.S. Jassim, "Nuclear Structure of ^{104,106,108}Sn Isotopes Using the Nushell Computer Code," Chinese Journal of Physics, 51(3), 441 (2013). https://cdnx.uobabylon.edu.iq/research/repository1_publication889_30_1533.pdf
- [8] K.H.H. Al-Attiah, F.A. Majeed, and T.J. Al-Kawwaz, "Calaculations of Even-Even ¹⁰⁰⁻¹⁰⁸Sn Isotopes Using Shell Model in the Vicinity of ¹⁰⁰Sn," Journal of Babylon University/Pure and Applied Sciences, 21(8), 2831(2013). https://iasj.net/iasj/pdf/75f920c6c56d7091

- [9] F.A. Majeed, and S.M. Obaid, "Large-Scale Shell Model Calculations of ^{134,136}Sn, ^{134,136}Te around doubly-magic ¹³²Sn", International Journal of Scientific & Technology Research, 5(4), 106(2016). https://www.ijstr.org/final-print/apr2016/Largescale-Shell-Model-Calculations-Of-134136sn-134136te-Around-Doubly-magic-132sn.pdf
- [10] F.H. Obeed, and B.S. Abed, "Study of energy spectrum of ¹¹⁶Sn and ¹¹⁶Te nuclei by using surface delta and modified surface delta interactions", Journal of Physics: Conference Series 1664, 012145 (2020). https://doi.org/10.1088/1742-6596/1664/1/012145
- [11] A.K. Hasan, F.H. Obeed, and A.N. Rahim, "Positive Parity Levels of ^{21,23}Na Isotopes by Using the Nuclear Shell", Ukrainian Journal of Physics, 65(1), 3(2020). https://doi.org/10.15407/ujpe65.1.3
- [12] S. Akkoyun, "Nuclear Shell Model Calculations for A=49 Isobars", Turkish Journal of Science and health, 1(2), 3(2020). https://dergipark.org.tr/en/download/article-file/1178106
- [13] M.M. Jabbar, and F.H. Obeed, "Description of the energy levels and electric quadrupole transitions of the ⁹²Nb and ⁹²Mo nuclei using nuclear shell model", Kuwait Journal of Science, 49(2), 1 (2022). https://doi.org/10.48129/kjs.13631
- [14] I. Kaplan, Nuclear Physics, (Addison Wesley Pub.Com. Inc, 1963).
- [15] N.D. Cook, Models of the Atomic Nucleus, (Springer -Verlag Berlin Heidelberg Netherlands, 2006).
- [16] K.S. Krane, Introductory Nuclear Physics, (John Wiley & Sons, Inc, 1988).
- [17] P. Ring, and P. Schuck, The Nuclear Many-Body Problem, (Springer-Verlag, New York, 1980).
- [18] J. Suhonen, From Nucleons to Nucleus, (Springer-Verlag, Berlin Heidelberg, 2007).
- [19] A.H. Taqi, A.A. Rasheed, and S.H. Amin, "Particle-particle and hole-hole random phase approximation calculations for ⁴²Ca and ³⁸Ca nuclei," Acta Physica Polonica B, **41**(6), 1327 (2010). https://www.actaphys.uj.edu.pl/R/41/6/1327/pdf
- [20] A.H. Taqi, "Particle-Particle Tamm-Dancoff Approximation and Particle-Particle Randam Phase Approximation Calculations for ¹⁸O and ¹⁸F Nuclei," Pramana Journal of Physics, 80(2), 355-360 (2013). https://doi.org/10.1007/s12043-012-0468-1
- [21] A.H. Taqi, "The Electroexcitation of Low-Lying, Collective, Positive Parity, T=1 States in ¹⁸O, Based on the Particle-Particle Random Phase Approximation", Chinese Journal of Physics, 45(5), 530 (2007). https://www.airitilibrary.com/Publication/Index?DocID=05779073-200710-45-5-530-536-a&jsonString=
- [22] A.H. Taqi, "A visual Fortran 90 program for the two-particle or two-hole excitations of nuclei: The PPRPA program," SoftwareX 5, 51-61 (2016). https://doi.org/10.1016/j.softx.2016.04.003
- [23] A.H. Taqi, and A.H. Ibrahim, "Collective Excitations of ¹⁴N and ¹⁰B Nuclei," Kirkuk University Journal-Scientific Studies, 11(1), 202 (2016). https://doi.org/10.32894/kujss.2016.124396
- [24] A.H. Taqi, and A.H. Ibrahim, "Electron scattering of ¹⁴N based on two-hole excitations," Chinese Journal of Physics, 54, 185-193 (2016). https://doi.org/10.1016/j.cjph.2016.04.003
- [25] P.J. Brussaard, and P.W. Glaudemans, Shell model applications in nuclear spectroscopy, (Amsterdam: North-Holland, 1977).
- [26] National Nuclear Data Center https://www.nndc.bnl.gov

ДІРКОВІ КОЛЕКТИВНІ ЗБУДЖЕННЯ В ІЗОТОПАХ ^{106,112,130}Sn Фахіма А. Сабер, Алі Х. Такі

Факультет фізики, Науковий коледж, Кіркукський університет, Кіркук, Ірак

У цій статті було вивчено схеми енергетичних рівнів нейтронно-насичених і знижених електричних переходів ізотопів олова ¹⁰⁶Sn, ¹¹²Sn i ¹³⁰Sn з використанням колективних моделей, тобто hole-hole наближення Тамма-Данкова (*hh* TDA) i hole-hole апроксимації випадкової фази (*hh* RPA). Згідно з цими моделями, збуджені стани замкнутих ядер A-2 систем з мультиполярністю J і ізоспіном T можна описати як лінійну комбінацію пар hole-hole (hh). Тому в нашому підході низьколежачі стани досліджуваних ізотопів ¹⁰⁶Sn, ¹¹²Sn i ¹³⁰Sn отримані шляхом дії hole-hole oператорів на корельоване ядро ¹⁰⁸Sn, ¹¹⁴Sn i ¹³²Sn відповідно. Гамільтоніан був діагоналізований у просторі моделі, що включає {1g_{7/2}, 2d_{5/2}, 2d_{3/2}, 3s_{1/2} and 1h_{11/2}} орбіти, з використанням матричних елементів нейтрон-нейтронної (N-N) взаємодії та модифікованої поверхні дельта взаємодії (MSDI). hh TDA i hh RPA перевіряються за допомогою результуючих власних значень і власних векторів для розрахунку енергій збудження та зменшених сил електричних переходів. Було проведено порівняння між нашими теоретичними прогнозами та останніми доступними експериментальними даними. У результаті цих порівнянь були отримані розумні згоди. Ключові слова: енергетични схеми; колективни збудження; hh RPA; hh TDA