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The classical stability analysis is used to examine the combined effect of viscoelasticity and the second sound on the onset of porous
medium ferroconvection. The fluid and solid matrix are assumed to be in local thermal equilibrium. Considering the boundary
conditions appropriate for an analytical approach, the critical values pertaining to both stationary and oscillatory instabilities are
obtained by means of the normal mode analysis. It is observed that the oscillatory mode of instability is preferred to the stationary
mode of instability. It is shown that the oscillatory porous medium ferroconvection is advanced through the magnetic forces,
nonlinearity in magnetization, stress relaxation due to viscoelasticity, and the second sound. On the other hand, it is observed that the
presence of strain retardation and porous medium delays the onset of oscillatory porous medium ferroconvection. The dual nature of
the Prandtl number on the Rayleigh number with respect to the Cattaneo number is also delineated. The effect of various parameters
on the size of the convection cell and the frequency of oscillations is also discussed. This problem may have possible implications for
technological applications wherein viscoelastic magnetic fluids are involved.

Keywords: Convection, Maxwell equations, Navier-Stokes equations for incompressible viscous fluids; Porous media, Viscoelastic
fluids, Ferroconvection

PACS: 47.55.P-, 46.25 Hf, 77.84.Nh, 77.22.-d, 41.20.-q

1. INTRODUCTION

Ferroconvection is a transfer of heat from one place to another in ferromagnetic liquids and its importance is due to
the applications suggested by several authors [1-3] and many more. Ferrofluids, also known as magnetic fluids, are
colloidal suspensions of nanosized ferromagnetic particles stably dispersed in organic or non-organic carrier fluids such
as kerosene, water, and hydrocarbon. When exposed to an external magnetic field, they behave paramagnetically with
susceptibility usually large for magnetic liquids [4]. Ferrofluids have commercial applications like vacuum feed-throughs
for manufacturing semi-conductors [5]. Ferrofluid is also used in taking the drug in a human body to a target site by
applying a magnetic field [6]. However, we can find many applications in different fields [7]. Finlayson [8] studied the
convective instability of ferromagnetic fluids due to Bénard in the presence of a uniform vertical magnetic field and
explained the thermomechanical interaction concept of ferromagnetic fluids. Lalas and Carmi [9] studied the
thermoconvective stability of ferrofluids in the absence of buoyancy effects. Non-Darcy ferroconvection problem with
gravity modulation using regular perturbation has been addressed by Nisha Mary and Maruthamanikandan [10]. Darcy-
Brinkman ferroconvection with temperature-dependent viscosity has been studied by Soya Mathew and
Maruthamanikandan [11] and thermorheological and magnetorheological effects on Marangoni-ferroconvection with
internal heat generation has been investigated by Maruthamanikandan et al. [12]. Effect of MFD viscosity on
ferroconvection in a fluid saturated porous medium with variable gravity has been examined by Vidya Shree et al. [13].

A good amount of attention is honoured to Rayleigh—Bénard convection (RBC) problems in Newtonian liquids with
respect to heat transfer and other engineering applications as referred above. On the other hand, at shallow depths of the
reservoirs, oil sands contain waxy crude which are viscoelastic fluids. They exhibit both liquid and solid properties and
have many applications to the nuclear, petroleum, and chemical industries. They also have applications in cooling
electronic devices, crystal growth, and material processes. In the study of viscoelastic fluids, the rheological equation
involves one or two relaxation times (Bird et al. [14] and Joseph [15]) and also oscillatory convection is witnessed which
is not noticed in Newtonian fluids. The Oldroyd model [16] is used for describing the viscoelastic properties of dilute
polymers. The fact that principle of exchange of stabilities is not valid was shown by Green [17]. Recently, the onset of
Darcy-Brinkman convection in a binary viscoelastic fluid saturated porous layer has been addressed studied by
Swamy et al. [18].

The equation governing temperature (heat transport equation) in classical theory assumes a parabolic-type partial
differential equation that admits thermal signals at an infinite speed, which is unrealistic. The new theories modified the
classical Fourier’s law of heat conduction and hence contain a hyperbolic-type heat transport equation that admits the
thermal signals at a finite speed. As per this theory, heat propagates as a wave phenomenon rather than a diffusion
phenomenon and the wavelike thermal disturbance is referred to as second sound (Chandrasekharaiah [19]). Gurtin and
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Pipkin [20] investigated a general principle of thermal conduction in nonlinear analysis, including memories, a concept
having a finite propagation speed. Straughan and Franchi [21] addressed the Bénard advection problem when the
Maxwell-Cattaneo heat flow law is utilized in place of the ordinary Fourier theory of thermal conductivity. Soya Mathew
and Maruthamanikandan [22] investigated oscillatory porous medium ferroconvection with Maxwell-Cattaneo law of
heat conduction where they showed that the oscillatory mode of convection is preferred to stationary mode for large
values of Prandtl and second sound parameter.

Under these conditions, the present paper is dedicated to examining convective instability in a Cattaneo viscoelastic
ferrofluid saturated sparsely packed porous medium. The influence of various parameters is explored that perhaps direct
us to oscillatory convection.

:=-d2

Viscoelastic ferromagnetic
fluid in a porous medium

Figure 1. Physical Configuration

2. MATHEMATICAL FORMULATION
Let us consider an incompressible Cattaneo viscoelastic ferromagnetic fluid saturated porous medium confined
between the two surfaces of non-finite length horizontally of finite thickness d. We consider Oldroyd’s model to
characterize the viscoelastic behaviour which is a non-Newtonian one. The lower surface at z = —d/2 and upper surface

at z=d/2 are maintained at temperatures 71 and Ty respectively with 7, > 7, and AT =T, -T, (see Fig. 1). It is

assumed that at a quiescent state the temperature varies linearly across the depth. When the magnitude of AT become
larger than the critical one, thermal convection will set in due to buoyancy force.

The fluid layer is exposed to a magnetic field Ho acting parallel to the vertical z-axis and the gravity force acting
vertically downwards. We assume that Oldroyd's model is sufficient to characterize the viscoelastic behaviour which is
simple enough to be tractable analytically. The governing equations supporting the Boussinesq approximation are written
as follows.
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where A, is the stress relaxation time, A, is the strain retardation time (0< 4,<4,), q =(u, v,w) is the fluid velocity,

p, is the reference density, £ is the porosity, ¢ is the time, p is the pressure, g is the acceleration due to gravity, p is

the fluid density, 4, is the dynamic viscosity, H is the effective viscosity, k is the permeability of the porous medium,

H is the magnetic field, B is the magnetic induction, T is the temperature, y, is the magnetic permeability, M is the

magnetization, k, is the thermal conductivity, ¢ is the thermal expansion coefficient, C, ;; is the specific heat at constant
—
volume and magnetic field, y, is the magnetic susceptibility, K, is the pyromagnetic coefficient, Q is the heat flux, 7

. . . . . 1
is a constant with the dimensions of time and @ = EVX q.

Maxwell’s equations for a non-conducting fluid with no displacement currents become (Finlayson [8])

V.B-0, Vx#-=0, Bﬂ(HMj @7
Equations characterizing the basic state are introduced in the form
0 >
_=05 qb =(0$0’0)$ T=T;)(Z):
ot
P=p,(2). p=p,(2), H=H,(2), 2.8)

M=M,(z), B=B,(z), 0=0,(0,0.k /)

T-T
where f=——L" The solution pertaining to the basic state reads
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3. STABILITY ANALYSIS
We shall obtain the dimensionless equations following the small perturbation stability analysis enveloping normal
modes (Finlayson [8], Soya Mathew and Maruthamanikandan [11]). The perturbed state equations involving
infinitesimally small perturbations are

q4=4q,+q. T=T, +T', p=p,+p',
p=p,+p, H)=I'7I;+[f’,M=Mb +A/7', 3.1
B =By+B", Q:Qb +Q'7 ¢:¢b +¢'

where the primes indicate perturbed quantities. The perturbed governing linearized equations take the form
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We take divergence on both sides of equation (3.4) and substitute in equation (3.3) to eliminate Q' from equation
(3.3). The resulting system of linearized perturbed equations are as follows
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The normal mode solution is accessible and the same has the form
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where [ and m are respectively the wave numbers in the x and y directions and & is the growth rate. Substitution of (3.9)
into equations (3.6) to (3.8) leads to
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where D = p and K}% =1’+m® is the overall horizontal wave number. Non-dimensionalizing equations
Iz

(3.10) through (3.12) using the scaling
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we obtain the following dimensionless equations (asterisks are neglected for simplicity)

(1+F, a)[% (D? - @)W + (R+N)& @—Nade)} = (1+ on)[— Da(D* =)W +A(D* - a*)’ WJ (3.14)
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where A= Land M,=—"2"""" __  The parameter M , 1s neglected as it is of very small order (Finlayson
(Pn C)2 (1+lm)(p0c)2

[8]). When A =1, we obtain the following equations

o
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where F, :% is the non-dimensional stress relaxation parameter, F, =—2 X is the non-dimensional strain retardation
£ 4 222 g4
parameter, Pr= o is the Prandtl number, R=M is the thermal Rayleigh number, N =M is the
. : L_d . 4o . TK .
magnetic Rayleigh number, Da :k_ is the inverse Darcy number, A== is the Brinkman number, G:F is the
#
1+%
Cattaneo number and M, = 0 2 | is the non-buoyancy-magnetization parameter. The boundary conditions
+

encompassing free and isothermal surfaces are W = D’W =@ =D® =0 at z =+ 1/2 (Finlayson [8]).

3.1. Stationary Instability
As for the stationary mode, equations (3.17) - (3.19) turn out to be the following

A(D* = @)W —Da™ (D* = a®)W — (R+N)a’© + Na’D® = 0 (3.20)
[G(D*=a*)-1]w - (D*-a’)0 =0 (3.21)

(D’ = M,a’) @- DO =0 . (3.22)
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Equations (3.20) through (3.22) along with the boundary conditions embrace an eigenvalue problem with R being
. . . A, . .
an eigenvalue. The straightforward solution W = 4 cos(7z), © = 4,cos(7wz), ® =—sin(7z), with 4, 4, and
V4
4, being constants, is taken into consideration. On applying the solvability condition, we obtain
2 —
(7r2+a2) [Dal-i-(ﬂ'z-i-az)A] NM3a2

R = _ 3.23
2 [1+6(r+a)] (M, +7°) 029

where the superscript ‘s#’ stands for stationary convection. Equation (3.23) exactly coincides with that obtained by Soya
Mathew and Maruthamanikandan [22] and Soya Mathew et al. [23] followed by the corresponding deductions.

3.2. Oscillatory Instability
The dimensionless equations concerning the overstable motion are

[(1+FIO')%+(1+cm>')(Da‘1 +A (7 +d’) )} (7°+a*) 4, ~(1+F,0)(R +N)a*4, + (1+F,0) Na*4,= 0 (3.24)
[1+2G0+G(x*+a*) |4, - [ (7' +a’)+(1+2G o ) o |4, = 0 (3.25)
A —(7+Ma’ ) 4,=0. (3.26)

On applying the solvability condition, we obtain

p[Pr (Da'+pA)(1+ f,0)+0 +f10'2](p+0'+2g0'2) NM,

R = —
@’ Pr(1+ f10) [1+g(p+20)] M,a* +7’

(3.27)

where p = 7" +a’ . If we let ¢ = i@ with o being the frequency of oscillations, we obtain R as R = R +iR,.Both R
and R, are computed by means of the MATHEMATICA software mathematical package.

4. RESULTS AND DISCUSSION

The study is concerned with porous medium ferroconvection in a viscoelastic magnetic fluid with non-classical
heat conduction. We have obtained the conditions for both stationary and oscillatory convection using linear theory,
which is based on the normal mode technique. The thermal Rayleigh number R, characterising the stability of the
system, is obtained as a function of the different parameters of the study. The eigenvalue expression and the associated
critical numbers are determined by using MATHEMATICA software. As we can observe from the expression (3.23)
stationary Rayleigh is independent of the viscoelastic parameters as obtained by Soya Mathew and
Maruthamanikandan [22]. Also, if the Cattaneo number is taken below the threshold value, then only stationary
convection occurs [23]. Hence, for stationary convection, viscoelastic fluid behaves same as Newtonian fluid. Rayleigh
number for oscillatory mode is obtained as a function of Prandtl number, Cattaneo number, magnetic, viscoelastic and
porous parameters.

In Fig. 2 critical Rayleigh number R, is expressed as a function of magnetic Rayleigh number N by keeping all

other parameters as constant by fixing their values as F, =1.5, F, =0.3, Pr=10, Da™'=5, A=3, G=0.06 and M,=3.As
N increases, R, decreases and hence the system is destabilized. We observe that oscillatory convection is preferred to
stationary convection as R is less than R and hence the principle of exchange of instabilities is not valid. In Fig. 3
critical Rayleigh number R, is expressed as a function of the magnetic Rayleigh number N' by varying F, and keeping
all other parameters as constant by fixing their values as F, = 0.3, Pr=10, Da™=5, A=3, G=0.06 and My=3.We
notice that, as F; increases, the RZ*¢ value decreases which indicates that the stress relaxation parameter F, hastens the
oscillatory ferroconvection. In Fig. 4 critical Rayleigh number R, is expressed as a function of the magnetic Rayleigh
number N by varying F, and keeping all other parameters as constant by fixing their values as F; =1.5, Pr=10,

Da™'=5, A=3, G=0.06 and M ,=3. As there is an increase in the values of F),, we notice that there is an increase in

RZ*¢ which indicates that the strain retardation parameter F, slows down the onset of oscillatory ferroconvection.
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Figure 2. Plot of R, versus N with Figure 3. Plot of R*C versus N with variation in F, with

F =15, F, =0.3, Pr=10, Da™'=5, A=3, G=0.06 and M,=3. F, =0.3, Pr=10, Da™'=5, A=3,G=0.06 M, =3 and Ta=500.

In Fig. 5 critical Rayleigh number R, is expressed as a function of N by varying G and keeping all other parameters
as constant by fixing their values as £ =1.5, F, = 0.3, Pr=10, Da™'=5, A=3 and M,=3. As G increases, there is a
decrease in RZ*“. As discussed by Straughan [24], the above threshold value of Cattaneo number G associated with
oscillatory convection comes into picture. It destabilizes the system. In Fig. 6 critical Rayleigh number R, is expressed
as a function of the magnetic Rayleigh number N by varying Pr and keeping all other parameters as constant by fixing
their values as £ =1.5, F, =03, Da™'=5, A=3, G=0.06 and M, = 3. As there is an increase in the values of Pr, we

notice there is a decrease in R2°C due to the above threshold value of G and hence the system is destabilized. This is due
to the hyperbolic nature instead of the parabolic one of the temperature equation.

300
1801
250 ‘  160 -
—F,=0.1
200+ —F,=0.3 1404
—F,=05
Rgsc 150 '  Rgsc 1204
100 100 4
804
504
-————_—--—-—_~"“‘————____________~ 60
0 T T v T a2 T - T T T T
0 10 20 30 40 50 0 20 40 60 80 100
N N
Figure 4. Plot of R*® versus N with variation in F, with Figure 5. Plot of R*® versus N with variation in G with
F, =1.5,Pr=10, Da"'=5, A=3, G=0.06 and M,=3. F =1.5,F, =03,Pr=10, Da'=5, A=3and M,=3.

In Fig. 7 critical Rayleigh number R2*¢ is expressed as a function of magnetic Rayleigh number N by varying Pr
and  keeping all other parameters as constant by fixing their values as F =15,

F,=03, Da"'=5,A=3,G=0and M,=3. We notice that R’* increases as Pr increases and hence system is
stabilized. This is due to the absence of Cattaneo number.

From Figures 6 and 7, we witness the dual nature of the Prandtl number Pr depending on the Cattaneo number G.
If the Cattaneo number G is above the threshold value, then on increasing Pr there is a decrease in R>° as noticed in the
work of Nagouda and Pranesh [25] and if the Cattaneo number G is below the threshold value, then on increasing Pr there
is an increase in RZ* as noticed in the work of Swamy et al. [18].
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Figure 6. Plot of Rg ¢ versus N with variation in Pr with
F, =1.5, F, =0.3,Da™' =5, A=3, G=0.06 and M,=3.
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Figure 7. Plot of Rg ¢ versus N with variation in Pr with

F =15, F, =03, Da"'=5, A=3,G=0 and M,=3.

Stationary vs Oscillatory Instability

Table 1. Critical values of the Rayleigh number and wave number with F, =1.5, F, =0.3, Pr=10, Da™' =5, A=3, G=0.06 and M, =3.

N Stationary Oscillatory
le a(st R :sc a:sc

0 1123.54 2.6486 154.486 3.05605
20 1109.91 2.65782 139.604 3.13009
40 1096.25 2.66701 124.546 3.20226
60 1082.56 2.67618 109.324 3.27246
80 1068.84 2.68533 93.9499 3.34063
100 1055.09 2.69446 78.4344 3.40676

Table 2. Critical values of the wave number varying with F, by fixing F,

Table 3. Critical values of the wave number varying with F2 by fixing F

=0.3,Pr=10, Da"'=5, A=3,G=0.06 and M,=3.

F =1 F=15 F, =2
N
a() a’C a’C

0 3.06861 3.05605 3.04212
20 3.11749 3.13009 3.14058
40 3.16559 3.20226 3.23566
60 3.21286 3.27246 332715
80 3.25927 3.34063 3.41501
100 330481 3.40676 3.49928

=1.5,Pr=10, Da"'=5, A=3, G=0.06 and M,=3.

F,=0.1 F,=03 F,=0.5
N
aC aC aC

0 3.4042 3.05605 2.99105
10 352012 3.09329 3.01222
20 3.63083 3.13009 3.03327
30 3.73634 3.16642 3.05418
40 3.83684 3.20226 3.07495
50 3.93259 3.23761 3.09558
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Table 4. Critical values of the wave number varying with G by fixing F, =1.5, F, =0.3, Pr=10, Da'=5,A=3and M,=3.

G=0.05 G=0.06 G=0.07
N
aC aC aC
0 2.98828 3.05605 3.10812
20 3.05035 3.13009 3.19439
40 3.11118 3.20226 3.27804
60 3.17068 3.27246 3.35892
80 3.2288 3.34063 3.437
100 3.28551 3.40676 3.5123

Table 5. Critical values of the wave number varying with Pr

by fixing F, =1.5, F, =0.3,Da"'= 5, A=3, G=0.06 and M,=3.

Pr=5 Pr=10 Pr=15

N

aC aC aC

0 3.01748 3.05605 3.06942
20 3.08869 3.13009 3.14436
40 3.15822 3.20226 3.21737
60 3.22595 3.27246 3.28835
80 3.29182 3.34063 3.35723
100 3.35581 3.40676 3.42402

Table 6. Critical values of the wave number varying with Pr by fixing F, =1.5, F, =0.3, Da”'=5, A=3, G=0and M, =3.

G =0 (In the absence of Second Sound)

Pr=5 Pr=10 Pr=15
N
o, o, o,
0 2.38141 2.38512 2.38669
20 2.39726 2.40086 2.40238
40 2.41302 241651 2418
60 2.42869 2.43208 2.43352
80 2.44427 2.44756 2.44895
100 2.45975 2.46293 2.46428

In Fig. 8 critical Rayleigh number RZ* is expressed as a function of N by varying Pr and keeping all other
parameters as constant by fixing their values as | =0, F, =0, Da'=5,A=3, G=0.06 and M, =3,1i.e., in the absence

of viscoelastic parameters. In this case also there is a decrease in R*C as we increase Pr which again clearly suggests

that the dual nature of Pr is only due to the presence of the Cattaneo number.

0SC
RC

Figure 8. Plot of Rgsc versus IV with variation in Pr with F, =0, F, =0, Da™'=5, A=3, G=0.06 and M,=3.
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For Newtonian ferromagnetic fluid (i.e., 7, =0 and F, =0)

Table 7. Critical values of the wave number ¢, varying with Pr by fixing 7 =0, F, =0, Da”'=5, A=3, G=0.06 and M, =3.

Pr=5 Pr=10 Pr=15

N

aC aC aC

0 3.30324 3.28459 3.27851
20 3.31363 3.29529 3.28931
40 3.324 3.30595 3.30008
60 3.33432 3.31658 3.3108
80 3.3446 3.32716 3.32148
100 3.35485 3.3377 3.33212

Table 8. Critical values of the wave number varying with Da™" by fixing F =1.5, F, =0.3, Pr=10, A=3, G=0.06 and M,=3.

Da™'=0 Da ' =5 Da™'=10

N
a, a, a,

0 2.94266 3.05605 3.15784
20 3.02243 3.13009 3.22714
40 3.10014 3.20226 3.29475
60 3.17561 3.27246 3.36059
80 3.24874 3.34063 3.42464
100 3.31951 3.40676 3.48689

In Fig. 9 critical Rayleigh number R>*“ is expressed as a function of magnetic Rayleigh number N by varying

Da™ and keeping all other

parameters

as

constant

by fixing their

as [ =15,

F,=0.3, Pr=10, A=3, G=0.06 and M;=3. Oscillatory ferroconvection is delayed because as Da™' is increased, there

is an increase in the values of RZ*“. The reason for this is the increase in Da™' will decrease the porous medium

permeability and hence the convective instability is impeded.
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Figure 9. Plot of R2°® versus N with variation in Da™' with F, =1.5, F, =0.3, Pr=10, A=3, G=0.06 and M, =3.

In Fig. 10 critical Rayleigh number R2*¢ is expressed as a function of the magnetic Rayleigh number N by varying

the Brinkman number A and keeping all other parameters as constant by fixing their values as F; =1.5,
F,=0.3, Pr=10, Da™' =3,G=0.06 and M,=3. As the Brinkman number A increases, R also increases and
therefore oscillatory ferroconvection is delayed. As the Brinkman model accounts for an effective viscosity Z which is
different from fluid viscosity 4, and the ratio is assigned as the Brinkman number A . Hence viscous effect increases on

increasing A and hence ferroconvective instability is hampered due to the presence of porous media.



306
EEJP. 2 (2023)

Naseer Ahmed, S. Maruthamanikandan, et al.

Table 9. Critical values of the wave number varying with A by fixing F, =1.5, F, =0.3, Pr=10, Da™' =5, G=0.06 and M, =3.

A=1 A=3 A=5
N
aC aC aC

0 3.16486 3.05605 3.02786
10 3.25535 3.09329 3.05126
20 3.3429 3.13009 3.07448
30 3.42738 3.16642 3.09754
40 3.50877 3.20226 3.12041
50 3.58714 3.23761 3.14309

Table 10. Critical values of the wave number varying with M, by fixing F =1.5, F, = 0.3, Pr=10, Da™'=5, A=3 and G=0.06.

M, =1 M, =3 M, =5
N
aC aC ac
0 3.05605 3.05605 3.05605
20 3.15476 3.13009 3.11124
40 3.256 3.20226 3.16482
60 3.35878 3.27246 3.21682
80 3.46216 3.34063 3.26729
100 3.56526 3.40676 3.3163
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Figure 10. Plot of R versus N with variation in A with

N

Figure 11. Plot of R versus N with variation in M, with

F, =15, F, =0.3, Pr=10, Da' =5, G=0.06 and M,=3. F, =15, F, =0.3, Pr=10, Da' =5, A=3 and G=0.06.

In Fig. 11 critical Rayleigh number R>*¢ is expressed as a function of the magnetic Rayleigh number N by varying
their F =15,
F,=0.3, Pr=10, Da™' =5, A=3 and G=0.06. The linearity departure of magnetic equation is addressed by the

M., and keeping all other values  as

R parameters  as

constant by fixing

parameter M, . We notice from Fig. 11 that as M, increases, the R%*° monotonically decreases which implies that
magnetic equation of state grows more and more to nonlinear state due to which ferroconvection is hastened.

From Figs. 12 through 17, one can observe that when all the respective parameters increase, @ also increases,
whereas from Figs. 18 through 20, as all relevant parameters increase, @ also decreases. Hence, we can conclude that
from Figs. 12 through 20 that the frequency @, of oscillatory ferroconvective instability is sensitive to all the parameters

of the study. On the other hand, wave number depicts the size and shape of the convection cell. From Tables 2 through
10, it follows that convection cell size is also sensitive to the all the parameters of the study at hand. Indeed, the convection
cell size is enlarged with an increase in F2 , A and M and the opposite is found to be true with respect to an increase in

the rest of the parameters.
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Figure 12. Plot of @ versus N with variation in F, with
F, =0.3, Pr=10, Da™' =5, A=3, G=0.06 and M,=3.
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Figure 14. Plot of a)f versus IV with variation in Da™' with

F, =15, F, =03, Pr=10, A=3, G=0.06 and M,=3.
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Figure 16. Plot of a)f versus IV with variation in Pr with
F, =15, F, =0.3, Da”'=5, A=3, G=0 and M, =3.
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Figure 13. Plot of & versus N with variation in Pr with
F =15, F, =0.3,Da™ =5, A=3, G=0.06 and M,=3.
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Figure 15. Plot of a)f versus IV with variation in A with
F, =15, F, =0.3, Pr=10, Da"' =5, G=0.06 and M,=3.
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Figure 17. Plot of a)f versus IV with variation in Pr with
F, =0, F, =0, Da™'=5, A=3, G=0.06 and M, =3.
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Figure 18. Plot of wf versus N with variation in F, with Figure 19. Plot of wf versus N with variation in G with
F =15,Pr=10, Da"'=5, A=3, G=0.06 and M,=3. F, =15, F, =0.3, Pr=10, Da"'=5, A=3 and M, =3.
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Figure 20. Plot of a)f versus N with variation in M, with F, =1.5, F, =0.3, Pr=10, Da'=5, A=3 and G=0.06.

It is worth mentioning that for Newtonian fluids only stationary convection is possible, but due to the presence of
second sound, oscillatory instability is preferred to stationary stability as pointed out by Straughan [24].

CONCLUSIONS
The system is destabilized through the presence of magnetic forces caused by the magnetization of ferrofluids.
Nonlinearity in magnetization is shown to destabilize the system.
Viscoelastic relaxation and second sound are shown to destabilize the system.
Viscoelastic retardation, inverse Darcy number and Brinkman number are shown to stabilize the system.
Prandtl number destabilizes as well as stabilizes the system depending on the over and below threshold values of the
Cattaneo number respectively.
Critical wavenumber and frequency of oscillatory motions are calculated as functions of all the parameters of the
problem. They are shown to be sensitive to all the parameters of the problem.

SR W=

&

ORCID ID
Naseer Ahmed, https://orcid.org/0000-0002-5327-9362; ©S. Maruthamanikandan, https://orcid.org/0000-0001-9811-0117

B.R. Nagasmitha, https://orcid.org/0009-0009-2930-3244

REFERENCES

[1] R.Kaiser, and G. Miskolczy, “Some applications of ferrofluid magnetic colloids,” IEEE Transactions on Magnetics, 6, 694-698
(1970). https://doi.org/10.1109/TMAG.1970.1066834

[2] K. Raj, and A.F. Chorney, “Ferrofluid technology-an overview,” Indian J Eng Mater Sci. 5(6), 372-389 (1998).
http://nopr.niscpr.res.in/bitstream/123456789/29661/1/1IJEMS%205%286%29%20372-389.pdf

[3] C. Scherer, and A.M.F. Neto, “Ferrofluids: properties and applications,” Braz. J. Phys. 35(3), 718-727 (2005).
https://doi.org/10.1590/S0103-97332005000400018

[4] H.W. Muller, and L. Mario, Ferrofluid Dynamics, in: Ferrofluids magnetically controllable fluids and their applications, edited
by S. Odenbach, (Springer, 2002), pp.112-123, https://link.springer.com/book/10.1007/3-540-45646-5



309
Oscillatory Porous Medium Ferroconvection in a Viscoelastic Magnetic Fluid... EEJP. 2 (2023)

[5] R. Moskowitz, “Dynamic Sealing with Magnetic Fluids,” Tribology Transactions, 18, 135-143 (1975).
https://doi.org/10.1080/05698197508982756

[6] Y. Morimoto, M. Akimoto, and Y. Yotsumoto, “Dispersion State of Protein-stabilized Magnetic Emulsions,” Chemical and
Pharmaceutical Bulletin, 30, 3024-3027 (1982). https://doi.org/10.1248/CPB.30.3024

[7] R.E. Rosensweig, Ferrohydrodynamics, (Cambridge University Press, Cambridge, 1985).

[8] B.A. Finlayson, “Convective instability of ferromagnetic fluids,” J. Fluid Mech. 40, 753-767, (1970).
https://doi.org/10.1017/S0022112070000423

[9] D.P. Lalas, and S. Carmi, “Thermoconvective stability of ferrofluids,” Phys. Fluids, 14(2), 436-437 (1971).
https://doi.org/10.1063/1.1693446

[10] Nisha Mary Thomas, and S. Maruthamanikandan, “Gravity modulation effect on ferromagnetic convection in a Darcy-Brinkman
layer of porous medium,” J. Phys.: Conf. Series, 1139, 012022 (2018). https://doi.org/10.1088/1742-6596/1139/1/012022

[11] Soya Mathew, and S. Maruthamanikandan, “Darcy-Brinkman ferroconvection with temperature dependent viscosity,” J. Phys.:
Conlf. Series, 1139, 012023, (2018). http://dx.doi.org/10.1088/1742-6596/1139/1/012023

[12] S. Maruthamanikandan, Nisha Mary Thomas, and Soya Mathew, “Thermorheological and magnetorheological effects on
Marangoni-ferroconvection with internal heat generation,” J. Phys.: Conf. Series, 1139, 012024, (2018).
https://doi.org/10.1088/1742-6596%2F 1139%2F1%2F012024

[13] V. Vidya Shree, C. Rudresha, C. Balaji, and S. Maruthamanikandan, “Effect of MFD viscosity on ferroconvection in a fluid
saturated porous medium with variable gravity,” Journal of Mines, Metals and Fuels, 70(3A), 98-103, (2022).
http://dx.doi.org/10.26565/2312-4334-2022-4-10

[14] R.B. Bird, C. Armstrong, and O. Massager, Dynamics of Polymeric Liquids, vol. 1,2, 2" edn. (Wiley, New York, 1987).
https://doi.org/10.1002/bbpc.19870911221

[15] D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids, (Springer, New York), (1990), https://doi.org/10.1007/978-1-4612-4462-2

[16] J.G. Oldroyd, “On the formulation of rheological equations of state,” Proc. R. Soc. Lond. A, 200, 523-541 (1950).
https://doi.org/10.1098/rspa.1950.0035

[17] T. Green, “Oscillating convection in an elasticoviscous liquid,” Phys. Fluids, 11, 1410-1412 (1968).
https://doi.org/10.1063/1.1692123

[18] M.S. Swamy, N.B. Naduvinamani, and W. Sidram, “Onset of Darcy—Brinkman convection in a binary viscoelastic fluid saturated
porous layer,” Transp. Porous Med. 94(1), 339-357 (2012). https://doi.org/10.1007/s11242-012-0008-y

[19] D.S. Chandrasekharaiah, “Thermoelasticity with Second Sound: A Review,” Applied Mechanics Reviews, 39, 355-376 (1986).
https://doi.org/10.1115/1.3143705

[20] M.E. Gurtin, and A.C. Pipkin, “A general theory of heat conduction with finite wave speeds,” Arch. Ration. Mech. Anal. 31(2),
113-126 (1968). https://doi.org/10.1007/BF00281373

[21] B. Straughan, and F. Franchi, “Bénard convection and the cattaneo law of heat conduction,” Proc. R. Soc. Edinburgh Sect. A
Math. 96(1-2), 175-178 (1984). https://doi.org/10.1017/S0308210500020564

[22] Soya Mathew, and S. Maruthamanikandan, “Oscillatory porous medium ferroconvection with Maxwell-Cattaneo law of heat
conduction,” J. Phys. Conf. Ser. (1), 012024, (2021). https://doi.org/10.1088/1742-6596/1850/1/012024

[23] Soya Mathew, S. Maruthamanikandan, and S.S. Nagouda, “Gravitaional Instability in a Ferromagnetic Fluid Saturated Porous
Medium with Non-Classical Heat Conduction,” IOSR Journal of Mathematics, (IOSR-IM), 6(1), 07-18 (2013).
http://dx.doi.org/10.9790/5728-0610718

[24] B. Straughan, “Oscillatory convection and the Cattaneo law of heat conduction,” Ricerche mat. 58, 157-162 (2009).
https://doi.org/10.1007/s11587-009-0055-z

[25] S.S. Nagouda, and S. Pranesh, “Rayleigh-Bénard convection in a second-order fluid with Maxwell-Cattaneo Law,” The Bulletin
of Society for Mathematical Services and Standards, 2, 24-32 (2012).
https://doi.org/10.18052/WWW.SCIPRESS.COM%2FBSMASS.2.24

KOJIMBAJIbHA ®EPOKOHBEKIIIA Y IIOPUCTOMY CEPEJOBHINI Y B SI3KOIIPYXKHIN MATHITHIN PIIAHI
3 HEKJIACUYHOIO TEIUIOITPOBIAHICTIO
Hacip Axmen?, C. Mapyramanikangaun®, B.P. Haracmirxa®
“@akynvmem mamemamuxu, IIpesudenmcokuil konedic, Kemnanypa, Xeb6an, Beneanypy 560024, Inois
bdarynomem mamemamuru, Inocenepna wixona, Ipesudenmcvuil ynisepcumem, benzanypy 560064, Inoia

BuKOpHCTaHO KIIaCHYHUIA aHaI3 CTabiIbHOCTI U151 BUBYCHHSI KOMOIHOBAHOTO BIUIMBY B’SI3KOIPYKHOCTI Ta IPYroro 3ByKy Ha MOYaTOK
(bepokoHBeKIii y TOPHCTOMY CepeOBHI. BBaXkaeThesl, 1110 piZivHa i TBEpAa MaTPHL 3HAXOJSTHCS B JIOKAIBHIN TEIUIOBIil piBHOBA3I.
BpaxoByroun rpaHd4HI YMOBH, BiINOBiIHI I aHATITHYHOTO MiAXOAY, KPUTHYHI 3HAYCHHS, 1[0 CTOCYIOTHCS SK CTalliOHAPHOT, TaK i
KOJIMBAJIbHOI HECTAaOUIBHOCTI, OTPUMaHI 3a JONOMOTOI0 aHajli3y HOPMAaJIbHOTO peXuMy. [lomMideHO, IO KOMUBAIBHHUN PEKHM
HecTaOUIBHOCTI € KpalluM Iiepe]| CTalliOHapHUM PeXXUMOM HecTabinpHOCTI. [TokaszaHo, o (hepoKOHBEKIIiS KOIHBAIEHOTO HOPUCTOTO
CepeIOBHIIIA PO3BUBAETHCS Ye€Pe3 MArHITHI CHIIM, HENIHIHHICT HAMAarHIY€HOCTI, peIaKcallilo HalpyXeHb 33 PaXyHOK B’SI3KONPYKHOCTI
Ta APYTHi 3BYK. 3 iHIIOTO OOKY, CIIOCTEPIraeThCsl, 110 HAasBHICTh 3aTPUMKH JieopmMaliii Ta HOPUCTOrO CepeIOBHIIA 3aTPHMY€ OYATOK
OCLIMIIIOI0Y0T (PepOKOHBEKIIIT Y IIOPHCTOMY cepeloBuILi. Takok OKpecseHO MojBiliHy npupoxy 4yncia [Ipanntis Ha uucio Penes no
BifHOIIEHHIO 70 yncia Karraneo. Takox 00roBOpIOETHCS BIUIMB Pi3HUX MapaMeTpiB Ha po3Mip KOHBEKI[IHHOT KOMIPKH Ta YacTOTy
KoJMBaHb. L[5 mpobiaemMa MoXe MaTH MOXKIIMBI HACIII KM JUIS TEXHOJIOTTYHUX 3aCTOCYBaHb, Y SKHX BUKOPHCTOBYIOTHCS B’ I3KOIPYKHI
MAarHITHI PiIUHH.

KurouoBi ciioBa: xougexyis, pienanus Makceeana, pienanna Has'e-Cmoxca 011 Hecmucausux 8'sa3kux piout; nopucmi cepedosuiya;
8'A3KONPYIICHI PIOUHU, (hepOKOHBeKYis





