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The classical stability analysis is used to examine the combined effect of viscoelasticity and the second sound on the onset of porous 
medium ferroconvection. The fluid and solid matrix are assumed to be in local thermal equilibrium. Considering the boundary 
conditions appropriate for an analytical approach, the critical values pertaining to both stationary and oscillatory instabilities are 
obtained by means of the normal mode analysis. It is observed that the oscillatory mode of instability is preferred to the stationary 
mode of instability. It is shown that the oscillatory porous medium ferroconvection is advanced through the magnetic forces, 
nonlinearity in magnetization, stress relaxation due to viscoelasticity, and the second sound. On the other hand, it is observed that the 
presence of strain retardation and porous medium delays the onset of oscillatory porous medium ferroconvection. The dual nature of 
the Prandtl number on the Rayleigh number with respect to the Cattaneo number is also delineated. The effect of various parameters 
on the size of the convection cell and the frequency of oscillations is also discussed. This problem may have possible implications for 
technological applications wherein viscoelastic magnetic fluids are involved. 
Keywords: Convection; Maxwell equations; Navier-Stokes equations for incompressible viscous fluids; Porous media; Viscoelastic 
fluids, Ferroconvection 
PACS: 47.55.P-, 46.25.Hf, 77.84.Nh, 77.22.-d, 41.20.-q 

1. INTRODUCTION
Ferroconvection is a transfer of heat from one place to another in ferromagnetic liquids and its importance is due to 

the applications suggested by several authors [1-3] and many more. Ferrofluids, also known as magnetic fluids, are 
colloidal suspensions of nanosized ferromagnetic particles stably dispersed in organic or non-organic carrier fluids such 
as kerosene, water, and hydrocarbon. When exposed to an external magnetic field, they behave paramagnetically with 
susceptibility usually large for magnetic liquids [4]. Ferrofluids have commercial applications like vacuum feed-throughs 
for manufacturing semi-conductors [5]. Ferrofluid is also used in taking the drug in a human body to a target site by 
applying a magnetic field [6]. However, we can find many applications in different fields [7]. Finlayson [8] studied the 
convective instability of ferromagnetic fluids due to Bénard in the presence of a uniform vertical magnetic field and 
explained the thermomechanical interaction concept of ferromagnetic fluids. Lalas and Carmi [9] studied the 
thermoconvective stability of ferrofluids in the absence of buoyancy effects. Non-Darcy ferroconvection problem with 
gravity modulation using regular perturbation has been addressed by Nisha Mary and Maruthamanikandan [10]. Darcy-
Brinkman ferroconvection with temperature-dependent viscosity has been studied by Soya Mathew and 
Maruthamanikandan [11] and thermorheological and magnetorheological effects on Marangoni-ferroconvection with 
internal heat generation has been investigated by Maruthamanikandan et al. [12]. Effect of MFD viscosity on 
ferroconvection in a fluid saturated porous medium with variable gravity has been examined by Vidya Shree et al. [13]. 

A good amount of attention is honoured to Rayleigh–Bénard convection (RBC) problems in Newtonian liquids with 
respect to heat transfer and other engineering applications as referred above. On the other hand, at shallow depths of the 
reservoirs, oil sands contain waxy crude which are viscoelastic fluids. They exhibit both liquid and solid properties and 
have many applications to the nuclear, petroleum, and chemical industries. They also have applications in cooling 
electronic devices, crystal growth, and material processes. In the study of viscoelastic fluids, the rheological equation 
involves one or two relaxation times (Bird et al. [14] and Joseph [15]) and also oscillatory convection is witnessed which 
is not noticed in Newtonian fluids. The Oldroyd model [16] is used for describing the viscoelastic properties of dilute 
polymers. The fact that principle of exchange of stabilities is not valid was shown by Green [17]. Recently, the onset of 
Darcy-Brinkman convection in a binary viscoelastic fluid saturated porous layer has been addressed studied by 
Swamy et al. [18]. 

The equation governing temperature (heat transport equation) in classical theory assumes a parabolic-type partial 
differential equation that admits thermal signals at an infinite speed, which is unrealistic. The new theories modified the 
classical Fourier’s law of heat conduction and hence contain a hyperbolic-type heat transport equation that admits the 
thermal signals at a finite speed. As per this theory, heat propagates as a wave phenomenon rather than a diffusion 
phenomenon and the wavelike thermal disturbance is referred to as second sound (Chandrasekharaiah [19]). Gurtin and 
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Pipkin [20] investigated a general principle of thermal conduction in nonlinear analysis, including memories, a concept 
having a finite propagation speed. Straughan and Franchi [21] addressed the Bénard advection problem when the 
Maxwell-Cattaneo heat flow law is utilized in place of the ordinary Fourier theory of thermal conductivity. Soya Mathew 
and Maruthamanikandan [22] investigated oscillatory porous medium ferroconvection with Maxwell-Cattaneo law of 
heat conduction where they showed that the oscillatory mode of convection is preferred to stationary mode for large 
values of Prandtl and second sound parameter. 

Under these conditions, the present paper is dedicated to examining convective instability in a Cattaneo viscoelastic 
ferrofluid saturated sparsely packed porous medium. The influence of various parameters is explored that perhaps direct 
us to oscillatory convection. 

Figure 1. Physical Configuration 

2. MATHEMATICAL FORMULATION
Let us consider an incompressible Cattaneo viscoelastic ferromagnetic fluid saturated porous medium confined 

between the two surfaces of non-finite length horizontally of finite thickness d. We consider Oldroyd’s model to 
characterize the viscoelastic behaviour which is a non-Newtonian one. The lower surface at 2z d= −  and upper surface 
at 2z d=  are maintained at temperatures T1 and T0  respectively with 1 0T T> and 1 0T T TΔ = −  (see Fig. 1). It is 
assumed that at a quiescent state the temperature varies linearly across the depth. When the magnitude of TΔ  become 
larger than the critical one, thermal convection will set in due to buoyancy force.  

The fluid layer is exposed to a magnetic field 0H
→

 acting parallel to the vertical z-axis and the gravity force acting 
vertically downwards. We assume that Oldroyd's model is sufficient to characterize the viscoelastic behaviour which is 
simple enough to be tractable analytically. The governing equations supporting the Boussinesq approximation are written 
as follows. 

0q→∇ = (2.1)
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where 1λ  is the stress relaxation time, 2λ  is the strain retardation time ( 20 λ≤ < 1λ ), ( ), ,q u v w→ =  is the fluid velocity, 

0ρ  is the reference density, ε  is the porosity, t is the time, p is the pressure, g→  is the acceleration due to gravity, ρ  is 
the fluid density, fμ  is the dynamic viscosity, 

f
μ  is the effective viscosity, k is the permeability of the porous medium, 

H
→

 is the magnetic field,  B
→

is the magnetic induction, T is the temperature, 0μ  is the magnetic permeability, M
→

 is the 
magnetization, 1k  is the thermal conductivity, α  is the thermal expansion coefficient, ,V HC  is the specific heat at constant 

volume and magnetic field, mχ  is the magnetic susceptibility, mK is the pyromagnetic coefficient, Q
→

is the heat flux, τ  

is a constant with the dimensions of time and 1
2

qω→ →= ∇ × . 

Maxwell’s equations for a non-conducting fluid with no displacement currents become (Finlayson [8]) 

 00 , 0 , .B H B H Mμ
→ → → →→ → ∇ = ∇ × = = + 

 
  (2.7) 

Equations characterizing the basic state are introduced in the form 
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where 1 0
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T Tβ −

= . The solution pertaining to the basic state reads 
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3. STABILITY ANALYSIS 

We shall obtain the dimensionless equations following the small perturbation stability analysis enveloping normal 
modes (Finlayson [8], Soya Mathew and Maruthamanikandan [11]). The perturbed state equations involving 
infinitesimally small perturbations are 
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where the primes indicate perturbed quantities. The perturbed governing linearized equations take the form 
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We take divergence on both sides of equation (3.4) and substitute in equation (3.3) to eliminate 'Q
→  from equation

(3.3). The resulting system of linearized perturbed equations are as follows 
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with 'φ  being the magnetic potential. 

The normal mode solution is accessible and the same has the form 
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where l and m are respectively the wave numbers in the x and y directions and σ is the growth rate. Substitution of (3.9) 
into equations (3.6) to (3.8) leads to 
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where dD
dz

= and 2 22
hK l m= + is the overall horizontal wave number. Non-dimensionalizing equations

(3.10) through (3.12) using the scaling 
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we obtain the following dimensionless equations (asterisks are neglected for simplicity) 
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 . The parameter 2M  is neglected as it is of very small order (Finlayson 

[8]). When 1λ = , we obtain the following equations 
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 is the non-buoyancy-magnetization parameter. The boundary conditions 

encompassing free and isothermal surfaces are  2 0W D W D= = Θ = Φ =  at 1/ 2z = ±  (Finlayson [8]). 
 

3.1. Stationary Instability 
As for the stationary mode, equations (3.17) - (3.19) turn out to be the following 

 ( ) ( ) ( )22 2 1 2 2 2 2 0D a W Da D a W R N a Na D−Λ − − − − + Θ + Φ =  (3.20) 

 ( ) ( )2 2 2 21 0G D a W D a − − − − Θ =   (3.21) 

 ( )2 2
3 0D M a D− Φ− Θ =  . (3.22) 
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Equations (3.20) through (3.22) along with the boundary conditions embrace an eigenvalue problem with R being 

an eigenvalue. The straightforward solution ( )1 cos ,W A zπ= ( )2 cos ,A zπΘ = ( )3 sin ,A zπ
π

Φ =  with 1 2,A A and 

3A being constants, is taken into consideration. On applying the solvability condition, we obtain 

( ) ( )
( ) ( )

22 2 1 2 2 2
3

2 22 2 2
31

st
a Da a N M aR

M aa G a

π π

ππ

− + + + Λ = −
  ++ + 

(3.23)

where the superscript ‘st’ stands for stationary convection. Equation (3.23) exactly coincides with that obtained by Soya 
Mathew and Maruthamanikandan [22] and Soya Mathew et al. [23] followed by the corresponding deductions. 

3.2. Oscillatory Instability 
The dimensionless equations concerning the overstable motion are  

( ) ( ) ( )( ) ( )1 2 2 2 2
1 2 11 1
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F F Da a a Aσσ σ π π− + + + +Λ + +  

( ) ( ) ( )2 2
1 2 1 31 1 0F R N a A F Na Aσ σ− + + + + =  (3.24)

( ) ( ) ( )2 2 2 2
1 21 2 1 2 0G G a A a G Aσ π π σ σ   + + + − + + + =    (3.25) 

( )2 2 2
2 3 3 0A M a Aπ π− + = . (3.26)

On applying the solvability condition, we obtain 

( )( ) ( )
( ) ( )

1 2 2 2
2 1 3

2 22
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Pr 1 1 1 2

p Da p f f p g NM a
R

M aa f g p

σ σ σ σ σ

πσ σ

−  + Λ + + + + +  = −  ++ + +    
(3.27) 

where 2 2p aπ= + . If we let iσ ω=  with ω being the frequency of oscillations, we obtain R as 1 2R R i R= + . Both 1R
and 2R  are computed by means of the MATHEMATICA software mathematical package. 

4. RESULTS AND DISCUSSION
The study is concerned with porous medium ferroconvection in a viscoelastic magnetic fluid with non-classical 

heat conduction. We have obtained the conditions for both stationary and oscillatory convection using linear theory, 
which is based on the normal mode technique. The thermal Rayleigh number R, characterising the stability of the 
system, is obtained as a function of the different parameters of the study. The eigenvalue expression and the associated 
critical numbers are determined by using MATHEMATICA software. As we can observe from the expression (3.23) 
stationary Rayleigh is independent of the viscoelastic parameters as obtained by Soya Mathew and 
Maruthamanikandan [22]. Also, if the Cattaneo number is taken below the threshold value, then only stationary 
convection occurs [23]. Hence, for stationary convection, viscoelastic fluid behaves same as Newtonian fluid. Rayleigh 
number for oscillatory mode is obtained as a function of Prandtl number, Cattaneo number, magnetic, viscoelastic and 
porous parameters.  

In Fig. 2 critical Rayleigh number cR  is expressed as a function of magnetic Rayleigh number N  by keeping all
other parameters as constant by fixing their values as 1

1 21.5, 0.3, Pr 10, 5,F F Da−= = = = 33, 0.06 and 3G MΛ = = = . As 
N increases, cR  decreases and hence the system is destabilized. We observe that oscillatory convection is preferred to 
stationary convection as osc

cR is less than st
cR and hence the principle of exchange of instabilities is not valid. In Fig. 3 

critical Rayleigh number cR  is expressed as a function of the magnetic Rayleigh number N  by varying 1F  and keeping 

all other parameters as constant by fixing their values as 2 0.3,F = Pr 10,= 1 5,Da− = 33, 0.06 and 3.G MΛ = = = We

notice that, as 1F  increases, the osc
cR value decreases which indicates that the stress relaxation parameter 1F  hastens the 

oscillatory ferroconvection. In Fig. 4 critical Rayleigh number cR  is expressed as a function of the magnetic Rayleigh 
number N  by varying 2F  and keeping all other parameters as constant by fixing their values as 1 1.5,F = Pr 10,=

1 5,Da− = 33, 0.06 and 3.G MΛ = = =  As there is an increase in the values of 2F , we notice that there is an increase in 
osc
cR  which indicates that the strain retardation parameter 2F  slows down the onset of oscillatory ferroconvection. 
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Figure 2. Plot of cR versus N  with 
1

1 2 31.5, 0.3, Pr 10, 5, 3, 0.06 and 3.F F Da G M−= = = = Λ = = =  
Figure 3. Plot of osc

cR  versus N with variation in 1F  with 
1

2 30.3, Pr 10, 5, 3, 0.06 3 and 500.F Da G M Ta−= = = Λ = = = =  

In Fig. 5 critical Rayleigh number cR  is expressed as a function of N by varying G and keeping all other parameters 
as constant by fixing their values as 1 1.5,F = 1

32 0.3, Pr 10, 5, 3 and 3.F Da M−= = = Λ = =  As G increases, there is a 

decrease in osc
cR . As discussed by Straughan [24], the above threshold value of Cattaneo number G associated with 

oscillatory convection comes into picture. It destabilizes the system. In Fig. 6 critical Rayleigh number cR is expressed 
as a function of the magnetic Rayleigh number N  by varying Pr and keeping all other parameters as constant by fixing 
their values as 1 1.5,F = 1

32 0.3, 5, 3, 0.06 and 3.F Da G M−= = Λ = = =  As there is an increase in the values of Pr, we 

notice there is a decrease in osc
cR  due to the above threshold value of G and hence the system is destabilized. This is due 

to the hyperbolic nature instead of the parabolic one of the temperature equation. 

  

Figure 4. Plot of osc
cR  versus N  with variation in 2F  with 

1
1 31.5, Pr 10, 5, 3, 0.06 and 3.F Da G M−= = = Λ= = =  

Figure 5. Plot of osc
cR  versus N  with variation in G  with 

1
1 2 31.5, 0.3, Pr 10, 5, 3 and 3.F F Da M−= = = = Λ= =  

 
In Fig. 7 critical Rayleigh number osc

cR is expressed as a function of magnetic Rayleigh number N  by varying Pr  
and keeping all other parameters as constant by fixing their values as 1 1.5,F =

1
32 0.3, 5, 3, 0 and 3.F Da G M−= = Λ = = =  We notice that osc

cR  increases as Pr increases and hence system is 
stabilized. This is due to the absence of Cattaneo number. 

From Figures 6 and 7, we witness the dual nature of the Prandtl number Pr  depending on the Cattaneo number G. 
If the Cattaneo number G is above the threshold value, then on increasing Pr  there is a decrease in osc

cR as noticed in the 
work of Nagouda and Pranesh [25] and if the Cattaneo number G is below the threshold value, then on increasing Pr there 
is an increase in osc

cR as noticed in the work of Swamy et al. [18]. 
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Figure 6. Plot of osc
cR  versus N with variation in Pr  with

1
1 2 31.5, 0.3, 5, 3, 0.06 3.F F Da G and M−= = = Λ = = =  

Figure 7. Plot of osc
cR  versus N with variation in Pr  with

1
1 2 31.5, 0.3, 5, 3, 0 3.F F Da G and M−= = = Λ = = =  

Stationary vs Oscillatory Instability 

Table 1. Critical values of the Rayleigh number and wave number with 1
1 2 31.5, 0.3, Pr 10, 5, 3, 0.06 and 3.F F Da G M−= = = = Λ = = =

N Stationary Oscillatory
st
cR st

cα osc
cR osc

cα
0   1123.54  2.6486 154.486 3.05605 

20  1109.91  2.65782 139.604 3.13009 
40  1096.25  2.66701 124.546 3.20226 
60   1082.56  2.67618 109.324 3.27246 
80  1068.84  2.68533 93.9499 3.34063 
100  1055.09  2.69446 78.4344 3.40676 

Table 2. Critical values of the wave number varying with 1F  by fixing 1
2 30.3, Pr 10, 5, 3, 0.06 and 3.F Da G M−= = = Λ = = =

N
1 1F =  1 1.5F =  1 2F =

cα cα cα

0 3.06861 3.05605 3.04212 
20 3.11749 3.13009 3.14058 
40 3.16559 3.20226 3.23566 
60 3.21286 3.27246 3.32715 
80 3.25927 3.34063 3.41501 

100 3.30481 3.40676 3.49928 

Table 3. Critical values of the wave number varying with 2F  by fixing 1
1 31.5, Pr 10, 5, 3, 0.06 and 3.F Da G M−= = = Λ = = =  

N
2 0.1F =  2 0.3F =  2 0.5F =

cα cα cα

0 3.4042 3.05605 2.99105
10 3.52012 3.09329 3.01222
20 3.63083 3.13009 3.03327
30 3.73634 3.16642 3.05418
40 3.83684 3.20226 3.07495
50 3.93259 3.23761 3.09558
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Table 4. Critical values of the wave number varying with G by fixing 1
1 2 31.5, 0.3, Pr 10, 5, 3 and 3.F F Da M−= = = = Λ= =  

N  
0.05G =  0.06G =  0.07G =  

cα  cα  cα  
0 2.98828 3.05605 3.10812 

20 3.05035 3.13009 3.19439 
40 3.11118 3.20226 3.27804 
60 3.17068 3.27246 3.35892 
80 3.2288 3.34063 3.437 
100 3.28551 3.40676 3.5123 

 

Table 5.  Critical values of the wave number varying with Pr  by fixing 1
1 2 31.5, 0.3, 5, 3, 0.06 and 3.F F Da G M−= = = Λ= = =  

N  
Pr 5=  Pr 10=  Pr 15=  

cα  cα  cα  

0 3.01748 3.05605 3.06942 
20 3.08869 3.13009 3.14436 
40 3.15822 3.20226 3.21737 
60 3.22595 3.27246 3.28835 
80 3.29182 3.34063 3.35723 
100 3.35581 3.40676 3.42402 

 
G = 0 (In the absence of Second Sound) 

Table 6. Critical values of the wave number varying with Pr  by fixing 1
1 2 31.5, 0.3, 5, 3, 0 and 3.F F Da G M−= = = Λ= = =  

N  
Pr 5=  Pr 10=  Pr 15=  

cα  cα  cα  
0 2.38141 2.38512 2.38669 

20 2.39726 2.40086 2.40238 
40 2.41302 2.41651 2.418 

60 2.42869 2.43208 2.43352 
80 2.44427 2.44756 2.44895 
100 2.45975 2.46293 2.46428 

In Fig. 8 critical Rayleigh number osc
cR  is expressed as a function of N  by varying Pr and keeping all other 

parameters as constant by fixing their values as 1 0,F = 1
32 0, 5, 3, 0.06 and 3F Da G M−= = Λ = = = , i.e., in the absence 

of viscoelastic parameters. In this case also there is a decrease in osc
cR  as we increase Pr which again clearly suggests 

that the dual nature of Pr  is only due to the presence of the Cattaneo number.  

 

Figure 8. Plot of osc
cR  versus N with variation in Pr  with  1

1 2 30, 0, 5, 3, 0.06 and 3.F F Da G M−= = = Λ = = =  
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For Newtonian ferromagnetic fluid ( )1 2. ., 0 and 0i e F F= =
Table 7. Critical values of the wave number cα  varying with Pr  by fixing 1

1 2 30, 0, 5, 3, 0.06 and 3.F F Da G M−= = = Λ = = =  

N
Pr 5=  Pr 10= Pr 15=  

cα cα cα
0 3.30324 3.28459 3.27851 

20 3.31363 3.29529 3.28931 
40 3.324 3.30595 3.30008 
60 3.33432 3.31658 3.3108 
80 3.3446 3.32716 3.32148 

100 3.35485 3.3377 3.33212 

Table 8. Critical values of the wave number varying with 1Da−  by fixing 1 2 31.5, 0.3, Pr 10, 3, 0.06 and 3.F F G M= = = Λ = = =  

N
1 0Da− = 1 5Da− = 1 10Da− =  

cα cα cα
0 2.94266 3.05605 3.15784 

20 3.02243 3.13009 3.22714 
40 3.10014 3.20226 3.29475 
60 3.17561 3.27246 3.36059 
80 3.24874 3.34063 3.42464 

100 3.31951 3.40676 3.48689 

In Fig. 9 critical Rayleigh number osc
cR is expressed as a function of magnetic Rayleigh number N  by varying

1Da−  and keeping all other parameters as constant by fixing their values as 1 1.5,F =

32 0.3, Pr 10, 3, 0.06 and 3.F G M= = Λ = = =  Oscillatory ferroconvection is delayed because as 1Da−  is increased, there 

is an increase in the values of osc
cR . The reason for this is the increase in 1Da−  will decrease the porous medium

permeability and hence the convective instability is impeded. 

Figure 9. Plot of osc
cR  versus N with variation in 1Da−  with 1 2 31.5, 0.3, Pr 10, 3, 0.06 and 3.F F G M= = = Λ= = =  

In Fig. 10 critical Rayleigh number osc
cR is expressed as a function of the magnetic Rayleigh number N  by varying

the Brinkman number Λ  and keeping all other parameters as constant by fixing their values as 1 1.5,F =
1

32 0.3, Pr 10, 3, 0.06 and 3.F Da G M−= = = = =  As the Brinkman number Λ  increases, osc
cR also increases and

therefore oscillatory ferroconvection is delayed. As the Brinkman model accounts for an effective viscosity 
fμ which is 

different from fluid viscosity fμ and the ratio is assigned as the Brinkman number Λ . Hence viscous effect increases on 

increasing Λ  and hence ferroconvective instability is hampered due to the presence of porous media.  
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Table 9. Critical values of the wave number varying with Λ  by fixing 1
1 2 31.5, 0.3, Pr 10, 5, 0.06 and 3.F F Da G M−= = = = = =  

N  
1Λ =  3Λ =  5Λ =  

cα  cα  cα  
0 3.16486 3.05605 3.02786 

10 3.25535 3.09329 3.05126 
20 3.3429 3.13009 3.07448 
30 3.42738 3.16642 3.09754 
40 3.50877 3.20226 3.12041 
50 3.58714 3.23761 3.14309 

 
Table 10.  Critical values of the wave number varying with 3M  by fixing 1

1 21.5, 0.3, Pr 10, 5, 3 and 0.06.F F Da G−= = = = Λ = =  

N  3 1M =  3 3M =  3 5M =  

cα  cα  cα  
0 3.05605 3.05605 3.05605 

20 3.15476 3.13009 3.11124 
40 3.256 3.20226 3.16482 
60 3.35878 3.27246 3.21682 
80 3.46216 3.34063 3.26729 

100 3.56526 3.40676 3.3163 
 

  

Figure 10. Plot of osc
cR  versus N with variation in Λ  with 

1
1 2 31.5, 0.3, Pr 10, 5, 0.06 and 3.F F Da G M−= = = = = =  

Figure 11. Plot of osc
cR  versus N with variation in 3M  with 

1
1 21.5, 0.3, Pr 10, 5, 3 and 0.06.F F Da G−= = = = Λ= =  

In Fig. 11 critical Rayleigh number osc
cR is expressed as a function of the magnetic Rayleigh number N  by varying 

3M  and keeping all other parameters as constant by fixing their values as 1 1.5,F =
1

2 0.3, Pr 10, 5, 3 and 0.06.F Da G−= = = Λ = =  The linearity departure of magnetic equation is addressed by the 

parameter 3M . We notice from Fig. 11 that as 3M  increases, the osc
cR  monotonically decreases which implies that 

magnetic equation of state grows more and more to nonlinear state due to which ferroconvection is hastened.   
From Figs. 12 through 17, one can observe that when all the respective parameters increase, 2

cω  also increases, 
whereas from Figs. 18 through 20, as all relevant parameters increase, 2

cω  also decreases. Hence, we can conclude that 
from Figs. 12 through 20 that the frequency cω  of oscillatory ferroconvective instability is sensitive to all the parameters 
of the study. On the other hand, wave number depicts the size and shape of the convection cell. From Tables 2 through 
10, it follows that convection cell size is also sensitive to the all the parameters of the study at hand. Indeed, the convection 
cell size is enlarged with an increase in 32 , andF MΛ  and the opposite is found to be true with respect to an increase in 
the rest of the parameters. 
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Figure 12. Plot of 2
cω  versus N with variation in 1F  with

1
2 30.3, Pr 10, 5, 3, 0.06 3.F Da G and M−= = = Λ = = =

Figure 13. Plot of 2
cω  versus N  with variation in Pr  with 

1
1 2 31.5, 0.3, 5, 3, 0.06 3.F F Da G and M−= = = Λ = = =  

Figure 14. Plot of 2
cω  versus N with variation in 1Da−  with 

1 2 31.5, 0.3, Pr 10, 3, 0.06 and 3.F F G M= = = Λ= = =  
Figure 15. Plot of 2

cω  versus N with variation in Λ with 
1

1 2 31.5, 0.3, Pr 10, 5, 0.06 and 3.F F Da G M−= = = = = =  

Figure 16.  Plot of 2
cω  versus N with variation in Pr  with 

1
1 2 31.5, 0.3, 5, 3, 0 and 3.F F Da G M−= = = Λ= = =  

Figure 17. Plot of 2
cω  versus N with variation in Pr  with 

1
1 2 30, 0, 5, 3, 0.06 and 3.F F Da G M−= = = Λ= = =  
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Figure 18. Plot of 2
cω  versus N with variation in 2F with 

1
1 31.5, Pr 10, 5, 3, 0.06 and 3.F Da G M−= = = Λ= = =    

Figure 19. Plot of 2
cω  versus N with variation in G  with 

1
1 2 31.5, 0.3, Pr 10, 5, 3 and 3.F F Da M−= = = = Λ= =  

 

Figure 20. Plot of 2
cω  versus N with variation in 3M  with 1

1 21.5, 0.3, Pr 10, 5, 3 and 0.06.F F Da G−= = = = Λ = =  

It is worth mentioning that for Newtonian fluids only stationary convection is possible, but due to the presence of 
second sound, oscillatory instability is preferred to stationary stability as pointed out by Straughan [24]. 
 

CONCLUSIONS 
1. The system is destabilized through the presence of magnetic forces caused by the magnetization of ferrofluids. 
2. Nonlinearity in magnetization is shown to destabilize the system. 
3. Viscoelastic relaxation and second sound are shown to destabilize the system. 
4. Viscoelastic retardation, inverse Darcy number and Brinkman number are shown to stabilize the system. 
5. Prandtl number destabilizes as well as stabilizes the system depending on the over and below threshold values of the 

Cattaneo number respectively. 
6. Critical wavenumber and frequency of oscillatory motions are calculated as functions of all the parameters of the 

problem. They are shown to be sensitive to all the parameters of the problem. 
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КОЛИВАЛЬНА ФЕРОКОНВЕКЦІЯ У ПОРИСТОМУ СЕРЕДОВИЩІ У В’ЯЗКОПРУЖНІЙ МАГНІТНІЙ РІДИНІ 
З НЕКЛАСИЧНОЮ ТЕПЛОПРОВІДНІСТЮ 

Насір Ахмедa, С. Марутаманіканданb, Б.Р. Нагасмітхаb 
aФакультет математики, Президентський коледж, Кемпапура, Хеббал, Бенгалуру 560024, Індія 

bФакультет математики, Інженерна школа, Президентський університет, Бенгалуру 560064, Індія 
Використано класичний аналіз стабільності для вивчення комбінованого впливу в’язкопружності та другого звуку на початок 
фероконвекції у пористому середовищі. Вважається, що рідина і тверда матриця знаходяться в локальній тепловій рівновазі. 
Враховуючи граничні умови, відповідні для аналітичного підходу, критичні значення, що стосуються як стаціонарної, так і 
коливальної нестабільності, отримані за допомогою аналізу нормального режиму. Помічено, що коливальний режим 
нестабільності є кращим перед стаціонарним режимом нестабільності. Показано, що фероконвекція коливального пористого 
середовища розвивається через магнітні сили, нелінійність намагніченості, релаксацію напружень за рахунок в’язкопружності 
та другий звук. З іншого боку, спостерігається, що наявність затримки деформації та пористого середовища затримує початок 
осцилюючої фероконвекції у пористому середовищі. Також окреслено подвійну природу числа Прандтля на число Релея по 
відношенню до числа Каттанео. Також обговорюється вплив різних параметрів на розмір конвекційної комірки та частоту 
коливань. Ця проблема може мати можливі наслідки для технологічних застосувань, у яких використовуються в’язкопружні 
магнітні рідини. 
Ключові слова: конвекція; рівняння Максвелла; рівняння Нав'є-Стокса для нестисливих в'язких рідин; пористі середовища; 
в'язкопружні рідини, фероконвекція 




