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Nuclear structure of 20,22Ne isotopes has been studied via the shell model with Skyrme-Hartree-Fock calculations. In particular, the 
transitions to the low-lying positive and negative parity excited states have been investigated within three shell model spaces; sd for 
positive parity states, spsdpf large-basis (no-core), and zbme model spaces for negative parity states. Excitation energies, reduced 
transition probabilities, and elastic and inelastic form factors were estimated and compared to the available experimental data. Skyrme 
interaction was used to generate a one-body potential in the Hartree-Fock calculations for each selected excited state, which is then 
used to calculate the single-particle matrix elements. Skyrme interaction was used to calculate the radial wave functions of the single-
particle matrix elements, from which a one-body potential in Hartree-Fock theory with SLy4 parametrization can be generated. 
Furthermore, we have explored the interplays among neutron and proton density profiles in two dimensions, along with the 
deformations of 20,22Ne using Hartree-Fock plus BCS calculations. 
Keywords: Sd model space; negative parity state; elastic and inelastic form factor; density distribution 
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I. INTRODUCTION
For a microscopic description of the nucleus, different nuclear models have been utilized [1]. The most efficient one 

is the Shell Model (SM) [2], based on the idea of an independent nucleon freely orbiting in a spherically symmetrical core 
potential generated by all the other nucleons within the nucleus. In actual SM calculations, nuclear states are linear 
combinations of states rather than pure states [3]. Always, SM computations are performed in a configuration space with 
a limited number of single-particle states outside of an inert core, which is typically a doubly-magical nucleus. As a result 
of this truncation, the residual interactions must be regarded as effective interactions, and choosing the proper N-N 
interaction is not simple [4, 5]. The ground states of nuclei are created when nucleons fill shells to the Fermi level. Fermi’s 
level is the same for protons and neutrons in stable nuclei, but the Coulomb repulsion between protons [6] explains why 
the line of stability and the N = Z line on the chart of the nuclides do not correspond for heavier nuclei. The laws of 
quantum mechanics govern the location and characteristics of the nucleus' discrete energy levels, just like they do for the 
atom. The positions of excited states vary from nucleus to nucleus. Excitation energy (Ex) is influenced by each nucleus's 
internal structure. Quantum numbers denote each excited state's angular momentum, parity, and isospin, in addition to its 
electromagnetic and strong properties. Positive-parity spectra can be generated by considering only the 1d5/2, 2s1/2, and 
1d3/2 orbits in the sd-shell configuration space. Any realistic negative parity calculation must account for both 1p and 
2p-1f active shells. In the absence of such theoretical work, approaches to comprehending the structure of negative-parity 
states typically rely on more generalized descriptions [7]. In a system of identical Fermions, the Pauli exclusion principle 
dictates that the properties of a nucleus with a given number of protons and neutrons are defined by the filling of the 
lowest energy single-particle levels (the nucleons in this case). The Pauli Exclusion Principle states that a particular set 
of quantum numbers can only be occupied by a single proton or neutron. The average nuclear potential is determined by 
the shape of the nuclear density distribution and the attractive short-range nucleon-nucleon interaction [8].  

II. THEORETICAL FRAMEWORK
(a) Shell model calculations

The reduced matrix elements of the electron scattering ( )ˆ
zt

X λ  operator between the final f and initial i states can

be expressed as the sum of the one-body density matrix (OBDM) times the reduced single-particle matrix elements [9]; 
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where the single-partical state (k), and tz =1/2 and -1/2 for proton and neutron, respectively and i and f contain all the 
quantum numbers needed to separate the states. 

M1 operator is used to define the nuclear magnetic dipole moment as [10] 
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where the nuclear magneton 𝜇ே = ௘ħଶ௠೛௖ = 0.1051 efm. While, in terms of the E2 operator, the electric quadrupole moment 

is defined as 
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where the initial and final nuclear states |J>   contain all the quantum numbers necessary to differentiate the nuclear 
states. 
The reduced of transition probability given as [11]. 
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where k= EX/ħc, B(Eλ) is in unit of e2fm2λ and B(Mλ) is in the unit of μN
2 fm2λ-2. 

With the realization that the energy functional could be written as a zero-range expansion, the Skyrme interaction 
was developed for nuclear structure computations, resulting in a straightforward derivation of the Hartree-Fock (HF) 
equations in which exchange terms have the same mathematical structure as direct terms. This approach decreases 
significantly the number of single-particle state integrations necessary to solve the equations. The Skyrme energy (ESky) 
reflects the strong force in the particle-hole channel in coordinate space and consists of central, spin-orbit, and tensor 
contributions [6]. Central potential is represented by Skyrme potential. It is a one-body potential as a mean-field 
potential.It is designed to approach the realistic nucleon–nucleon forces by providing the average field owing to all of the 
nucleons constituting the nucleus. VSky equals the combination of two and three bodily components. [12] as: 
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The two-body part is given by: 
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where ( )12 1 2r rδ δ= −  , The 𝑘෠  and 𝑘෠ᇱ operators represent the relative wave vectors of two nucleons acting to the right and 
left, respectively (i.e., complex conjugate wave functions with coordinate 𝑟ᇱ), They possess the shape; 
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Also 
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Electron scattering form factor between final and initial nuclear shell model states, including angular momentum λ and 
momentum transfer q, is given by [13]. 

 

2
2 4 1 ˆ( ) ( ) ( ) ( ) ( ),2 (2 1)

F q e t J T q J F q F qz f i cm fstJ zZ ti z

πχ χ
λ λ

 
=   + 

 (10) 

where Jf and Ji are the total angular momentum λ of final and initial state, Fcm (q) is the correction (center- of-mass) and 
Ffs(q) is the finite size of the nucleon, with χ involving the transverse (T) and longitudinal (C) form factors. The nuclear 
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structure enters into the electron scattering through the longitudinal FC form factor and the transverse FT form factors (FE 

and FM ) are the electric and magnetic transverse form factor, respectively). The total longitudinal and transverse form 
factors for electron scattering are given by:  
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These form factors are functions of the momentum transfer q only.  
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The related to the electromagnetic transition operators as 
( , , )C e mM T Tλ λ λ  
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where ( )ˆ rρ , ( )Ĵ r , and ( )ˆ rμ ,  are the nuclear charge, the magnetization current density operators is ( )j qrλ , Bessel 
function of order λ , Yλμ  is the spherical harmonic. The total form factor is equal to the addition of the longitudinal and 
transverse relations: 

 
2 22 21( ) ( , , ) tan ( ) ( , , )

2 2
C TF q F q f i F q f iλ λ

θ = + + 
 

 (19) 

 
(b) Hartree-Fock plus BCS calculations 

The self-consistent mean field based on HF plus BCS calculations are designed to describe the structure of nuclei 
and study the evolution shapes, using the Skyrme forces performed to study the transitional in density shape where the 
pairing correlation have been taken into account. HF method is probably the best method for anticipating the total binding 
energies and single particle energies of closed shell nuclei [14]. Also SHF is a useful tool because this force is central and 
has zero-range interactions [15]. Nuclei is a quantum many-body system exhibiting the quadrupole collectivity associated 
with the shape of the mean field. The collective degree of freedom is associated with the measure of the operator Q̂ . 

From these single-particle wave functions and fractional occupation amplitudes, a mean-field theory can be 
built υα, i.e., [16] 
 { }, , 1,...,α αψ υ α = Ω  (20) 

where Ω denotes the size of the active single particle space. 
The formula for the resulting BCS many-body state is [16]. 
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Where 0  is the particle-vacuum state, is the Fermion production operator âα
+  in state αψ , and is the time-reversed 

partner to state α . The local density of nucleons is defined as [16] 
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The local nucleon density is defined as [16] 
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The total energy consists of 
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where ECulomb is the Coulomb energy 
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the pairing energy is 
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where dV represents the volume element in whole three-dimensional space and is the fundamental charge e. with 
e2=1.43989 MeV.fm, and qξ  is the pairing density, wα is a soft pairing space cut-off. The variables s ϵ ±1 represent the 
spinor component of the wave functions. 

The pairing energy includes the parameter ρ0,pair that controls the equilibrium between volume and surface pairing. 
Deformation of the nucleus is defined as the departure from spherical symmetry about the center of mass (c.m), which is 
quantified by the electric quadrupole moment. Hence, the most significant moments are center-of-mass moments [16] 
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In terms of the spherical quadrupole moments, the anisotropic combinations can be quantified 
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III. RESULTS AND DISCUSSION
In this study, the OBDM elements for low-lying positive parity 𝐽ା states were calculated using the sd-shell model 

space.  For negative parity 𝐽ି states, the spsdpf no core with (0, 1) ћω restriction and the zbme shell model spaces have 
been employed. Using the NuShellX@MSU code [17], all calculations were performed.  As we mentioned previously, 
the Skyrme interaction was used to calculate the radial wave functions of the single-particle matrix elements, from which 
a one-body potential in HF theory with SLy4, parametrization can be generated in addition to the harmonic oscillator 
(HO) and Wood-Saxson potentials. For 20,22Ne isotopes, using USDC [18] two-body effective interaction in the 
calculation of the OBDM and SLy4 parameterization yields root mean square (rms) charge radii of 2.954 and 2.9525 fm, 
which are in good agreement with the experimental values 3.005 and 2.9525 fm [19]. The calculated binding energies are 
150.15 and 168.84 MeV, which are in reasonable agreement with the experimental values of 
160.64 and 177.76 MeV [20]. The nuclear magnetic dipole moment is (1.076 and 0.780) nm, in good agreement with 
experimental values of +1.08 and +0.65 nm [19], and the electric quadrupole moment (Q2) is -14.31, and -14.03 e2.fm2, 
the experimental -23(3), -19(4) e2.fm2 [19]. All these results together match the experimental value. 

Also, we have used the code SkyAx [16] is a highly optimized two-dimensional HF+ Bardeen-Cooper-Schrieffer 
(BCS) code is using for computing ground states and deformation energy surfaces for axially symmetric deformed nuclei. 
The calculated results will be discussed in three sections. The first will focus on the Excitation Energies and reduce 
transition probability, the second on electroexcitation Form Factor, and the third on structure densities in two dimensions 
(Contour Lines), which will be given.  

1. Excitation Energies and reduce transition probability
The excitation energies and reduced transition probabilities for low-lying positive and negative parity states in 20,22Ne 

isotopes are calculated and tabulated in Table 1 and compared with the corresponding experimental data. The OBDM 
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elements for positive parity states were calculated using sd MS with the last updated two-body effective interactions 
USDE [21] and USDC [18].  In contrast, for negative ones, we have used the spsdpf (no core with one ћω restriction) and 
zbme model spaces with WBP and REWILE effective interactions, respectively. 

The majority of estimated excitation energies in all model spaces closely match experimental data. [19], except for 
a few levels. Those levels with deviations exceeding 1.5 MeV include 2ଷା at 7.833 MeV for 20Ne and 4ଶା at 6.345 MeV 
for 22Ne. The negative-parity energy levels are accurately predicted using zbme MS. However, for spsdpf MS, the 
excitation energy state 1ଵି  at 7.119 MeV is overestimated by the experimental data. The coupling between the states, such 
as the 1p1/2 holes coupled to the 1d5/2 neutron (1p-1h), may account for these discrepancies. The additional pairing 
correlation and a change in the proton–neutron interaction, which results in a more considerable quadrupole deformation 
energy, reduce the energy of the 1p–1h state [8]. Fig.1 illustrates the extent of convergence between theoretical 
calculations and experimental data. 

The calculated reduced transition probabilities B(EL) for the low-lying positive and negative parity states in 20Ne 
and 22Ne isotopes are presented in Table 2. The discrepancies with experimental data regarding the energy of transitions 
from these states might be due to the possible admixture of states involving neutron and proton excitations. From a general 
point of view, the B(EL) values for the transitions of low excitation energies agree reasonably well with experimental 
data [20,22-24]. The B(E2) transition rates are slightly larger than the experimental data except for 2ଵା, where the 
agreement is quite good for 2ଷା in 22Ne using the USDE interaction. The slight difference between the experimental data 
and the theory could be because the quadrupole vibration was not taken into account. Regarding B(E3) and B(E1) 
transition probabilities in 22Ne, the calculated results are in poor agreement with the experimental results. 
Table 1. Excitation energies in MeV for a different transition to excited states using two-body interactions USDE, USDC, WBP, and 
REWILE. The experimental data taken from Ref. [19] 

Nucleus 𝐉𝛑 𝐄𝐱(𝐄𝐱𝐩. ) 
Model Space 

sd spsdpf zbme  
USDE USDC WBP REWILE 

20Ne 2ଵା 1.633(15) 1.736 1.735 --- --- 2ଶା 7.421(12) 7.548 7.532 --- --- 2ଷା 7.833(15) 9.598 9.992 --- --- 4ଵା 4.247(11) 4.192 4.146 --- --- 4ଶା 9.031(7) 9.974 9.956 --- --- 3ଵି  5.787(26) --- --- 7.119 6.099 1ଵି  5.621(17) --- --- 5.448 5.436 
22Ne 2ଵା 1.274(7) 1.350 1.345 --- --- 2ଶା 4.456(9) 4.301 4.321 --- --- 2ଷା 5.363(11) 5.160 5.130 --- --- 4ଵା 3.357(5) 3.370 3.335 --- --- 4ଶା 6.345(10) 5.380 5.404 --- --- 3ଵି  5.910(9) --- --- 5.372 5.386 1ଵି  6.689(11) --- --- 6.671 5.720 

  

Figure 1. Theoretical excitation energies in MeV states vs. experimental for the different transition to low-lying excited states using 
USDE, WBP, and REWILE two-body effective interactions. The experimental data are taken from Ref. [19]. 
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Table 2. The reduced transition probabilities B(EL) in e2fm2L for the different transition to excited states using two-body interactions 
USDE, USDC, WBP, and REWILE. The experimental data taken from Ref. [20, 22-24] 

Nucleus 𝐉𝛑 𝐄𝐱(𝐄𝐱𝐩. ) B (EL)Exp B(EL)Theo. 
USDE USDC

20Ne 2ଵା 1.633(15) 340(30) 462 247.12ଶା 7.421(12) 0.13(0.03) 0.185 0.1122ଷା 7.833(15) 0.83(0.13) 2.901 2.4744ଵା 4.247(11) --- 0.6257E+05 0.6408E+054ଶା 9.031(7) --- 0.3418E+04 0.3548E+04
 WBP REWILE3ଵି  5.787(26) 1763 2172 15281ଵି  5.621(17) --- 0.187E-03 0.252E-07
 USDE USDC

22Ne 2ଵା 1.274(7) 271(36) 384 3932ଶା 4.456(9) 13(2) 31.1 29.52ଷା 5.363(11) 3.2(1.5) 3.802 2.484ଵା 3.357(5) 17000(4000) 20500 219304ଶା 6.345(10) --- 7076 6904
 WBP REWILE3ଵି  5.910(9)  870(250) 407.7 1278 1ଵି  6.689(11) 0.08(0.04) 0.914 E-05 0.349 E-03 

2. Electroexcitation form factor
The nuclear structure can only enter the cross-section through longitudinal (FC), transverse (FE), and magnetic 

(FM). These form factors are functions of the momentum transfer q only. The FC and FT form factors correspond to fields 
parallel and perpendicular to the direction of momentum transfer, respectively [25]. |FT(q)|2, is influenced by both 
magnetic and electric currents, whereas |FL(q)|2 is caused solely by the electric Coulomb field.   

A. Elastic electron scattering form factor (𝑱𝝅 = 𝟎ା)
Fig. 2 (a) and (b) depicts the calculated elastic longitudinal C0 electroexcitation form factors for the ground state 

(GS) of 20,22Ne isotopes in the sd-shell MS wave functions employing SLy4, HO, and WS parameterization compared 
with experimental data from Ref. [22,26]. Observable agreement exists in the momentum transfer region of q (0-1.3) fm-1, 
based on experimental data. 

Figure 2. Theoretical longitudinal C0 form factors (a) for 20Ne isotope 0ା, (0 MeV) (b) for 22Ne isotope 0ା, (0 MeV) using SLy4 
parameterization, HO and WS compared with experimental data taken from Ref [22, 23] 
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B. Inelastic scattering form factor 
1. Positive parity states 

The calculated inelastic longitudinal C2 electroexcition form factors of transition at positive parity states 2+ in 20Ne 
isotope are shown in Fig. 3; (a) 2ଵା(1.633 MeV), (b) 2ଶା(7.422 MeV), and (c) 2ଷା(7.833 MeV), and  for 22Ne isotope Fig.4 
(a) 2ଵା(1.274 MeV), (b)  2ଶା(4.456 MeV), and (c) 2ଷା(5.363 MeV). Inspection of these figures reveals that the longitudinal 
form factors are all dominated by the electric quadrupole transition C2 components and are in reasonable agreement with 
available experimental data [22,23] using all the single particle potentials. Although we have not been changing 
parameters, they were altered to accommodate the experimental electron scattering data.  The WS potential agrees 
satisfactorily with experimental data, except 2ଶା, at (7.422MeV) higher than experimental data at all momentum transfer 
points. 

  

 
Figure 3. longitudinal C2 form factor for 20Ne using SLy4, HO, and WS parametrizations vs with the experimental value taken 

from Ref. [22,23] 
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Figure 4. longitudinal C2 form factor for 22Ne calculate by SLy4, HO, and WS parametrizations vs the experimental data taken 
from Ref. [22,23]. 

Fig. 5 (a) and (b) show the calculated inelastic longitudinal C4 electroexcitation form factor of the transition to the 
4+ state in 20Ne at (4.2477MeV) and in 22Ne at (3.357 MeV). It is obvious that the longitudinal form factor is dominated 
by electric hexa transition C4 components and in reasonable agreement with experimental data in light of the fact that 
parameters were not changed to fit the experimental electron scattering data [23,24]. 

2. Negative parity states
Based on the results obtained in showing the sensitivity of the effect of changing the single particle potentials. The 
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convergence with the practical values. Fig. 6 shows the calculated total form factors for the transition to the negative-
parity state1ଵ_ , (5.787 MeV) and 3ଵ_ , (5.624 MeV) for 20Ne isotope compared with experimental data [23], which refer to 
the total sum of (1ଵ_  ,3ଵ_ ) states together. The WBP interaction predicts a rapid increase in low-lying C3 concentration. 
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While C1 form factor result under the experimental data. On the contrary, the REWILE result is in reasonable agreement 
with experimental results for the C3 form factor, in contrast to the C1 result, which was based on experimental data. 

Figure 5. Theoretical longitudinal C4 form factor for 20Ne and 22Ne isotope, using SLy4 parameterization in comparison with 
experimental data taken from Ref. [23, 24]. 

Figure 6. Total form factor for the transition -11(5.578) and -31(5.621MeV) using SLy4 parameterization in comparison with 
experimental data taken from Ref [26] 

Fig. 7 (a), and (b) show the calculated longitudinal C1, C3 form factors in 22Ne isotope for the transitions  1ଵି , 
(6.689 MeV) and 3ଵି , (5.910 MeV) states. The WBP prediction agrees qualitatively with experimental data in all 
momentum transfer regions of these data. Also, it can be observed that the REWILE prediction for the longitudinal C1 
form factors under estimate the experimental result. The longitudinal C1 experimental data reveals an additional 
maximum form factor. The theoretical C1 contribution does not include this maximum. From the our previous calculates 
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we noted that WBP is the best in approximation with experimental data, thus means the contribution valance nucleon in 
1p3/2 state is accountable for the substantial C1, C3 strength. 

Figure 7. Theoretical longitudinal C1 and C3 form factor (a) for1ଵି , 6.689 MeV. (b) For 3ଵ_ , 5.910 MeV using SLy4 
parameterization in comparison with experimental data taken from Ref. [23] 

3. The Quadrupole Deformation using BCS Calculation
Fig. 8 and 9 shows the potential energy curve of 20, 22Ne isotopes (on the left) as a function of the quadrupole 

deformation parameter β2. The corresponding neutron and proton structure densities are also displayed (on the right). 
Following the color code, the red and blue colors correspond to the high density (~0.08 fm-3) and low density (~0.02 fm-3), 
respectively. The two local minima in Fig. 8 are predicted as (a) β2=-0.154 and (b) β2=0.406. 20Ne have a stable quadrupole 
deformation where the high neutron and proton density distribution is in the center for the two regions (a) and (b), as expected 
(20Ne have the same numbers of protons and neutrons), where there is no effect of n-p pairing. For the 22Ne isotope, the two 
local minima in Fig. 9 are predicted as (a) β2=-0.204 and (b) β2=0.404. We can notice that the stability decreases with 
decreasing central proton density because of the two neutrons added to the last state, which increases the effect of n-p pairing. 

Figure 8. Left, the potential energy curve of 20Ne as a function of the quadrupole deformation parameter. The neutron and proton 
structure densities corresponding to the two local minima, marked a, and b are shown in the right panel 
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Figure 9. Left, the potential energy curve of 22Ne as a function of the quadrupole deformation parameter. The neutron and proton 
structure densities corresponding to the two local minima, marked a, and b are shown in the right panel 

IV. CONCLUSION 
In this study, the nuclear structure of 20,22Ne isotopes was investigated in the framework of the shell model and 

BCS calculation with Skyrme parametrization. In this context, excitation energies and the corresponding reduced 
transition probabilities, the elastic and inelastic electroexcitation form factors for positive and negative parity states in the 
momentum-transfer range 0.0 <q< 3.0 fm-1, and quadrupole deformation parameter are discussed.  Additionally, the work 
inspects the effect of three single-particle potentials; in particular, HO, WS and SLy4 parameterizations. It can be 
concluded that, on the whole, the impression of using different model spaces has fairly well reproduced the experimental 
data for positive and negative parity states and is not sensitive for changing the single particle potentials rather than the 
two-body effective interactions. The most important limitation lies in the fact that the strong collective feature of the 
nuclei in this mass region and internally consistent interaction formulation. 
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ФОРМ-ФАКТОРИ ЕЛЕКТРОЗБУДЖЕННЯ ТА ДЕФОРМАЦІЯ ІЗОТОПІВ 20,22NE НА ОСНОВІ МОДЕЛІ
ОБОЛОНКИ ТА РОЗРАХУНКІВ HARTREE-FOCK PLUS BCS 

Омар А. Алсвайдаві, Алі А. Альзубаді 
Факультет фізики, Науковий коледж, Багдадський університет, Багдад, Ірак 

За допомогою оболонкової моделі з розрахунками Скірма-Хартрі-Фока досліджено ядерну структуру ізотопів 20,22Ne. Зокрема, 
були досліджені переходи до збуджених станів низького рівня позитивної та негативної парності в трьох моделях оболонок; 
sd для позитивних станів парності, spsdpf з великим базисом (без ядра) та простори моделі zbme для станів з негативною 
парністю. Оцінено енергії збудження, зменшені ймовірності переходу, пружні та непружні форм-фактори та порівняно з 
наявними експериментальними даними. Взаємодія Скірма була використана для створення потенціалу одного тіла в 
розрахунках Хартрі-Фока для кожного вибраного збудженого стану, який потім використовується для розрахунку 
одночастинкових матричних елементів. Взаємодія Скірма була використана для розрахунку радіальних хвильових функцій 
одночастинкових матричних елементів, з яких може бути згенерований потенціал одного тіла в теорії Хартрі-Фока з 
параметризацією SLy4. Крім того, ми дослідили взаємодію між профілями густини нейтронів і протонів у двох вимірах разом 
із деформаціями 20,22Ne за допомогою розрахунків Хартрі-Фока та BCS. 
Ключові слова: Sd модельний простір; стан негативного паритету; пружний і нееластичний форм-фактор; розподіл 
щільності 




