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In this paper we are considering a fluid flows problem that contains two equation of motions and more than two parameters in the

governing equation of motion. Which is namely Radiative Boundary Layer Flow in Porous Medium due to Exponentially Shrinking
Permeable Sheet. The parameters are K = C—k", Pr = ﬂ, N = 403 Teo”
LY Koo 3k1keo
radiation parameter and is the thermal conductivity variation parameter respectively. The governing differential equation can be
obtained by using similarity variable technique and then the governing equation of motion can be Fuzzified by the help of Zadeh
extension theorem. The a — cut technique is used for the validation of the uncertainty of the equation of the motion. The effect of
the K, Pr, N and ¢ are discussed with the fuzzified governing equation of motion under fuzzy environment. It is observed none of the
parameters are directly involved in the occurrence of the uncertainty of the solutions. The uncertainty occurs in the problem is due to
the assumption and the numerical computation. Finally, the solution is being carried out under fuzzy environment. It is found that the
increasing values of permeability parameter, the values of both the numbers Skin friction coefficient as well as Nusselt number are
increases.
Keywords: Shrinking sheet; Fuzzified; computer codes;, a — cut
PACS: 44.05 +e, 44.30 +v, 47.10 A

and ¢ denote the permeability parameter, Prandtl number, and

1. INTRODUCTION

Flow and heat Transfer in boundary layer flow of viscous fluid due to deforming surface is pivotal in many industrial
processes cutting across different realms. Specially radiative thermal regime in porous medium has drawn much attention
recently due to large application in gasification of oil shale waste heat storage in aquifer and many more.

Vast application of radioactive thermal in porous medium we need to study this class of problems in different ways.
Due to involvement of nonlinear differential equation, there is no direct process available to solve exactly. Here we
consider such a mechanical problem for our discussion in which the governing equations of motion can have two non-
linear differential equations of motion (One for velocity profile and another one is for temperature profile) and four
parameters in the governing equation of motion and one parameter in the boundary conditions. The specific problem is
Radiative Boundary Layer Flow in Porous Medium due to Exponentially Shrinking permeable Sheet.

A few relevant research has been presented in recent years (2010 to cont.). Radiative flow of Jeffery fluid with
variable thermal conductivity in a porous medium was discussed by Elbashbeshy and Emam (2011), Hayat et al. (2012)
about the effects of radiation and heat transfer over an unsteady stretching surface embedded in a porous medium. Paresh
Vyas and Nupur Srivastava studied (2016) about the flow past and exponentially shrinking placed at the bottom of fluid
saturated porous medium taking variable thermal conductivity and radiation using fourth order Runge-kutta scheme
together with shooting method.

Here we introduce a new approach of solving of the said problem using fuzzy set theory. In this chapter our objective
is to find is there any kind of uncertainty involved in the specific problem i.e. Radiative Boundary Layer Flow in Porous
Medium due to Exponentially Shrinking permeable Sheet using fuzzy environment. For the graphical interpretation we
developed computer codes for the said problem and represent the parameter’s effect on the uncertainty involved in the
flow of motion. On the basic concept of fuzzy differential equations Chakraverty et al., (2016) proposed some numerical
methods for fuzzy fractional differential equations. Hazarika and Bora (2017, 2018) studied about the fuzzification of
some numerical problems. J. Bora et al (2020) discussed some fluids problems using fuzzy set theory.

2. FORMULATION OF THE PROBLEM
2.1. Derivation of The Basic Equation
Let us consider the steady 2D boundary layer flow of optical thick viscous Newtonian fluid and associated heat
transfer over a permeable sheet placed at bottom of the fluid saturated porous medium having permeability of specific
form. A Cartesian coordinate system is chosen where the x-axis is taken along the sheet and y-axis is normal to it. The
flow is caused by the sheet shrinking in an exponential fashion. A suction is applied normal to sheet to contain the
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vorticity. The fluid considered here is without phase change, optically dense, absorbing-emitting radiation but a
nonscattering medium. The thermal conductivity of the fluid is assumed to vary linearly with temperature. The radiation
flux in the energy equation is presumed to follow Rosseland approximation. The boundary layer equations for the

considered setup are
ou  Jdu

ax "oy 0, M
ulpvlt=p(Z8) - ot @
pcp(ug—i+vg—§)=%(kz—§)—z—i: 3)
With the boundary condition
Aty=0, u=1U,(x) = —ce’_lc, v=V,(x) = —voe%, T=T,(x) =T, + Toe%

and at
y-oo0o,u—=0T->T, “®

where u, v are the velocity components along x and y directions, respectively, k is the permeability, c,is the specific heat
at constant pressure, v is the kinematic viscosity, p is the density, and 7, u, and x are the temperature, viscosity and thermal
conductivity of the fluid, respectively. Further, L is the characteristic length, T, is the variable temperature at the sheet,
T, is the constant reference temperature, and T, is the constant free stream temperature. U,, and V,, are the shrinking
velocity of the sheet and mass transfer velocity, respectively, where ¢ > 0 is the shrinking constant and v, is a constant
(where vy < 0 corresponds to mass suction).
Let us introduce the stream function (x, y) as
Y Y
u= a = — a (5)

Thus equation (5.1) is identically satisfied and the similarity transformation can be written as

W = VZoLef (n)ein = y\/%e%, and (x) = —= ©)

TW _TOO

On using (5.5) and (6.5) we obtain the expression for velocity component in non-dimensional form as

w=cf'(n) eand v = — [ (nf' () + f(n))et ™

In order to obtain the similarity solutions, it is assumed that the permeability & of the porous medium takes the
following form

k(x) = 2kge L (8)

Where k, is the reference permeability.
As in our setup the thermal conductivity of the fluid is assumed to vary with temperature in a linear function as

k = ko, (1+€ 6) ©)

Where € is the thermal conductivity variation parameter. In general, € > 0 for fluids such as water and air, while €<0 for
fluids such as lubrication oils. The radiative heat flux in the energy equation is presumed to follow Rosseland

approximation and is given by
40y OT*

& ="3c o (10)

Where g, is the Stephan-Boltzmann constant and k; is the mean absorption constant. It is further assumed that the
temperature difference within the fluid is sufficiently small sothat T* may be expressed as a linear function of temperature
T. This is done by expanding T* in a Taylor series about T,,and omitting higher-order terms to yield

T* = AT, T — 3T,,*
Thus, the equation of momentum (5.2) and energy (5.3) reduces to the following non dimensional form
nr " 12 f’ _
frffr -2 L =0 (1n
(1+5) 0" +€00" + €62 + Pr(fo' — f") = 0 (12)

With the boundary conditions
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n=0:f'(m)=-1f)= UC/Z Tooar = 50 =1, > 0oif'() > 0,6(n) - 0 (13)
Where
_ ko _ MG o 405Te?
k= L9’ Pr= Koo’ N = 3k1keo

Denote the permeability parameter, Prandtl number, and radiation parameter respectively.

2.2. Conversion of The Basic Equation into Fuzzified Form
Now we Applying Zadeh fuzzy Extension theorem in (5.11-5.12) and (5.13-5.14)

e+ i -2 =L =0 (15)
A+ 0" +¢e0a7 +é0™ +Pr (f6" - 0f") = 0 (16)
And the boundary condition became as (Fuzzy Environment)
~0:f1m=-1Lfm) = W =500 =1, 17
A —&: f'(n) - 0,6() 0 (18)

Considering the Fuzzified (5.15) equations as triangular fuzzy number then the Fuzzified equation became the
following:
" meoEr s o Err 2 /2 L f_
L F T UL E TV T = 227 7| = o = 10,0,0]

K K]

Using fuzzy arithmetic we have,
= [f", ", F™]+[minT, Ty, maxT]- [2f'2, 2f"”,2f*| - [min S, S;, maxS] =[0,0,0]
= [f" +minT, f + To, f + maxT ] - [2f_’2+ min S, 2f" + S, 21" + maxs] = [0,0,0]

= [f"” +minT — (2f 2 + maxS), " + Ty — 2f" +S,), f"" + maxT — (2f"” + minS) ] = [0,0,0]

Thus, we have,

f" 4+ minT — (Zf_’z+ maxS) =0 (19)
" +Ty— (2 +5,) = 0. (20)
f7 +maxT — (2f” + min§) =0 Q1)
Where § = f= L é L ndSo——
K'K'K’'K

T = Elr’zfn,fiu’ﬁ’ and TO — ff”

Similarly considering the Fuzzified (5.16) equations as triangular fuzzy number then the Fuzzified equation
became the following:

1+%,1+ +— [67,6",6"] + € €¢€][0,6,0](6",6",0"] + [, € €| [6'%6'26'%] + [ Pr,Pr, Pr]
(£.r7]|e.e.e]-f.r.F]le.6.8]1=10,0,0]

= [minX, X, maxX] + [€ € €] [minY, ¥, max Y] + [min Z, Z,max Z] +[ Pr, Pr, Pr] {{min4, 4, maxA] —
[min B, B,max B] } = [0,0,0]

= [minX, X, maxX] + [minY, ¥, ,maxYy] + [minZ, Z,max Z] + [ Pr,Pr, Pr| [minA — maxB, A —
B, maxA — minB] = [0,0,0]

= [min X + min¥, + minZ, X + ¥y + Z, max X 4+ max Y, + max Z] + [min AyB,, AyBy, max AyB,] = [0,0, 0]
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= [minX + minYy + minZ + min AyBy, X + Vo + Z + A,B,, maxX + max Y, + maxZ + max4,B,] = [0,0,0] (22)
Where

X=1+Z0"1+260",1+20",1+2 06" andX=1+= 0"

J— —_——

Y=60",00",600",060", and ¥ = 66"

AoBy = Pr (minA —maxB) , Pr (maxA —minB), Pr (min4A —maxB), Pr (maxA—minB), 4,B, =
Pr (A-B),
Now we can re-write the equation (5.22) as follows

minX + minYy + minZ + min 4,8, = 0 (23)
X+Yy+Z+ AyBy =0, (24)
max X + max Y, + maxZ + max A,B, = 0, (25)

Similarly if we convert the boundary condition into Fuzzified form then a new system of equation will arise as follows
f"" 4+ minT — (Zf_’2 + maxS) =0
minX + minYy, + minZ + min 4,8, = 0

With the boundary conditions
—vp

= 0:ft) = =1 f() =72 =5, 60 = Ly~ o /() > 0.6(n) ~ 0 (26)

" +Ty— (2" +5,) =0
X+Y,+Z+ A,B, =0,
With the boundary conditions
. £ _ _ TV __ _ . £
n=0:f)=-1f0)=7=5="500)=1n- o f(n)-0060) >0 @7

]m+ maxT — (Zf’2 + minS) =0 max X + maxYy + maxZ + maxA4yBy, = 0

With the boundary conditions

f'(m) = 0,60 -0 (28)

8l

n-

3. Definition of Skin Friction C; and Nusselt Number Nu,
The physical quantities of principal interest are the skin friction coefficient C; and the local Nusselt number Nu,,
which are defined as

Re,'/2C,=f"(0) and  Re, */?Nu, = —6'(0)

Where Re, = @ is the local Reynolds number.

4. Result and Discussion
The system of equations (26-28), the fuzzified equations of motion with fuzzified boundary conditions are solved
numerically by using finite difference scheme. The discretized fuzzified equations are solved using an iterative method
based on Gauss Seidel iterative method by developing suitable codes in python.
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The numerical computations carried out for different sets of values of the parameters entering into the problem have
been depicted through graphs and tables. Result is obtained for different values for the parameter s = 1, K = .25, €= .1,
Pr = 0.7 and for different @ — cut of the fuzzified system of equations (26-28)

In each of the following graphs the blue curve is the solution for the right values of the of the fuzzified velocity
profile, green curve is the solution for the mid values of the fuzzified velocity profile which is same as the crisp velocity
profile and blue curve is the solution for the right values of the of the Fuzzified velocity profile.

The Figure (1-3) exhibits the Fuzzified temperature profile for @ — cut with a = 0.3,0.6,0.9, and K = 0.25,n =
0.5,Pr = 0.7 ,e=0.1,s = 1. It is observed from the graph that there is a deflection on the curve in the right solution of
the temperature profile as compare to the left solution of the temperature profile from the mid value solution (i.e. crisp
solution). Which is the indication of the uncertainty involved in the temperature profile.
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Figure 1. Fuzzified Temperature profile for a — Figure 2. Fuzzified Temperature profile for o —
cut,witha =0.3,s =1,K = .25,e=.1,Pr = 0.7 cut with a=0.6,s = 1,K = .25,e=.1,Pr = 0.7
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Figure 3. Fuzzified Temperature profile for
a—cutwitha =09,s =1,K =.25,e=.1,Pr =0.7
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Figure (4-7) are the fuzzified temperature profiles for ¢ — cut with a = 0.5 and different values of the parameters
s=1and 2,K = 0.25and 0.5,Pr = 0.7 and 1.1, = 0.1 and 0.3.
It is observed from the Figures that there is no significant deflection of right solution as compare to left solution
from the mid value solution (Crisp solution). Which is due to the changes of these parameter are not the cause of the
uncertainty involved in the solution of the temperature profile.
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Figure 4. Fuzzified temperature profile for « — cut with a =0.5,s = 1and 2,K = .25,€e=.1,Pr = 0.7
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Figure 5. Fuzzified temperature profile for « — cut with ¢ =0.5,s = 1,K =.25and 0.5,€=.1,Pr = 0.7
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Figure 6. Fuzzified temperature profile for « — cut with a =0.5,s = 1,K = .25,€=0.1and 0.3,Pr = 0.7
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Figure 7. Fuzzified temperature profile for ¢ — cut witha =0.5,s = 1,K = .25, €=.1,Pr =0.7and 1.1

Figure (7-9) represent the crisp velocity profile for different values of s, € and Pr. It is observed in Figure 7 that
with the increasing values of suction parameter s the velocity decrease. Whereas velocity decreases with increase of Pr
in Figure 8. It is found that the pattern of the flows is almost similar in the temperature profile for the changes of the
parameter. Also, we see that 8(n) decay with the increase of Pr. Whereas 8(n) increases with increasing value of € in
Figure 9.

As the parameter changes are not affect in the uncertainty of the solution of the temperature profile so we are
discussed the effect of the parameter in Crisp Solution i.e., ¢ — cut = 1.

Figure (10) is the Fuzzified velocity profile for @ — cut witha = 0.5,and K = 0.25, n = 0.5, Pr =0.7,€e= 0.1,
s = 1. It is observed from the graph that there is a deflection on the curve in the right solution of the velocity profile
(Green curve) as compare to the left solution of the velocity profile (Light yellow curve) from the mid value solution i.e.
crisp solution (Violet curve). Which is the indication of the uncertainty involved in the solution of the velocity profile.
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Figure 7. Crips Temperature profile for Figure 8. Crips Temperature profile for
€= 0.1 (blue), 0.5 (Orange), 0.9 (Green), 1.2 (Brown) s = 1(Blue), 3 (Green), 5 (Orange)
and s =1,K = .25,Pr = 0.7 and K = .25,€=.1,Pr =0.7
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Figure 9. Crips Temperature profile for Figure 10. Fuzzified Velocity profile for
Pr = 21.7 (Light Pink),17(dark brown), a — cut with « =0.5,s = 1,K =.25,€=.1,Pr =0.7

13.7(Violet), 10.7(brown), .7(Green),4.7(0range),0.7 (Blue)
ands =1, K =.25, e=.1

Fig (11-14) are the fuzzified velocity profiles for a — cut with a« = 0.5 and different values of the parameters
s=1and 2, K=0.25and 0.5,Pr =0.7and 1,& = 0.1 and 0.5. It is observed from the Figures that there are no
significant deflections of right solution as compare to left solution from the mid value solution ( Crisp solution ). This is
due to the changes of these parameter are not the cause of the uncertainty involved in the solution of the velocity profile.

As the parameter changes are not affect in the uncertainty of the solution of the velocity profile so we are discussed
the effect of the parameter in Crisp Solution i.e. & — cut = 1.
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Figure 11. Fuzzified Velocity profile for « — cut with ¢ =0.5,s = 1and 2,K = .25,€e=.1,Pr = 0.7
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Figure 12. Fuzzified Velocity profile for @ — cut with @ =0.5,s = 1,K = .25 and 0.5,€=.1,Pr = 0.7
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Figure 13. Fuzzified Velocity profile for &« — cut with « =0.5,s =1, K = 0.25,€= 0.1 and 0.5, Pr = 0.7
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Figure 14. Fuzzified Velocity profile for ¢ — cut with « =0.5, s=1, K =0.25, €=.1, Pr=0.7and 1

Figure (15) represent the crisp velocity profile for the different values of the parameter € and fix value of the
parameter = 0.25, s = 1 and Pr = 0.7 . It is observed that with the increasing value of € the velocity profile decreases.

Again Figure (16) represents the crisp velocity profile for the different values of the parameter s and fix value of the
parameter K = 0.25, €= 0.1 and Pr = 0.7 respectively. It is observed that with the increasing value of s the velocity
profile also increases.

It is observed from the graphs of the crisp velocity profile in Fig. (15-16) that the solution shows the occurrence of
reverse flow. The occurrence of the sharp point in the back flow this is due to the numerical difficulties as the numbers
of subdivision are less in number. If we increase the number of divisions to as large extend time complicity arise in the

fuzzified solution but the curve would be smooth.
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Figure 15. Crips Velocity profile for Figure 16. Crips Velocity profile for
€= 0.1(Violet), 0.5(yellow), 1(pink) and s = 1,K = .25, s = 9(Blue), 5(Green), 1(Orange) and K = .25,e= .1,
Pr=10.7 Pr =0.7

5. Comparison of Skin Friction Coefficient C; and Local Nusselt Number Nu,
The two important parameters in fluid flow problem are the skin friction coefficient C¢ and local nusselt number Nu,, we
have computed these two parameters for different values of the Permiability parameter which are given in the following Table.

Table

Permiability Cr Nu,
Parameter Crips Fuzzified Crisp Fuzzified
10 0.264853 0.243849 -2.13187057 -2.00200567
20 0.265152 0.244158 -2.13187043 -2.0020055
30 0.265251 0.244261 -2.13187038 -2.00200544
40 0.265301 0.244313 -2.13187036 -2.00200541

It is observed from the table that with the increasing values of permeability parameter the values of the Skin friction
coefficient increases. Similarly with the increasing values of permeability parameter the values of Nusselt number also
increases. The results are well agreed with those of crisp values. The effect of fuzzification is also observed from the

above Table.

6. Conclusion
In this chapter, the Radiative boundary layer flow in Porous medium due to exponentially shrinking steady MHD
stagnation point flow due to shrinking permeable sheet has been theoretically considered under fuzzy environment. The
effect of suction parameter, velocity ration parameter, Prandlt number on the flow and heat transfer have been studied
under fuzzy environment. The numerical results have been obtained by developing computer codes on PYTHON. Thus,
we conclude the followings from the above discussion:

(1) The involvement of uncertainty in the equation of motion of this problem.

(2) None of the parameters are directly involved in the occurrence of the uncertainty of the solutions. The
uncertainty occurs in the problem is due to the assumption and the numerical computation.

(3) The crisp solution of velocity profile as well as temperature profile and the fuzzified velocity profile as well as
temperature profile are in good agreements. The flow pattern for both the case velocity profile as well as
Temperature profile are almost similar for different values of parameters.

(4) With the increasing values of permeability parameter, the values of both the numbers Skin friction coefficient
as well as Nusselt number are increases.

(5) The effect of fuzzification is observed in the values of the physical quantities of the Skin friction coefficient Cr

and local Nusselt number Nu,.
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YHACJOBE PIIIEHHSA TEUIi PAJIAIIAHOIO NPUKOPAOHHOI'O IAPY B IOPUCTOMY CEPEJIOBHIIII
YEPE3 EKCIOHEHIIAJIBHO 3TUCHYTU NPOHUKHUI IIAP B HEUITKHX YMOBAX
Amip Bapxoii?, I'.K. XazapikaP®, Xpimukem Bapyax?, IIpanaxan Bopa®
“Koneoxc [Jyniadocana, [Ayniadxcan, Acam, IHoia
bYuisepcumem Jiopyeapx, Jiopyeapx, Accam, Indis
¢D.R. Koneooc, I'onoexam, Acam, Inois
V wiii cTarTi po3rSIHYTO 3a7ady PO Tedil piAuHY, siIKa MICTHUTH J1Ba PIBHAHHS pyXy Ta Oijblie JBOX MapaMeTpiB y BU3HAYAILHOMY
piBHsiHHI pyxy. lle came panianiiiHuii NMOTIK NPHKOPAOHHOTO LIApy B IOPHCTOMY CEPEIOBUILI 4Yepe3 NPOHUKHHN JIUCT, IO

. . ck uc 401 To®
€KCIOHEHLIHHO cTHCKacThes. [lapamerpy piBnsuns K = —2, Pr = —2 N = ==
L9 Keo 3k koo

yncito [IpannTist, mapaMeTp BUIIPOMIHIOBAHHS Ta IapameTp Bapiamii TerronposigHocTi. OCHOBHE audepeHniaibHe PIBHIHHSI MOXe
OyTH oTpHMaHe 3 BUKOPHCTaHHIM METOJy 3MIHHHX IOAIOHOCTI, a ITOTIM OCHOBHE PIBHSHHS pyXy Moxe OyTtu fuzzified 3a momomororo
TeopeMH po3mmpeHHs 3ane. MeTox o-3pi3y BHKOPHCTOBYETBHCS JUISl NEPEBIPKM HEBM3HAYEHOCTI PIiBHSAHHS pyxy. OOroBoproeThbcest
BB K, Pr, N Ta € 3 HEUiTKUM KepylOUHMM piBHSHHSIM PyXy B HEUITKOMY CepeJIOBHIIi. 3HalIEHO, 0 JKOEH i3 mapaMeTpiB He Gepe
Oe3nocepeiHbOi y4acTi y BHHUKHEHHI HEBH3HAYCHOCTI pinieHb. HeBH3HA4eHICTh BHHHMKAE 4epe3 MPUITYLICHHS Ta YHCEIbHUM
po3paxynok. Haperuri, pilieHHs BHKOHAHO y HEYITKOMY cepeloBHII. BcTaHOBIEHO, 110 3i 30UIbIICHHSIM 3HA4YCHHS MapaMerpa
MIPOHHUKHOCTI 3pOCTAIOTh 3HAUYEHHS 000X YHcelN: Koe(illieHTa MOBEPXHEBOTO TEPTH, a TakoXkK uncia Hyccenpra.

KurouoBi cinoBa: mepmosodisicruil nucm, Heuimxicms, KOMN'TOmepHi Koou, a-3pi3

€ 03Ha4YaI0Th Bi/IIOBIJHO ITAPaMETP IPOHUKHOCTI,





