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In this research, the effect of changing the values of the diffusion parameter on the semi-elastic scattering (%) and distribution (D)
calculations for single channel (SC) and coupled channel (CC) have been studied. Three values were taken from the diffusion for
each system parameter. It is assumed that the nuclear potential has a Woods-Saxon form, which is indicated by the surface
diffuseness, potential depth, and radius parameters for (*Mg + *Zr), (**Si + (12°Sn, ''Nd) Systems. The chi square (y?) is applied to
compare the best fitted value of the diffuseness parameter between the theoretical calculations and the experimental data. According
to the results of (x?), we noticed that some systems achieved a good match between the theoretical calculations and experimental data
of semi-elastic scattering (%) and the distribution calculations at the standard value of the diffusion parameter (ao=0.63) or at a
value higher and lower than the standard value .In the case of channel is single SC the best fit was at a value less than the standard
value of the diffusivity parameter, but in the case of CC the fit was better at a value higher than the standard value of the surface
diffuseness parameter because the potential barrier in the single SC, while in CC calculations it is multiple.

Keywords: Quasi-elastic scattering, Woods-Saxon potential; Single channel; Coupled channels; Surface diffuseness parameter;
Heavy-ion system

PACS: 21.60.-n, 21.10.-k, 21.60.Jz, 25.70.Bc, 25.70.

1. INTRODUCTION

The Nuclear reactions at sub-barrier energy are crucial in nature, since they are responsible for the basic
behavior of stars, their development, and many aspects of element production. The nucleus potential is consist
from Coulomb V¢(r) and nuclear Vn(r) parts [1][2]. The Woods-Saxon (WS) form is often used to represent the
nuclear component, which is characterized by the deepnessV,, radius ry, and diffuseness a, parameters. It is
significant in nuclear physics because it is regarded as a realistic potential [3]. Experiments indicate that coupling
to collective states results in a distribution of Coulomb barrier heights, which may be calculated directly from the
fusion excitation function ons (E) or from back scattered quasi elastic events for many nuclear systems. A
significant method for the investigation of barrier distributions near to the Coulomb barrier is large back-angle
quasi elastic scattering [4]. It may be described as the total of elastic scattering, inelastic scattering, and transfer
reaction. It is very similar to the fusion process which is defined as a reaction in which two discrete nuclei
combine to produce a compound system [5]. Heavy-ion collisions at energies around the Coulomb barrier are
strongly affected by the internal structure of colliding nuclei [6]. The coupling channel model is the best
instrument for simultaneously reproducing the experimental data for a variety of events, including particle
transfers, fusion, elastic and inelastic scattering [7]. The inter-nuclear potential is the most crucial factor in
calculations involving coupled channels. Since it has an impact on the coupling strengths and the breadth of the
barrier. The transfer reactions, as well as the collective vibrational and rotational movements, are coupled with the
relative motion of the colliding nuclei to produce the channel coupling [8]. A heavy-ion reaction to fusion has a
counterpart in quasi-elastic heavy-ion scattering at reverse angles. At energies near to the Coulomb barrier, these
inclusive procedures are vulnerable to channel coupling effects (due to collective inelastic excitations of the
colliding nuclei). The likelihood of reflection at the Coulomb barrier causes quasi-elastic scattering, whereas
transmission is connected to fusion. This fact was exploited, and barrier distributions were obtained [9]. Fusion is
one of the most significant near-barrier processes. The interaction between the relative velocity of two colliding
nuclei and their internal structures is well known to result in a significant increase in fusion cross sections at sub-
barrier energy [1]. Several studies on quasi elastic scattering have been studied by Khalid S. Jassim for some
heavy ions systems [10-12].

The aim of this research study is to study quasi elastic scattering at near energies from high the coulomb
potential barrier to determine the surface diffuseness parameters of the inter-nucleus potential for the systems
BMg+Zr and (*%Si, '2°Sn)+'3Nd single and coupled channels calculations were performed using the CQEL
program [7], which includes all orders of coupling and is the most recent iteration of the computer code CCFULL.

The chi square (*¥?) approach has been used to find the diffuseness parameters' best fitted values in comparison to
the experimental data.
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2. THEORY
The potential between two nuclei consists of two parts, the first part being the nuclear potential Vn, which may be
adequately and reasonably characterized by the two parts that make up the nucleus-nucleus potential. The Woods-Saxon
(WS) form provided by [12].

VN () = - —2, (1)

1+e al

where r is the center-of-mass separation between the target nucleus of mass number Ar and the projectile nucleus of
1 1

mass number Ap, and R, denotes the system's radius Ry = 1, (AET + Af,) . When they do not interact, the second part

being the Coulomb potential V¢ between two spherical nuclei with uniform charge density distributions is given by
[12]:

V() =21 < @)

here r is the distance between the centers of mass of the colhdlng nuclei and Z, and Z are the atomic numbers of the
projectile and target, respectively.
The Coulomb potential is produced when the nuclei interact, and it is determined by[13].

V() =23 (1), 3

2Rc

where R is the radius of the equivalent sphere, which corresponds to the projectile and target nuclei.
The coupling between the nuclear intrinsic motion and the relative motion of the centers of mass of the colliding
nuclei, r = (r, r), which causes the collision of two nuclei. The Hamiltonian system's is provided by [4] :

HG ) = =572 + V) + Ho®) + Veoup - 6), )

where V (r) is the bare potential in the absence of coupling where V(r)= V N (r)+V ¢ (r) , Hy (%) is the Hamiltonian for
the intrinsic motion, and Ccoup is the stated coupling, r stands for the center of mass distance between the colliding
nuclei.

The entire wave function's Schrodinger equation is given by[14].

h? N N N
(_Z_HVZ + V(r) + Ho(®) + Vcoup G-OOUE.8) = Eui.9), @)
Generally, the internal degree of freedom has a limited spin. The coupling Hamiltonian in complexities can be

written as [4] :

Vcoup G.§= ZA>0./,L fi () YA;L ®. TA;L ), (6)

The spherical harmonics and spherical tensors, which are constructed from the internal coordinate, are denoted by
Y3, (F) and Ty, (), respectively. That when it was taken into account in V (r), the total is taken over all values of

excluding for A = 0. (r). For a constant total angular momentum J and its z-component M, the expansion basis for the
wave function in Eq. (5) is given by [4] :

(7E1(IDJM ) = Xy, lmy Iy M )Yy (B) @i, (5, Q)

where in / denotes the orbital, I denotes internal angular momenta, and @y, () denotes the wave function for the
internal motion that which fulfills by equation below[4] :

Hy($) (pnlml(f) = €n (pnlml(f) 5 (®
With this basis, the total wave function (5. £)has been expansion as [15]:

- W),
VG -6) = T — (7 EI(IDIM ), ©)]
It is possible to write the Schrodinger equation [Eq. (3)] as a group of coupled equations for u{tl, (r)[14]:
l(l+1)h
[—ZE+V( )+ = B e w)y () + S VYU (() =0, (10)

The coupling matrix elements VT{ Uit z'.i(r)’ According to [4] are as follows:

nl,n”(r)—(]M (UD|Vep G- )] (0.0 DIM ) = Sp(=1)'~ M4 £, K nI|ITl|nT ) %

,/(2l+1)(21+1){ v 1}, (11)

L 1 2

Where the reduced matrix elements in Eq. (8) is defined as follows [4]:
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| Vo |U Y = U At Lot ) 1Y [T, (12)

where V7{l m ”(r) are separate of the index M, the index has been suppressed as seen in Eq. (11). Coupled-channels

equations are the name given to the equation (10). For heavy-ion fusion reactions, these equations are usually solved
using the incoming wave boundary conditions[14].

Upy (1) ~ Ty exp ( 1f ki (r)dr) T < Tapss (13)
(B Geusr ) Buabus + Jr SUH o)) 7 — 0. (14)
where k. = /2U(E — €,1)/h? , kyyi = k = +/2UE /B2 and the following formula defines the local wave number k,,;:
1) = (2 (5 = e = C2E V() — ), (), (s)

After obtaining the transmission coefficients T nllJ, the penetrability via the Coulomb barrier is given by:
Pi(E) = Tyt |7 2, (16)

The computation of quasi-elastic cross sections typically needs a high value of angular momentum in order to
provide convergent results, unlike the calculation of fusion cross sections. For such a huge angular momentum, the
potential pocket at (r = rabs) becomes shallow or even vanishes. Therefore, it is impossible to precisely identify the
incoming flux in Eq. (13). In order to avoid employing the incoming wave boundary conditions, the quasi-elastic
problem often executes the regular boundary conditions at the origin. A complex potential V N (r)=V Ny (r)+iw(r) is
required to model the fusion reaction when utilizing the usual boundary conditions. Following the acquisition of the
nuclear S-matrix in Equation (Eq11), the scattering amplitude may be computed as

fu (6.E)=iXp / i/ elloyBr+aE-enr] v +1 Yw(g)(sj 51.1251.12) + fc(6.E)8;1,614, (17)

The Coulomb phase shift is g;.and given by the equation,
g =T+ 1+in)), (18)
As for f., which is the Coulomb scattering amplitude and is determined by [14]:

f.(6.E) = stizz(ﬁ)e[ mln(sm ( ))+2m0(5)] (19)

here n = is the Sommerfeld parameter which is given by n = Z;Z, e?/hv , and utilizing Equation (16), the differential
cross section may be evaluated

doger(6.E) kn
—== Yt 6. B, (20)
may be evaluate the Rutherford cross section.
dog(0.E
LRCE = (0. B = 1 2 esct(9), Q1)
The distribution of the barrier of fusion is defined as [4] :
dZ
Dfus(E) = 4E2 [E qus(E)] 5 (22)
The definition of the total scattering distribution of the barrier of scattering D  (E) is [4]:
Aot
Dot (B) = — 22 [ (8) (23)

3. RESULTS AND DISCUSSION

Calculations for single-channel and coupled channels were performed using the CQEL code last version [7],
which is thought to be the most recent iteration of the computer code CCFULL . This program precisely resolves the
linked equations and the Schrodinger equation. The chi square methods have been used in the present work to prevent
systematic mistakes, where the data with dgel /dR>1 were omitted from the fitting procedures. The chi square technique
x> was regarded as a normalizing factor between the theoretical calculation and the experimental data. the main
potential in this work is Wood-Saxon (WS), which has both real and fictitious components. The fairly tiny internal
potential was explained by the fictitious potential. A change has been made to done on the real potential's parameters to
determine how best to fit the experimental data, and it was then repeated for all interactions. The value of 0.63 is
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considered a constant for the diffuseness parameter [15], and a higher and lower value is taken for each system, It
differs from one system to another and the radius parameter is assumed to be ro 1.2 fm.

4-1. The Mg +°"Zr reaction

In this system, the results were processed in two cases, the first case, where both the projectile and target nuclei were
considered inert (SC) at different values of the diffusion parameter (0.69, 0.63, and 0.57) fm, respectively and we
considered the diffusion parameter 0.63 fin is the standard value. In the second case, the projectile nucleus was Mg
rotates with a deformation coefficient of 8, = 0.374 to the state 2" (1.368672 MeV) and this was deduced according to the
ratio E,+/E,+ = 3.012 while the target core *°Zr was vibrating with a deformation coefficient of B, = 0.089 to the state
2%(2.186273 MeV), where E,+/E,+ = 1.4 at coupled-channel (CC). We used the single phonon state of the quadrupole
excitation of the projectile and target nuclei, the potential depth Vo = 58.8 MeV, and the radius parameter ro = 1.2 fm.

Table 1. The values of the WS potential's parameters and y? fitting between experimental and theoretical data for the Mg +°*Zr reaction.

System Channel Vo T a, Ocm x°
(Mev) (fm) (fm) (deg.) on Do

0.57 0.28177 0.07342

SC 58.8 1.2 0.63 158 3.47134 0.33499

Mg +9Zr 0.69 12.68139 0.88261
0.57 0.01071 0.04572

CC 58.8 1.2 0.63 158 0.02178 0.02036

0.69 0.07305 0.02015

From Table (1), it is shown that, according to the results of the y2, the calculated ratio of the quasi-elastic to the
dc;el) is 0.28177 at the diffuseness parameter 0.57 fm, Vo = 58.8 MeV, which was obtained
R

from the SC data analysis where the projectile 2*Mg nucleus and target *°Zr nucleus are inert and is represented by the
hard red line in Fig. 1.a. (A),

Rutherford cross sections (

1.2 03

I S L L L L ) L B B
N 1
1 ( ) 0.25
— 02
g 0.8 — |T
g I %
-& 2 0.15
— 0.6 — =
P
¢ Iz
24 90 0.1
° Lk Mg+“Zr a o)
0 m.=158° (SC)
[ ® @ Exp.Data b 0.05
02 | —— a,=057fin H
——— 4,=0.63 fm
F— a,=0.69fm B 0
bt 1 1 Mo le,
e o s s 0
(B)
1 —
7 0.15
0.8 — -
1
& s
T L N
= e - > 1
(=3
& 3
) ]
&) Mg+ Zr DO"
0.4 f— "o -
0= 158" (CC) 0.05
I ® @y Data R
02 | —— .= 057 fin (Rot.+Vib.) _|
—— 4,=0.63 fm (Rot.+Vib.)
P —— a,=0.69 fin (RoL+Vib) g 0
1 S I Y N N B B o, P LI N Y AN T I SN N
49 515 54 565 59 615 64 665 69 715 74 49 515 54 565 59 615 64 665 69 715 74
Ec.m.(MeV) Ec.m. (MeV)
(a) (b)

Figure 1.a. The ratio of the quasi-elastic scattering to the Rutherford cross sections for 2Mg+°'Zr system at sub-barrier energies.
Banal A and B using the single channel and coupled-channels calculations, respectively. Figure 1.b. (C, D) shows the distribution at
sub-barrier energies, using the single and coupled channels calculations, respectively. The experimental data are taken from Ref [16].

It is the curve closest to the curve of the experimental data; the best value of the distribution D is 0.33499 at the
same value of ap which is represented by the black colored. According to the coupled-channel calculation with a

d
rotating projectile (P) and a vibrating target (T), the best value of (%) is 0.01071 at the diffuseness parameter
R

ao=0.57 fm is represented by the hard red line in Fig. 1.b (B). From the Fig. 1.b. (C) the best value of the distribution D
is 0.015 at the diffuseness parameter of 0.69 fm, which is represented by the black colored.
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4-2. The 28Si+!*'Sn system

From Throughout this system, the findings were processed in two distinct ways. In the first case, we assumed that
the diffusion parameter 0.63fm was the standard value and that both the projectile and target nuclei were inert (SC) at
various values (0.60, 0.63, and 0.66) fm respectively. In the second instance, the target core '2°Sn was vibration with a
deformation coefficient of §, = 0.107 to the state 2% (1.171265 Mev), E,+/E,+ = 1.8 at coupled-channel (CC), whereas
the projectile nucleus was 2*Si rotation with a deformation coefficient of 5, = -0.478 to the state 27(1.77903 MeV),
where E,+/E,+ = 2.59. The potential depth Vo= 45.8 MeV, the radius parameter ro =1.2 fm, and the single phonon
state of the quadruple excitation of the projectile and target nuclei were employed.

Table 2. The values of the WS potential's parameters and %2 fitting between experimental and theoretical data for the 28Si+!2°Sn reaction

| %4 T a /] x*
0 0 0 cm
System Channel (MeV) (fm) (fm) (deg.) T Dou
0.60 0.06072 0.03304
SC 458 1.2 0.63 150.5 0.10359 0.05258
o 0.66 0.17721 0.08379
0.60 0.01259 0.01686
cc 45.8 1.2 0.63 150.5 0.00794 0.01954
0.66 0.00475 0.02127

According to Table (2), the results of y*> show that the calculated ratio of the quasi-elastic to the Rutherford cross
sections (%) is 0.06072 at the diffuseness parameter of 0.60 fm, which was obtained from single channel (SC) data
R

analysis where the projectile 2*Si nucleus and target '2°Sn nucleus are inert, and is represented by the hard red line in Fig. 2.a.
(A) It is the curve that is closest to the experimental data curve; the best value for the distribution D is 0.03304, which is
represented by the hard red line in Fig. 2.b. while the coupled-channel calculations with a rotating projectile (P) and vibrating

d
target (T), it was found that the best value of ( ::el) is 0.00475 at the diffuseness parameter 0.66 fm, which is represented by
R

the solid black line in Fig. 2.b. (B), where Vo= 45.8 MeV. It is the curve closest to the curve of the experimental data, the best
value for the distribution D is 0.01686 at the diffuseness parameter 0.60 fm denoted by the red-colored curve.
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Figure 2.a. The ratio of the quasi-elastic scattering to the Rutherford cross sections for 28Si+!2°Sn system at sub-barrier energies.
Banal A and B using the single channel and coupled-channels calculations, respectively. Figure 2.b. (C, D) shows the distribution at
sub-barrier energies, using the single and coupled channels calculations, respectively. The experimental data are taken from ref [17].

4-3. The 28Si+'5'Nd system
In this system, the change of quasi elastic scattering with the angle was studied, depending on the change in the
values of the diffusion parameter, and the study was carried out in two cases, in the first case The projectile and target
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nuclei were each considered to be inert, single channel (SC) at different values from diffuseness parameter (0.55, 0.63,
and 0.71) fm, and 0.63fm was taken to be the standard value. in the second case, we assumed that the projectile nucleus
8Si is rotation coupled to the state 2¥(1.77903 MeV), E,+/E,+ = 2.59 with deformation parameter 3, = -0.478 where
the target nucleus '"’Nd was inert. The potential depth Vo= 42.2 MeV, the radius parameter ro =1.2 fin, and the single
phonon state of the quadrupole excitation to the projectile nuclei were employed.

Table 3. The values of the WS potential's parameters and y%? fitting between experimental and theoretical data for the 28Si+'*'Nd reaction

Vo To Qg Ocm :
System Channel (MeV) (fm) (fm) (deg.) Goetl T Do

0.55 0.01936 0.03100

SC 42.2 1.2 0.63 140 0.05279 0.05130

BGiH1ING 0.71 0.17076 0.10976
0.55 0.00843 0.00880

CcC 42.2 1.2 0.63 140 0.00597 0.01078

0.71 0.00828 0.01623

In Table (3), According to the results of the ¥ data, the red line in Fig. 3.a. (A) represents the calculated ratio of

d::EI) , which is 0.01936 at the diffuseness parameter 0.55 fm,

R
Vo= 42.2 MeV obtained from single channel (SC) data analysis with the projectile 28Si nucleus and target '*’Nd nucleus

the quasi-elastic to the Rutherford cross sections (

being inert.
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Figure 3.a. The ratio of the quasi-elastic scattering to the Rutherford cross sections for 28Si+!*'Nd system at sub-barrier energies.

Banal A and B using the single channel and coupled-channels calculations, respectively. Figure 3.b. (C, D) shows the distribution at
sub-barrier energies, using the single and coupled channels calculations, respectively. The experimental data are taken from ref [18].

It is the curve that is most nearby to the curve of the experimental data. The optimum value for the distribution D
is 0.03100, shown by the hard red line in Fig. 3.b. (C) at the same diffuseness parameter value. According to the
coupled-channel calculations with a rotating projectile (P) and inert target (T), it was found that the best value of
( %) is 0.00597 at the diffuseness parameter ay of 0.63 fm, which is represented by the hard blue line in Fig. 3.b. (B).

R
It is the curve closest to the curve of the experimental data, the best value of the distribution D is 0.00880 at the

diffuseness parameter of (.55 fm denoted by the red-colored curve.

5. CONCLUSIONS
We conclude from this study the following:
1- The standard value of the diffuseness parameter ap is not the only one that shows the best match between the
theoretical calculations and the practical values, but it is possible to take lower and higher values than the standard
value of the diffuseness parameter by 9, and thus we were able to obtain the best match within this range of values.
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2- From the calculations of (CC) we notice that it has a significant impact on improving quasi elastic scattering

d .
:;El) ,and this was clearly shown on the results of (y?) regardless of the value of ay.
R
3-  We notice in the calculations of (SC) that the theoretical calculations coincide with the practical values at the value
of ap which is less than the standard diffusion parameter, because the larger the value of the diffuseness parameter, the greater

the diffusion of nuclear potential. In addition, the potential barrier in the (SC) is single, while in (CC) calculations it is multiple.

calculations (
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BIIJIUB ITAPAMETPY JU®Y3HOCTI HA KBA3IIIPYKHE PO3CIFOBAHHSI CUCTEM
BMg+"Zr ta BSi+(12°Sn, 'Nd) 3 BAKOPUCTAHHSM NOTEHUIAJY BYJIA-CAKCOHA
®apax JI:x. Xamya, Xaaix C. Txacim
Dakynemem ¢hizuxu, Oceimuitl KON YUCmux HayK, Basunoncokuil ynisepcumem, Ipax

By1no BUBYEHO BILIMB 3MiHU 3Ha4eHb Mapamerpa qudysii Ha po3paxyHKH HaIliBIPYKHOTo po3citoBanHs (dogel)/doR) 1 po3noniny (D)
s onHoro kanany (SC) i 3B’s3anoro kanany (CC). Tpu 3HaueHHs Oynu B3sITi 3 Audys3ii Ui KOXKHOTO Mapamerpa CHUCTEMH.
Ilepenbavaerhesi, mo saepHuil moteHmian mae ¢opmy Bynca-CakcoHa, Ha sSKy BKa3ymTh IMOBEpPXHEBa MH(Y3HICTh, TIHOHHA
HoTeHIiaTy Ta napameTpu pafiyca mis cucteM (Mg +°°Zr), (28Si+(12°Sn, 13°Nd). Xi-kBagpar (2) 3aCTOCOBYEThCS ISl TTIOPiBHAHHS
HalKpalle MiJirHaHOro 3HAa4YeHHs Iapamerpa IU(Y3HOCTI MK TEOPETUYHMMH PO3paxyHKaMH Ta €KCIePHMEHTAIbHUMHU JAHUMHU.
3rifiHo 3 pe3ysnbTaTaMu (¥2), MU 3a3HAYA€EMO, IO JCAKI CUCTEMH JOCSIIIU FapHOI BiMOBIAHOCTI MiXK TEOPETUIHUMH PO3PaXyHKaAMHU
Ta eKCIICPHMEHTAIbHUMH JaHUMHU HalliBIPYXXHBOTO po3scitoBaHHS (dogel)/doR) 1 po3paxyHKaMH PO3NOALTY HPH CTaHAAPTHOMY
3HaueHHI mapamerpa qudysii (a0=0,63) abo mpu 3HaueHHI BHIIE ab0 HMXKYe CTAaHAApPTHOro 3HadeHHs. Y Bumaaky (SC) Halikpare
BIJITOBIHICTE OyJIO NPH MEHIIOMY, HDK CTaHIApTHE 3HaueHHs mapamerpa au¢ysii, ane y Bumanky (CC ) BimmoBimHicTs Oyna
Kpalloro IpH 3HAa4eHHI, BUIOMY 33 CTaHAApTHE 3HAUCHHs mapamMerpa nudysii, ockiapky noreHHidHui 6ap’ep y (SC ) onuHapHUH,
toxi sk y (CC) po3paxyHKH KpaTHi.
KurouoBi cioBa: xeasinpyowcne poscioeants; nomenyian Byoca-Cakconca, 00un Kawan, CnomyueHi Kamanu, NOBEPXHESUl
napamemp Ou@y3HoCmi; CUCMeMAd 8adNCKUX [OHIG



