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In this research, the effect of changing the values of the diffusion parameter on the semi-elastic scattering (ௗఙ௤௘௟ௗఙோ ) and distribution (D) 
calculations for single channel (SC) and coupled channel (CC) have been studied. Three values were taken from the diffusion for 
each system parameter. It is assumed that the nuclear potential has a Woods-Saxon form, which is indicated by the surface 
diffuseness, potential depth, and radius parameters for (25Mg + 90Zr), (28Si + (120Sn, 150Nd) Systems. The chi square (χ2) is applied to 
compare the best fitted value of the diffuseness parameter between the theoretical calculations and the experimental data. According 
to the results of (χ2), we noticed that some systems achieved a good match between the theoretical calculations and experimental data 
of semi-elastic scattering (ௗఙ௤௘௟ ௗఙோ ) and the distribution calculations at the standard value of the diffusion parameter (a0=0.63) or at a 
value higher and lower than the standard value .In the case of channel is single SC the best fit was at a value less than the standard 
value of the diffusivity parameter, but in the case of CC the fit was better at a value higher than the standard value of the surface 
diffuseness parameter because the potential barrier in the single SC, while in CC calculations it is multiple. 
Keywords: Quasi-elastic scattering; Woods-Saxon potential; Single channel; Coupled channels; Surface diffuseness parameter; 
Heavy-ion system 
PACS: 21.60.-n, 21.10.-k, 21.60.Jz, 25.70.Bc, 25.70. 

1. INTRODUCTION
The Nuclear reactions at sub-barrier energy are crucial in nature, since they are responsible for the basic 

behavior of stars, their development, and many aspects of element production. The nucleus potential is consist 
from Coulomb VC(r) and nuclear VN(r) parts [1][2]. The Woods-Saxon (WS) form is often used to represent the 
nuclear component, which is characterized by the deepness 𝑉଴, radius 𝑟଴, and diffuseness 𝑎଴ parameters. It is 
significant in nuclear physics because it is regarded as a realistic potential [3]. Experiments indicate that coupling 
to collective states results in a distribution of Coulomb barrier heights, which may be calculated directly from the 
fusion excitation function σfus (E) or from back scattered quasi elastic events for many nuclear systems. A 
significant method for the investigation of barrier distributions near to the Coulomb barrier is large back-angle 
quasi elastic scattering [4]. It may be described as the total of elastic scattering, inelastic scattering, and transfer 
reaction. It is very similar to the fusion process which is defined as a reaction in which two discrete nuclei 
combine to produce a compound system [5]. Heavy-ion collisions at energies around the Coulomb barrier are 
strongly affected by the internal structure of colliding nuclei [6]. The coupling channel model is the best 
instrument for simultaneously reproducing the experimental data for a variety of events, including particle 
transfers, fusion, elastic and inelastic scattering [7]. The inter-nuclear potential is the most crucial factor in 
calculations involving coupled channels. Since it has an impact on the coupling strengths and the breadth of the 
barrier. The transfer reactions, as well as the collective vibrational and rotational movements, are coupled with the 
relative motion of the colliding nuclei to produce the channel coupling [8]. A heavy-ion reaction to fusion has a 
counterpart in quasi-elastic heavy-ion scattering at reverse angles. At energies near to the Coulomb barrier, these 
inclusive procedures are vulnerable to channel coupling effects (due to collective inelastic excitations of the 
colliding nuclei). The likelihood of reflection at the Coulomb barrier causes quasi-elastic scattering, whereas 
transmission is connected to fusion. This fact was exploited, and barrier distributions were obtained [9]. Fusion is 
one of the most significant near-barrier processes. The interaction between the relative velocity of two colliding 
nuclei and their internal structures is well known to result in a significant increase in fusion cross sections at sub-
barrier energy [1]. Several studies on quasi elastic scattering have been studied by Khalid S. Jassim for some 
heavy ions systems [10-12]. 

The aim of this research study is to study quasi elastic scattering at near energies from high the coulomb 
potential barrier to determine the surface diffuseness parameters of the inter-nucleus potential for the systems 
25Mg+90Zr and (28Si, 120Sn)+150Nd single and coupled channels calculations were performed using the CQEL 
program [7], which includes all orders of coupling and is the most recent iteration of the computer code CCFULL. 
The chi square (ᵡ2) approach has been used to find the diffuseness parameters' best fitted values in comparison to
the experimental data. 
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2. THEORY 
The potential between two nuclei consists of two parts, the first part being the nuclear potential Vn, which may be 

adequately and reasonably characterized by the two parts that make up the nucleus-nucleus potential. The Woods-Saxon 
(WS) form provided by [12].  
 VN (r) = - 𝑽˳𝟏ା𝒆[𝒓ష𝑹˳𝒂 ],  (1) 

where r is the center-of-mass separation between the target nucleus of mass number AT and the projectile nucleus of 

mass number AP, and  𝑅଴ denotes the system's radius  𝑅଴ = 𝑟଴ ቆ𝐴భ்య + 𝐴௉భయ ቇ . When they do not interact, the second part 

being the Coulomb potential VC between two spherical nuclei with uniform charge density distributions is given by 
[12]: 

 𝑽𝒄ሺ𝒓ሻ = 𝒁𝑷𝒁𝑻  𝒆𝟐𝒓 , (2) 

here r is the distance between the centers of mass of the colliding nuclei and Zp and ZT are the atomic numbers of the 
projectile and target, respectively. 

The Coulomb potential is produced when the nuclei interact, and it is determined by[13]. 

 𝑉௖ሺ𝑟ሻ = ௓ು௓೅  ௘మଶோ಴ [3 − ቀ ௥ோ೎ቁଶ], (3) 

where Rc is the radius of the equivalent sphere, which corresponds to the projectile and target nuclei. 
The coupling between the nuclear intrinsic motion and the relative motion of the centers of mass of the colliding 

nuclei, r = (r, r), which causes the collision of two nuclei. The Hamiltonian system's is provided by [4] : 

 𝐻(௥⇀. 𝜉) = − ħమଶఓ 𝛻ଶ + 𝑉(𝑟) + 𝐻଴(𝜉) + 𝑉௖௢௨௣ (௥⇀. 𝜉), (4) 

where V (r) is the bare potential in the absence of coupling where V(r)= V N (r)+V c (r) , H଴(ξ) is the Hamiltonian for 
the intrinsic motion, and Ccoup is the stated coupling, r stands for the center of mass distance between the colliding 
nuclei. 

The entire wave function's Schrodinger equation is given by[14]. 

 (− ħమଶஜ ∇ଶ + V(r) + H଴(ξ) + Vୡ୭୳୮ (୰⇀. ξ))ψ(୰⇀. ξ) = Eψ(୰⇀. ξ), (5) 

Generally, the internal degree of freedom has a limited spin. The coupling Hamiltonian in complexities can be 
written as [4] : 
 𝑉௖௢௨௣(௥⇀. 𝜉) = ∑ 𝑓ఒ ఒவ଴.ఓ (𝑟)𝑌ఒఓ(ȓ).𝚃ఒఓ(𝜉), (6) 

The spherical harmonics and spherical tensors, which are constructed from the internal coordinate, are denoted by 𝑌ఒఓ(ȓ) and 𝚃ఒఓ(𝜉), respectively. That when it was taken into account in V (r), the total is taken over all values of 
excluding for λ = 0. (r). For a constant total angular momentum J and its z-component M, the expansion basis for the 
wave function in Eq. (5) is given by [4] : 

 〈 ௥⇀𝜉|(𝑛𝑙𝐼)𝐽𝑀 〉 = ∑ 〈 𝑙𝑚௟௠భ௠಺ 𝐼𝑚ூ|𝐽𝑀 〉𝑌௟௠೗ (ȓ) 𝜑௡ூ௠಺(𝜉), (7) 

where in l denotes the orbital, I denotes internal angular momenta, and  𝜑௡ூ௠಺(𝜉) denotes the wave function for the 
internal motion that which fulfills by equation below[4] : 

 𝐻଴(𝜉) 𝜑௡ூ௠಺(𝜉) =  𝜖௡ 𝜑௡ூ௠಺(𝜉) , (8) 

With this basis, the total wave function 𝜓(௥⇀. 𝜉)has been expansion as [15]: 

 𝜓(௥⇀. 𝜉) =  ∑ ௨೙೗಺಻ (௥)௥௡.௟.ூ 〈 ௥⇀𝜉|(𝑛𝑙𝐼)𝐽𝑀 〉, (9) 

It is possible to write the Schrödinger equation [Eq. (3)] as a group of coupled equations for 𝑢௡௟ூ௃ (𝑟) [14] : 

 ቂ− ħమଶఓ ௗమௗ௥మ + 𝑉(𝑟) + ௟(௟ାଵ)ħమଶఓ௥మ − 𝐸 + 𝜖௡ቃ 𝑢௡௟ூ௃ (𝑟) + ∑ 𝑉௡௟௃;ń.௟´.Í௃ (𝑟ń.௟´.Í )𝑢ń.௟´.Í௃ (𝑟) = 0, (10) 

The coupling matrix elements 𝑉௡௟௃;ń. ௟´.Í௃ (𝑟), According to [4] are as follows: 

 𝑉௡௟௃;ń.ĺ.Í௃ (𝑟) = 〈 𝐽𝑀 (𝑛𝑙𝐼)ห𝑉௖௢௨௣(௥⇀. 𝜉൯ห ൫ ń. 𝑙´. Í൯𝐽𝑀 〉 = ∑ (−1)ூିÍା௟´ା௃ఒ 𝑓ఒ(𝑟)〈 𝑙ห|𝑌ఒ|ห𝑙´ 〉〈 𝑛𝐼ห|𝑇ఒ|ห𝑛´𝐼´ 〉 × ඥ(2𝑙 + 1)(2𝐼 + 1) ൜𝐼´ 𝑙´ 𝐽𝑙 𝐼 𝜆ൠ,  (11) 

Where the reduced matrix elements in Eq. (8) is defined as follows [4]: 
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 〈 𝑙௠௟ห𝑌ఒఓห𝑙´௠௟´〉 =  〈𝑙´௠௟´  𝜆𝜇ห𝑙௠௟ 〉 〈𝑙ห|𝑌ఒ |ห𝑙´〉, (12) 

where 𝑉௡௟௃;ń. ௟´.Í௃ (𝑟) are separate of the index M, the index has been suppressed as seen in Eq. (11). Coupled-channels 
equations are the name given to the equation (10). For heavy-ion fusion reactions, these equations are usually solved 
using the incoming wave boundary conditions[14]. 

 𝑢௡௟ூ௃ (𝑟) ~ 𝒯௡௟ூ௃  𝑒𝑥𝑝 ቀ−1׬ 𝑘௡௟ூ௥௥ೌ್ೞ (ŕ)𝑑ŕቁ  . 𝑟 ⩽ 𝑟௔௕௦, (13) 

 ௜ଶ ൬𝐻௟(ି) (𝑘௡ூ௥)𝛿௡,௡೔𝛿௟,௟೔𝛿ூ,ூ೔ + ට௞೙಺೔௞೙಺  𝑆௟ூ௃𝐻௟(ା)(𝑘௡ூ௥)൰  , 𝑟 ⟶  ∞ , (14) 

where 𝑘௡ூ௥ = ඥ2𝜇(𝐸 − 𝜖௡ூ)/ℏଶ , 𝑘௡ூ௜ = 𝑘 = ඥ2𝜇𝐸/ћଶ and the following formula defines the local wave number 𝑘௡ூூ: 
 𝑘௡ூூ(𝑟) = ටଶఓћమ ቀ𝐸 − 𝜖௡ூ − ௟(௟ାଵ)ћమଶఓ௥మ − 𝑉(𝑟) − 𝑉௡௟௃;௡௟௃௃ (𝑟)ቁ, (15) 

After obtaining the transmission coefficients T nlIJ, the penetrability via the Coulomb barrier is given by: 

 𝑃௟௜ூ௜௃ (𝐸) =  ∑ ௞೙೗಺(௥ೌ್ೞ)௞௡.௟.ூ |𝒯௡௟ூ௃ |ଶ, (16) 

The computation of quasi-elastic cross sections typically needs a high value of angular momentum in order to 
provide convergent results, unlike the calculation of fusion cross sections. For such a huge angular momentum, the 
potential pocket at (r = rabs) becomes shallow or even vanishes. Therefore, it is impossible to precisely identify the 
incoming flux in Eq. (13). In order to avoid employing the incoming wave boundary conditions, the quasi-elastic 
problem often executes the regular boundary conditions at the origin. A complex potential V N (r)= V N0 (r)+iw(r) is 
required to model the fusion reaction when utilizing the usual boundary conditions. Following the acquisition of the 
nuclear S-matrix in Equation (Eq11), the scattering amplitude may be computed as 

 𝑓௟ூ௃(𝜃.𝐸) = 𝑖 ∑ ට గ௞௞೙಺௃௟ 𝑖௃ି௟ 𝑒௜ൣఙ಻(ா)ାఙ೗(ாିఢ೙಺)൧ඥ2𝐽 + 1 𝑌௟଴(𝜃)൫𝑆௨௃ − 𝛿ூ.ூమ𝛿௟.௟మ൯ + 𝑓௖(𝜃.𝐸)𝛿ூ.ூమ𝛿௟.௟మ   (17) 

The Coulomb phase shift is 𝜎௟.and given by the equation, 

 𝜎௟ = |Γ(𝑙 + 1 + 𝑖𝜂)|, (18) 

As for 𝑓௖, which is the Coulomb scattering amplitude and is determined by [14]: 

 𝑓௖(𝜃.𝐸) =  ఎଶ௞௦௜௡మቀഇమቁ 𝑒ቂି௜ఎ୪௡൬௦௜௡మቀഇమቁ൰ାଶ௜ఙబ(ா)ቃ, (19) 

here η = is the Sommerfeld parameter which is given by 𝜂 =  𝑍ଵ𝑍ଶ 𝑒ଶ/ћ𝑣 , and utilizing Equation (16), the differential 
cross section may be evaluated 

 ௗఙ೜೐೗(ఏ.ா)ௗఆ =  ∑ ௞೙಺௞௃௟ூ |𝑓௟ூ௃(𝜃.𝐸)|ଶ, (20) 

may be evaluate the Rutherford cross section. 

 ௗఙೃ(ఏ.ா)ௗஐ = |𝑓௖(𝜃.𝐸)|ଶ =  ఎమସ௞మ 𝑐𝑠𝑐ସ൫ഇమ൯, (21) 

The distribution of the barrier of fusion is defined as [4] : 

 𝐷௙௨௦(𝐸) = ௗమௗாమ ൣ𝐸 𝜎௙௨௦(𝐸)൧ , (22) 

The definition of the total scattering distribution of the barrier of scattering D tot (E) is [4]: 

 𝐷௧௢௧(𝐸) = − ௗௗா ቂௗఙ೟೚೟ௗఙೃ (𝐸)ቃ , (23) 
 

3. RESULTS AND DISCUSSION 
Calculations for single-channel and coupled channels were performed using the CQEL code last version [7], 

which is thought to be the most recent iteration of the computer code CCFULL . This program precisely resolves the 
linked equations and the Schrödinger equation. The chi square methods have been used in the present work to prevent 
systematic mistakes, where the data with dqel /dR>1 were omitted from the fitting procedures. The chi square technique 
χ2 was regarded as a normalizing factor between the theoretical calculation and the experimental data. the main 
potential in this work is Wood-Saxon (WS), which has both real and fictitious components. The fairly tiny internal 
potential was explained by the fictitious potential. A change has been made to done on the real potential's parameters to 
determine how best to fit the experimental data, and it was then repeated for all interactions. The value of 0.63 is 
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considered a constant for the diffuseness parameter [15], and a higher and lower value is taken for each system, It 
differs from one system to another and the radius parameter is assumed to be r0 1.2 fm. 

4-1. The 24Mg + 90Zr reaction
In this system, the results were processed in two cases, the first case, where both the projectile and target nuclei were 

considered inert (SC) at different values of the diffusion parameter (0.69, 0.63, and 0.57) fm, respectively and we 
considered the diffusion parameter 0.63 fm is the standard value. In the second case, the projectile nucleus was 24Mg 
rotates with a deformation coefficient of 𝛽ଶ = 0.374 to the state 2+ (1.368672 MeV) and this was deduced according to the 
ratio 𝐸ସశ 𝐸ଶశ⁄ = 3.012 while the target core 90Zr was vibrating with a deformation coefficient of 𝛽ଶ = 0.089 to the state 
2+(2.186273 MeV), where 𝐸ସశ 𝐸ଶశ⁄ = 1.4 at coupled-channel (CC). We used the single phonon state of the quadrupole 
excitation of the projectile and target nuclei, the potential depth V0 = 58.8 MeV, and the radius parameter r0 = 1.2 fm. 
Table 1. The values of the WS potential's parameters and χ2 fitting between experimental and theoretical data for the 24Mg + 90Zr reaction. 𝝌𝟐 𝜽𝒄𝒎 (𝒅𝒆𝒈. ) 

𝒂𝟎 (𝒇𝒎) 
𝒓𝟎 (𝒇𝒎) 

𝑽𝟎 (𝑴𝒆𝑽) 
Channel System 𝑫𝒒𝒆𝒍 𝝈𝒒𝒆𝒍 𝝈𝑹⁄  

0.07342 0 .28177 
158 

0.57 
1.2 58.8 SC 

24Mg +90Zr 

0.33499 3.47134 0.63 
0.88261 12.68139 0.69 
0.04572 0.01071 

158 
0.57 

1.2 58.8 CC 0.02036 0.02178 0.63 
0.02015 0.07305 0.69 

From Table (1), it is shown that, according to the results of the χ2, the calculated ratio of the quasi-elastic to the 
Rutherford cross sections ቀ ୢ஢౧౛ౢୢ஢౎ ቁ is 0.28177 at the diffuseness parameter 0.57 fm, V0 = 58.8 MeV, which was obtained
from the SC data analysis where the projectile 24Mg nucleus and target 90Zr nucleus are inert and is represented by the 
hard red line in Fig. 1.a. (A), 

(a) (b)
Figure 1.a. The ratio of the quasi-elastic scattering to the Rutherford cross sections for 25Mg+90Zr system at sub-barrier energies. 
Banal A and B using the single channel and coupled-channels calculations, respectively. Figure 1.b. (C, D) shows the distribution at 
sub-barrier energies, using the single and coupled channels calculations, respectively. The experimental data are taken from Ref [16]. 

It is the curve closest to the curve of the experimental data; the best value of the distribution D is 0.33499 at the 
same value of a0 which is represented by the black colored. According to the coupled-channel calculation with a 
rotating projectile (P) and a vibrating target (T), the best value of ቀ ୢ஢౧౛ౢୢ஢౎ ቁ is 0.01071 at the diffuseness parameter 
a0 = 0.57 fm is represented by the hard red line in Fig. 1.b (B). From the Fig. 1.b. (C) the best value of the distribution D 
is 0.015 at the diffuseness parameter of 0.69 fm, which is represented by the black colored. 
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4-2. The 28Si+120Sn system 
From Throughout this system, the findings were processed in two distinct ways. In the first case, we assumed that 

the diffusion parameter 0.63fm was the standard value and that both the projectile and target nuclei were inert (SC) at 
various values (0.60, 0.63, and 0.66) fm respectively. In the second instance, the target core 120Sn was vibration with a 
deformation coefficient of 𝛽ଶ = 0.107 to the state 2+ (1.171265 Mev), 𝐸ସశ 𝐸ଶశ⁄ = 1.8 at coupled-channel (CC), whereas 
the projectile nucleus was 28Si rotation with a deformation coefficient of 𝛽ଶ = -0.478 to the state 2+(1.77903 MeV), 
where 𝐸ସశ 𝐸ଶశ⁄ = 2.59. The potential depth V0= 45.8 MeV, the radius parameter r0 =1.2 fm, and the single phonon 
state of the quadruple excitation of the projectile and target nuclei were employed. 
Table 2. The values of the WS potential's parameters and χ2 fitting between experimental and theoretical data for the 28Si+120Sn reaction 𝝌𝟐 𝜽𝒄𝒎 (𝒅𝒆𝒈. ) 

𝒂𝟎 (𝒇𝒎) 
𝒓𝟎 (𝒇𝒎) 

𝑽𝟎 (𝑴𝒆𝑽) Channel System 𝑫𝒒𝒆𝒍 𝝈𝒒𝒆𝒍 𝝈𝑹⁄  

0.03304 0.06072 
150.5 

0.60 
1.2 45.8 SC 

28Si+120Sn 

0.05258 0.10359 0.63 
0.08379 0.17721 0.66 
0.01686 0.01259 

150.5 
0.60 

1.2 45.8 CC 0.01954 0.00794 0.63 
0.02127 0.00475 0.66 

According to Table (2), the results of χ2 show that the calculated ratio of the quasi-elastic to the Rutherford cross 
sections ቀ ୢ஢౧౛ౢୢ஢౎ ቁ is 0.06072 at the diffuseness parameter of 0.60 fm, which was obtained from single channel (SC) data 
analysis where the projectile 28Si nucleus and target 120Sn nucleus are inert, and is represented by the hard red line in Fig. 2.a. 
(A) It is the curve that is closest to the experimental data curve; the best value for the distribution D is 0.03304, which is 
represented by the hard red line in Fig. 2.b. while the coupled-channel calculations with a rotating projectile (P) and vibrating 
target (T), it was found that the best value of ቀ ୢ஢౧౛ౢୢ஢౎ ቁ is 0.00475 at the diffuseness parameter 0.66 fm, which is represented by 
the solid black line in Fig. 2.b. (B), where V0 = 45.8 MeV. It is the curve closest to the curve of the experimental data, the best 
value for the distribution D is 0.01686 at the diffuseness parameter 0.60 fm denoted by the red-colored curve. 

 
(a) (b) 

Figure 2.a. The ratio of the quasi-elastic scattering to the Rutherford cross sections for 28Si+120Sn system at sub-barrier energies. 
Banal A and B using the single channel and coupled-channels calculations, respectively. Figure 2.b. (C, D) shows the distribution at 
sub-barrier energies, using the single and coupled channels calculations, respectively. The experimental data are taken from ref [17]. 

4-3. The 28Si+150Nd system 
In this system, the change of quasi elastic scattering with the angle was studied, depending on the change in the 

values of the diffusion parameter, and the study was carried out in two cases, in the first case The projectile and target 
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nuclei were each considered to be inert, single channel (SC) at different values from diffuseness parameter (0.55, 0.63, 
and 0.71) fm, and 0.63fm was taken to be the standard value. in the second case, we assumed that the projectile nucleus 
28Si is rotation coupled to the state 2+(1.77903 MeV), 𝐸ସశ 𝐸ଶశ⁄ = 2.59 with deformation parameter 𝛽ଶ = -0.478 where 
the target nucleus 150Nd was inert. The potential depth V0= 42.2 MeV, the radius parameter r0 =1.2 fm, and the single 
phonon state of the quadrupole excitation to the projectile nuclei were employed.  
Table 3. The values of the WS potential's parameters and χ2 fitting between experimental and theoretical data for the 28Si+150Nd reaction 𝝌𝟐 𝜽𝒄𝒎 (𝒅𝒆𝒈. ) 

𝒂𝟎 (𝒇𝒎) 
𝒓𝟎 (𝐟𝐦) 

𝑽𝟎 (𝑴𝒆𝑽) Channel System 𝑫𝒒𝒆𝒍 𝝈𝒒𝒆𝒍 𝝈𝑹⁄  
0.03100 0.01936 

140 
0.55 

1.2 42.2 SC 
28Si+150Nd 

0.05130 0.05279 0.63 
0.10976 0.17076 0.71 
0.00880 0.00843 

140 
0.55 

1.2 42.2 CC 0.01078 0.00597 0.63 
0.01623 0.00828 0.71 

In Table (3), According to the results of the χ2 data, the red line in Fig. 3.a. (A) represents the calculated ratio of 
the quasi-elastic to the Rutherford cross sections ቀ ୢ஢౧౛ౢୢ஢౎ ቁ , which is 0.01936 at the diffuseness parameter 0.55 fm,
V0 = 42.2 MeV obtained from single channel (SC) data analysis with the projectile 28Si nucleus and target 150Nd nucleus 
being inert. 

(a) (b)
Figure 3.a. The ratio of the quasi-elastic scattering to the Rutherford cross sections for 28Si+150Nd system at sub-barrier energies. 
Banal A and B using the single channel and coupled-channels calculations, respectively. Figure 3.b. (C, D) shows the distribution at 
sub-barrier energies, using the single and coupled channels calculations, respectively. The experimental data are taken from ref [18]. 

It is the curve that is most nearby to the curve of the experimental data. The optimum value for the distribution D 
is 0.03100, shown by the hard red line in Fig. 3.b. (C) at the same diffuseness parameter value. According to the 
coupled-channel calculations with a rotating projectile (P) and inert target (T), it was found that the best value of ቀ ୢ஢౧౛ౢୢ஢౎ ቁ is 0.00597 at the diffuseness parameter a0 of 0.63 fm, which is represented by the hard blue line in Fig. 3.b. (B). 
It is the curve closest to the curve of the experimental data, the best value of the distribution D is 0.00880 at the 
diffuseness parameter of 0.55 fm denoted by the red-colored curve. 

5. CONCLUSIONS
We conclude from this study the following: 

1- The standard value of the diffuseness parameter a0 is not the only one that shows the best match between the
theoretical calculations and the practical values, but it is possible to take lower and higher values than the standard
value of the diffuseness parameter by 9, and thus we were able to obtain the best match within this range of values.
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2- From the calculations of (CC) we notice that it has a significant impact on improving quasi elastic scattering
calculations ( ௗఙ೜೐೗ௗఙೃ ) ,and this was clearly shown on the results of (χ2) regardless of the value of a0.

3- We notice in the calculations of (SC) that the theoretical calculations coincide with the practical values at the value
of a0 which is less than the standard diffusion parameter, because the larger the value of the diffuseness parameter, the greater
the diffusion of nuclear potential. In addition, the potential barrier in the (SC) is single, while in (CC) calculations it is multiple.
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ВПЛИВ ПАРАМЕТРУ ДИФУЗНОСТІ НА КВАЗІПРУЖНЕ РОЗСІЮВАННЯ СИСТЕМ 
25Mg+90Zr та 28Si+(120Sn, 150Nd) З ВИКОРИСТАННЯМ ПОТЕНЦІАЛУ ВУДА-САКСОНА 

Фарах Дж. Хамуд, Халід С. Джасім 
Факультет фізики, Освітній коледж чистих наук, Вавилонський університет, Ірак 

Було вивчено вплив зміни значень параметра дифузії на розрахунки напівпружного розсіювання (dσqel)/dσR) і розподілу (D) 
для одного каналу (SC) і зв’язаного каналу (CC). Три значення були взяті з дифузії для кожного параметра системи. 
Передбачається, що ядерний потенціал має форму Вудса-Саксона, на яку вказують поверхнева дифузність, глибина 
потенціалу та параметри радіуса для систем (25Mg +90Zr), (28Si+(120Sn, 150Nd). Хі-квадрат (χ2) застосовується для порівняння 
найкраще підігнаного значення параметра дифузності між теоретичними розрахунками та експериментальними даними. 
Згідно з результатами (χ2), ми зазначаємо, що деякі системи досягли гарної відповідності між теоретичними розрахунками 
та експериментальними даними напівпружнього розсіювання (dσqel)/dσR) і розрахунками розподілу при стандартному 
значенні параметра дифузії (a0=0,63) або при значенні вище або нижче стандартного значення. У випадку (SC) найкраще 
відповідність було при меншому, ніж стандартне значення параметра дифузії, але у випадку (CC ) відповідність була 
кращою при значенні, вищому за стандартне значення параметра дифузії, оскільки потенційний бар’єр у (SC ) одинарний, 
тоді як у (CC) розрахунки кратні. 
Ключові слова: квазіпружне розсіювання; потенціал Вудса-Саксонса; один канал; сполучені канали; поверхневий  
параметр дифузності; система важких іонів 


