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In this research, the effect of changing the potential depth Vo on the Quasi-elastic scattering and barrier distribution calculations have
been studied using Wood-Saxon (WS) potential for '°0+'9°Gd and '>C+'?7Au systems. The chi square (x2) is applied to compare the
best fitted value of the diffuseness parameter between the theoretical calculations and the experimental data. The diffuseness parameter
which used in this work is to be at standard value 0.63. The %> was applied to most suitable the better fitted value of the potential depth
Vo. According to the results, we noticed that some systems achieved a good match between the theoretical calculations and experimental
data of Quasi-elastic scattering (dogel/doR) and the distribution calculations at the standard value of the potential depth or at a value
lower than the standard value and no match was achieved at a value greater than the standard value of the potential depth Vo. We
conclude that the values of quasi-elastic scattering values increase when the value of potential depth decreases.
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1. INTRODUCTION

The potential between two nuclei interaction, which comprises the short-range attractive and absorptive nuclear
potentials as well as the long-range Coulomb potential, has always been a fundamental topic in nuclear physics. The
Coulomb contact between two nuclei is widely understood, but describing the nuclear component is significantly more
complex. Over the last few decades, the optical model potential (OMP) has been widely used to characterize the nuclear
component, and numerous alternative potential forms have been proposed to replicate a large amount of nuclear reaction
data [1][2]. In addition to nuclear reactions driven by light particles, the optical system may also be involved in nuclear
reactions between heavy ions. The nuclear potential is often assumed to be of Woods-Saxon type, with three parameters
defining it: depth, radius, and diffuseness. The diffuseness parameter defines the nuclear potential's fall-off and hence has
a direct impact on the barrier width and coupling strengths, which are first order dependent on the derivative of the
potential [3][4][5]. Quasi-elastic scattering is defined as "the sum of elastic scattering, inelastic scattering, and transfer
reaction [6][7]. Quasi-elastic scattering is similar to the fusion process [7], which is defined as the combination of two
different nuclei to generate a composite system. The Negative of the first derivative of the ratio of quasi-elastic to
Rutherford cross-section, dqel/dR, with regard to the energy E, or Dy = d(dqel/dR)/dE, is used to determine the
quasi-elastic barrier distribution [8]. Several studies on quasi elastic scattering have been studied by Khalid S. Jassim for
some heavy ions systems [9]-[11]. They demonstrated the nucleus-nucleus potential for several heavy ions by a
comprehensive investigation of the surface characteristics. The nuclear potential has been described using WS, single-
channel SC, and coupled-channel CC calculations, which were between the relative motion of colliding nuclei and their
intrinsic motions, and they discovered that the best fitted value of the diffuseness parameter was obtained through a
coupled-channel calculation with an inert target and excited projectile for the current work.

The aims of the present work is to study the influence changing of nuclear potential (potential depth V) on quasi-
elastic scattering in systems'®O+'°Gd ,'2C+!%Au at surface diffuseness parameter it determined in earlier by the method
chi square, we used The CQEL program [12] which contains all orders of coupling and is the most current iteration of the
computer code CCFULL, was used to calculate single and coupled channels.

2. THEORY
The nucleus-nucleus potential is made up of two components, the first of which is the nuclear potential V,, which
may be properly and appropriately described by the other two parts of the potential between two nuclei. The form for
Woods-Saxon (WS) supplied by [13]:

V() = -—s=r, M

1+ela )

where r represents the distance between the projectile's mass number AP and the target's mass number Ar at the center of
1 1

mass, and Ry stands for the system's radius: Ry = 1, <A§T + Ai). The second portion, which represents the Coulomb

7 Cite as: F.J. Hamood, K.S. Jassim, East Eur. J. Phys. 3, 192 (2023), https://doi.org/10.26565/2312-4334-2023-3-16
© F.J. Hamood, K.S. Jassim, 2023


https://orcid.org/0000-0002-5990-3277
https://doi.org/10.26565/2312-4334-2023-3-16
https://portal.issn.org/resource/issn/2312-4334
https://periodicals.karazin.ua/eejp/index

193
The Influence Changing of Nuclear Potential on Quasi-Elastic Scattering... EEJP. 3 (2023)

potential V¢ between two spherical nuclei with uniform charge density distributions when they are not interacting, is given
by[13]:

V() =2 @)

where 1 is the distance between the centers of mass of the colliding nuclei, Z, and Zr are the atomic numbers of projectile
and target, respectively. The Coulomb potential is produced when the nuclei interact, and it is determined by [14]:

V) =23 (1Y), 3)

2R¢ R¢
where the projectile and target nuclei are represented by spheres of radii R.. Two nuclei collide as a result of the nuclear
intrinsic motion and the relative motion of their centers of mass, r = (r, r). The following is the Hamiltonian system[15]:

HG ) = =202 + V) + Ho(©) + Vioup -6, @

where V(r) is the bare potential in the absence of coupling where V(r) = Vn(1)+V(r), Ho(§) is the Hamiltonian for the
intrinsic motion, and Ve, is the stated coupling r stands for the center of mass distance between the colliding nuclei. The
Schrodinger equation to wave functions is given by[16]:

h? - - -
(_ZVZ + V(r) + Ho(¥) + Vcoup G-OUGE.8) = Eu(.9), %)
Internal degrees of freedom have a limited spin in general. the coupling Hamiltonian may be expressed as [15]:
Vcoup G-9= ZA>0.,u f @) Yl,u ®. TA/,L ) (6)

The internal coordinate is used to create the harmonics and spherical tensors, which are represented by the notations
Y, (®) and Ty, (§), respectively. That when it was considered in V(r), the sum of all values of excluding for A(r) = 0. For

a constant total angular momentum J and its z-component M, the expansion basis for the wave function in Eq. (5) is given
by [15]:

(7 ElmIDJM ) = Zm1m1< Imy I'm;|JM >Ylml ® Pnimy . @)

where / stands for the orbital, / — internal angular momenta, and @y, (§) the wave function for the internal motion that
is give by the equation below[15] .

HO(E) q’nlm,(ﬁc) = €p <pn1m1(§) > (8)
The total wave function Y (5 . §)has been expanded as[16]:
J
- aur(™ , o
VG 8) = Tnu = (FEI (DM, ©)
The Schrodinger equation [Eq. (3)] can be written as a collection of linked equations for u,]” ;(r):[16]
hZ d 1(1+1)h?
[tV B en] Wy (1) + Ty V2o Ul ) =0 (10)

The coupling matrix elementsVr{ Uit o {(1), According to [15] are as follows:

Vi) = UM (D |Veoup G- (A1 D)JM ) = Sp(=1)' = L)1 X i |ITal[n'T7) x

JRIF DRI+ 1D {’l r f}, (11)

I 2
Where the reduced matrix elements in Eq. (8) is defined as follows[15]:
ot Vap|U) = Uy |t ) 1Y 1|1, (12)

where Vr{l b z'i(r) are separate of the index M, the index has been suppressed as seen in Eq (11). Coupled-channels

equations are the name given to the equation (10). For heavy-ion fusion reactions, these equations are usually solved
using the incoming wave boundary conditions[16].

why () ~ Ty exp (<17 Jews ()F) 7 < T (13)
i - knri
L(HE Cin)unBis s, + [ SEHO G)) 7= o0, (14)

where k. = /2u(E — €,;)/h? , kyyi = k = /2uE/h? and the following formula defines the local wave number k,,;:
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kn (r) = J;—f (E — €nr 1(12;_1)712 V) -V, niJ; nz](r)) (15)

Following the determination of the transmission coefficients Tnyy, the penetrability through the Coulomb barrier is
provided by:

k
zm (E) Zn nll(l:abs) | ”|2 (16)

In contrast to the computation of fusion cross sections, the computation of quasi-elastic cross sections often requires
a large value of angular momentum in order to yield convergent results. The potential pocket at (r = ras) grows shallow
or even disappears for such a large angular momentum. The incoming flux in Eq (13) cannot, however, be clearly
identified. The quasi-elastic problem frequently uses the regular boundary conditions at the origin in order to avoid using
the incoming wave boundary conditions. When using the standard boundary conditions, a complex potential
VN(r) = VNO(r)+iw(r) is needed to simulate the fusion reaction. After obtaining the nuclear S-matrix in Equation (Eq11).
The scattering amplitude may be calculated using

fil(6.E) = 25 ’ l] Lelloy@tanE- 6"’)]\/ 2J+1 1/10(9)(5] 811,001,) + fo(6.E)8,,,60, (17)
The Coulomb phase shift is g;.and given by the equation,
o =|I'(l+1+in)|, (18)

As for f., which is the Coulomb scattering amplitude and is determined by[16]:

f-(6.E) = stizz(ﬁ) [—mln(sm ( ))+2m0(5)] (19)

where 7 is the Somerfield parameter which is given by n = Z;Z, e?/hv , and utilizing Equation (16), the differential
cross section may be evaluated

dogel(6.E) kn
== Tt If] 6. B2, (20)
May be evaluate the Rutherford cross section.
do (9 E) _ n? 1
—K = |fc(6 E)lz msn“(g) (21)
The distribution of the barrier of fusion is defined as [15]:
Dfus(E) dEZ [E O-fus(E)] (22)
The definition of the total scattering distribution of the barrier of scattering D (o (E) is[15].
d
Deot(B) = — 22 [ () (23)

3. RESULTS AND DISCUSSION

The single-channel and coupled-channel computations were performed with the CQEL program, which is the most
recent edition of the computer code CCFULL[12]. To eliminate systematic errors in the current study, the chi square
technique %> was used as a normalizing factor between the theoretical calculation and the experimental data. These
computations were performed using a WS form for the nuclear potential, which has real and imaginary components. The
imagined potential was utilized to explain the relatively low internal absorption following barrier penetration. The
parameters of the actual potential were investigated in order to obtain the best fit to the experimental data, which was then
replicated for all interactions.

3.11%0+'°Gd System

In this reaction were processed in two cases, the first case, where both the projectile and target nuclei were considered
inert (SC) at three values of the real nuclear potential (potential depth Vo) (58.7, 83.7 and 108.7) MeV and we considered
the diffusion parameter 0.50 fm. It was previously determined by y*> method as the best value for matching the
experimental data with the theoretical data. In the second case, the target core '®°Gd was rotation this was deduced
according to the ratio E,+/E,+ = 3.3 with a deformation coefficient of $,=0.280 and B,= 0.065. We used the
single-quadrupole and third-octupole phonon excitation to the state 2 (0.075263 MeV), at coupled-channel (CC). While
the projectile nucleus was '°0 vibration where E,+/E,+ =1.49 with a deformation coefficient of 8, = 0.364 with single-
quadrupole phonon excitation to the state 2* (6.9171 MeV) and the radius parameter ry=1.2 fm
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Table 1. The values of the WS potential's parameters and y? fitting between experimental and theoretical data for the 1°0+19°Gd reaction.

a T |4 7] 7{2
System Chamnel | con | (rm) | mev) | (aeg) [ oprjon Dow

58.7 0.04873 0.0072179

SC 0.50 1.2 83.7 170 0.12627 0.0055259

504106 108.7 027427 | 0.0074302
58.7 0.00522 0.0034521

CC 0.50 1.2 83.7 170 0.01035 0.0034493

108.7 0.02409 0.0057510

By the comparing between the experimental data and the theoretical calculations, we shown that in Table (1), we notice
that the better value for the quasi-elastic scattering (%) =0.04873 at the depth potential V= 58.7MeV, which was acquired
R

from SC data analysis where the projectile '°0 nucleus and target '°Gd nucleus are inert. It was shown by the hard red line in
Fig. la. (A). This is the curve that is nearest to the curve of the experimental data. The batter value for the distribution D =
0.0055259 at the depth potential Vo = 83.7 MeV. According to the coupled-channel calculation with a rotating target (T) and

vibrating projectile (P), the best value of (%) =0.00522 at the depth potential Vo= 58.7 MeV, was shown by the hard red
R

line in Fig. 1.b (B) We note from the draw It is the curve nearest to the curve of the experimental result, while the best value to
the distribution D = 0.0034493 at the depth potential V(=83.7 represented by the green colored curve.
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Figure 1a. The ratio of the quasi-elastic scattering to the Rutherford cross sections for 160+19Gd system at sub-barrier energies. Banal
A and B using the single channel and coupled-channels calculations, respectively. Figure 1.b. (C, D) shows the distribution at sub-
barrier energies, using the single and coupled channels calculations, respectively.

3.2 2C+YAu system

In this reaction, the results were split into two stages. In the first stage, according to single channel (SC) calculations,
the projectile and target nuclei were inert at various real nuclear potentials (potential depth Vo) (48.8, 58.8, and 68.8) MeV,
and the diffusion parameter was 0.63 fm, which had previously been determined by the chi-square 3> method to be the
nearest value between the experimental and theoretical data. In the second stage, at coupled-channel (CC) calculations,
the projectile nucleus 2C was rotation where E,+/E,+= 2.9 with a deformation coefficient of S, = 0.582 with single
quadrupole phonon excitation to the state 2* (4.43982 MeV). The target nucleus was *’Au. In the rotation state, this was
deduced according to the ratio E5,+/E; ;,+ = 3.6 with a deformation coefficient of 5, =-0.131, B,= - 0.031. We excited
the state 2* (0.077351 MeV) with single-quadrupole and third-octupole phonons. The radius parameter 1o is equal
to 1.2 fm.
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Table 2. The values of the WS potential's parameters and y? fitting between experimental and theoretical data for the '>C+97Au reaction.

ay To VO ocm Xz
System Channel (fm) (fm) (MeV) (deg.) oot Jon D

48.8 0.0508598 0.0099349

SC 0.63 1.2 58.8 180 0.1054816 0.0149919

2CHTAY 68.8 0.2342481 0.0349948
48.8 0.0133151 0.0230850

CcC 0.63 1.2 58.8 180 0.0059362 0.0350599

68.8 0.0063233 0.0522743

The comparing between the experimental data and the theoretical calculations show in Table (2), from this table, We
notice that the best value for the quasi-elastic scattering (%) =0.0508598 at the depth potential Vo = 48.8MeV, which
R

was obtained from SC data analyses when the projectile '°O nucleus and target '°’Au nucleus are inert and it was
represented by the hard red line in Fig.2.a (A). This is the curve that is closest to the experimental data curve. The batter
value for the distribution D = 0.0099349 at the same depth potential V. Then, by using the coupled-channel accounts

with a rotating target (T) and vibrating projectile (P), the better value of the quasi-elastic scattering (%) =0.0059362
R

at the depth potential Vp = 58.8 MeV. It was represented by the hard green line in Fig. 2.b (B) as the figure shows. It is
the curve closest to the experimental data curve, with the best value for the distribution D = 0.0230850 at the depth
potential Vo =48.8 MeV represented by the red colored curve.
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Figure 2.a. The ratio of the quasi-elastic scattering to the Rutherford cross sections for '2C+!'?7Au system at sub-barrier energies. Banal A
and B using the single channel and coupled-channels calculations, respectively. Figure 2.b. (C, D) shows the distribution at sub-barrier
energies, using the single and coupled channels calculations, respectively. The experimental data are taken from Ref. [17].

4. CONCLUSIONS
In this research we concluded the following:

I-  When the value of the potential depth decreases, it leads to a decrease in the value of the nuclear potential, and thus
the height of the potential barrier will increase, the Quasi-elastic scattering calculations will increase, and the
potential barrier distribution curve will shift to the right.

2-  When the potential depth increases, the nuclear potential also increases, so the potential barrier will decrease and
lead to a decrease in semi-elastic scattering calculations and a decrease in the height of the potential barrier
distribution and its shift to the left.
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s

BIIJINB 3MIHU SITEPHOI'O ITIOTEHIIAJTY HA KBA3IIIPYKHE PO3CIFOBAHHS
B CUCTEMAX ¢0+!9Gd TA 2C+"Au
®apax JI:x. Xamyn, Xagig C. I:kacim
Dakynemem ¢izuxu, Ocgimuiil Koneddc yucmux Hayk, Basunoncokuil ynieepcumem, Ipax

VY upoMy fociipKeHHI Oys10 BUBYCHO BIUTMB 3MiHM DIMOHHU MOTEHIiaTy Vo Ha KBa3ilpyXKHE PO3CIFOBaHHS Ta PO3PaXyHKH PO3IMOALILY
6ap’epis 3a ronomororo noreniany Byna-Cakcona (WS) ais cuctem '0+190Gd i 2C+17Au. Xi-kBagpar (¥2) BAKOPUCTOBYEThCS ISt
MOPIBHSHHS HalKpallle MiAiIrHaHOTO 3HAUeHHs mapameTpa AU(Y3HOCTI MiXK TEOPETHYHHMH PO3PAaXyHKaMH Ta EKCIIEPUMEHTAIbHIMU
maanmu. [lapamerp nudys3HOCTI, SKHiI BHKOPHCTOBYETBCSA B Wil poOOTi, MOBHMHEH MaTh cTaHmapTHe 3HadeHHA 0,63. y2 Oyno
3aCTOCOBAHO 10 HaWOUTBII MiIXOASIIOro, Kpamle MiJirHaHOTO 3Ha4YeHHS MOTEHIIHHOI mmouHu Vo. BiAmoBigHo 10 pe3ynbsraTiB Mu
TIOMITHIIH, IO JesSKi CUCTeMHU NOCSIIM rapHOI BiAMOBIAHOCTI MiX TEOPETHYHUMH PO3PAXyHKaMH Ta €KCIEPUMEHTAIBHUMH TaHIMHI
KBa3IIpYKHOTO po3scitoBaHHA (dogel)/doR) 1 po3paxyHKaMy PO3IOIULY IPH CTAaHAAPTHOMY 3Ha4YeHHI NIMOMHU MOTEHIiaxy abo mpu
3HAYEHHI HWDKYE HDK CTaHIapTHE 3HAYCHHs, 1 He Oy/Io JOCATHYTO BIANIOBIAHOCTI IPH 3HAYCHHI, OUIBIIOMY 3a CTaHJApTHE 3HAUCHHS
noTeHuiHoT NMOHHN Vo. 3po0iIeHO0 BHCHOBOK, IO 3HA4YEHHS BEJIMYUH KBa3iIPY)KHOTO PO3CIFOBAHHS 3pPOCTAIOTh HPY 3MEHIIECHHI
BEJIMYMHU MOTEHIIaIbHOT NTMOUHN.

KurouoBi cioBa: xeasinpyswcne poscitosanus, nomenyian Byoca-Caxcona (WS); cnapiosanns, cucmema 6axckux ioHie, napamemp
oughysHocmi nogepxmi





