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In this research, the effect of changing the potential depth V0 on the Quasi-elastic scattering and barrier distribution calculations have 
been studied using Wood-Saxon (WS) potential for 16O+160Gd and  12C+197Au systems. The chi square (χ2) is applied to compare the 
best fitted value of the diffuseness parameter between the theoretical calculations and the experimental data. The diffuseness parameter 
which used in this work is to be at standard value 0.63. The χ2 was applied to most suitable the better fitted value of the potential depth 
V0. According to the results, we noticed that some systems achieved a good match between the theoretical calculations and experimental 
data of Quasi-elastic scattering (dσqel/dσR) and the distribution calculations at the standard value of the potential depth or at a value 
lower than the standard value and no match was achieved at a value greater than the standard value of the potential depth V0. We 
conclude that the values of quasi-elastic scattering values increase when the value of potential depth decreases.  
Keywords: Quasi-elastic scattering; Woods-Saxon (WS) potential; Coupled; Heavy-ion system; Surface diffuseness parameter 
PACS: 21.60.-n, 21.10.-k, 21.60.Jz, 25.70.Bc, 25.70. 

1. INTRODUCTION
The potential between two nuclei interaction, which comprises the short-range attractive and absorptive nuclear 

potentials as well as the long-range Coulomb potential, has always been a fundamental topic in nuclear physics. The 
Coulomb contact between two nuclei is widely understood, but describing the nuclear component is significantly more 
complex. Over the last few decades, the optical model potential (OMP) has been widely used to characterize the nuclear 
component, and numerous alternative potential forms have been proposed to replicate a large amount of nuclear reaction 
data [1][2]. In addition to nuclear reactions driven by light particles, the optical system may also be involved in nuclear 
reactions between heavy ions. The nuclear potential is often assumed to be of Woods-Saxon type, with three parameters 
defining it: depth, radius, and diffuseness. The diffuseness parameter defines the nuclear potential's fall-off and hence has 
a direct impact on the barrier width and coupling strengths, which are first order dependent on the derivative of the 
potential [3][4][5]. Quasi-elastic scattering is defined as "the sum of elastic scattering, inelastic scattering, and transfer 
reaction [6][7]. Quasi-elastic scattering is similar to the fusion process [7], which is defined as the combination of two 
different nuclei to generate a composite system. The Negative of the first derivative of the ratio of quasi-elastic to 
Rutherford cross-section, dqel/dR, with regard to the energy E, or Dqel = d(dqel/dR)/dE, is used to determine the 
quasi-elastic barrier distribution [8]. Several studies on quasi elastic scattering have been studied by Khalid S. Jassim for 
some heavy ions systems [9]–[11]. They demonstrated the nucleus-nucleus potential for several heavy ions by a 
comprehensive investigation of the surface characteristics. The nuclear potential has been described using WS, single-
channel SC, and coupled-channel CC calculations, which were between the relative motion of colliding nuclei and their 
intrinsic motions, and they discovered that the best fitted value of the diffuseness parameter was obtained through a 
coupled-channel calculation with an inert target and excited projectile for the current work. 

The aims of the present work is to study the influence changing of nuclear potential (potential depth V0) on quasi-
elastic scattering in systems16O+160Gd ,12C+197Au at surface diffuseness parameter it determined in earlier by the method 
chi square, we used The CQEL program [12] which contains all orders of coupling and is the most current iteration of the 
computer code CCFULL, was used to calculate single and coupled channels. 

2. THEORY
The nucleus-nucleus potential is made up of two components, the first of which is the nuclear potential Vn, which 

may be properly and appropriately described by the other two parts of the potential between two nuclei. The form for 
Woods-Saxon (WS) supplied by [13]:  

VN(r) = - 
˳

˳ , (1)

where r represents the distance between the projectile's mass number AP and the target's mass number AT at the center of 

mass, and R0 stands for the system's radius: 𝑅 𝑟 𝐴 𝐴 . The second portion, which represents the Coulomb 
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potential VC between two spherical nuclei with uniform charge density distributions when they are not interacting, is given 
by[13]: 

𝑉 𝑟    ,  (2) 

where r is the distance between the centers of mass of the colliding nuclei, Zp and ZT are the atomic numbers of projectile 
and target, respectively. The Coulomb potential is produced when the nuclei interact, and it is determined by [14]: 

𝑉 𝑟    3 , (3)

where the projectile and target nuclei are represented by spheres of radii Rc. Two nuclei collide as a result of the nuclear 
intrinsic motion and the relative motion of their centers of mass, r = (r, r). The following is the Hamiltonian system[15]: 

𝐻 ⇀. 𝜉
ħ
𝛻 𝑉 𝑟 𝐻 𝜉 𝑉  

⇀. 𝜉 , (4)

where V(r) is the bare potential in the absence of coupling where V(r) = VN(r)+Vc(r), H0(ξ) is the Hamiltonian for the 
intrinsic motion, and Vcoup is the stated coupling r stands for the center of mass distance between the colliding nuclei. The 
Schrodinger equation to wave functions is given by[16]: 

ħ
∇ V r H ξ V  

⇀. ξ ψ ⇀. ξ Eψ ⇀. ξ , (5)

Internal degrees of freedom have a limited spin in general.  the coupling Hamiltonian may be expressed as [15]: 

𝑉 ⇀. 𝜉 ∑ 𝑓  . 𝑟 𝑌 ȓ .𝚃 𝜉), (6)

The internal coordinate is used to create the harmonics and spherical tensors, which are represented by the notations 
𝑌 ȓ   and 𝚃 𝜉), respectively. That when it was considered in V(r), the sum of all values of excluding for λ(r) = 0. For 
a constant total angular momentum J and its z-component M, the expansion basis for the wave function in Eq. (5) is given 
by [15]: 

〈 ⇀𝜉| 𝑛𝑙𝐼 𝐽𝑀 〉 ∑ 〈 𝑙𝑚 𝐼𝑚 |𝐽𝑀 〉𝑌  ȓ  𝜑 𝜉 , (7)

where l stands for the orbital, I – internal angular momenta, and  𝜑 𝜉  the wave function for the internal motion that 
is give by the equation below[15] . 

𝐻 𝜉  𝜑 𝜉  𝜖  𝜑 𝜉  ,  (8) 

The total wave function 𝜓 ⇀. 𝜉 has been expanded as[16]: 

𝜓 ⇀. 𝜉  ∑ . . 〈 ⇀𝜉| 𝑛𝑙𝐼 𝐽𝑀 〉, (9)

The Schrödinger equation [Eq. (3)] can be written as a collection of linked equations for 𝑢 𝑟 :[16] 

ħ
𝑉 𝑟

ħ
𝐸 𝜖 𝑢 𝑟 ∑ 𝑉

;ń. ´.Í
𝑟ń. ´.Í 𝑢

ń. ´.Í
𝑟 0 (10)

The coupling matrix elements𝑉
;ń. ´.Í

𝑟 , According to [15] are as follows: 

𝑉 ;ń.ĺ.Í 𝑟 〈 𝐽𝑀 𝑛𝑙𝐼 𝑉 ⇀. 𝜉   ń. 𝑙´. Í 𝐽𝑀 〉 ∑ 1 Í ´
𝑓 𝑟 〈 𝑙 |𝑌 | 𝑙´ 〉〈 𝑛𝐼 |𝑇 | 𝑛´𝐼´ 〉

2𝑙 1 2𝐼 1   𝐼
´ 𝑙´ 𝐽
𝑙 𝐼 𝜆

, (11)

Where the reduced matrix elements in Eq. (8) is defined as follows[15]: 

〈 𝑙 𝑌 𝑙´ ´〉  〈𝑙´ ´  𝜆𝜇 𝑙  〉 〈𝑙 |𝑌  | 𝑙´〉, (12)

where  𝑉
;ń. ´.Í

𝑟  are separate of the index M, the index has been suppressed as seen in Eq (11). Coupled-channels 

equations are the name given to the equation (10). For heavy-ion fusion reactions, these equations are usually solved 
using the incoming wave boundary conditions[16]. 

𝑢 𝑟  ~ 𝒯  𝑒𝑥𝑝 1 𝑘 ŕ 𝑑ŕ  . 𝑟 ⩽ 𝑟 (13)

𝐻  𝑘 𝛿 , 𝛿 , 𝛿 ,  𝑆 𝐻 𝑘   , 𝑟 ⟶  ∞ , (14)

where 𝑘 2𝜇 𝐸 𝜖 /ℏ  , 𝑘 𝑘 2𝜇𝐸/ℏ   and the following formula defines the local wave number 𝑘 : 
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 𝑘 𝑟
ℏ

𝐸 𝜖
ℏ

𝑉 𝑟 𝑉 ; 𝑟  (15) 

Following the determination of the transmission coefficients TnlIJ, the penetrability through the Coulomb barrier is 
provided by: 

 𝑃 𝐸  ∑ . . |𝒯 |  (16) 

In contrast to the computation of fusion cross sections, the computation of quasi-elastic cross sections often requires 
a large value of angular momentum in order to yield convergent results. The potential pocket at (r = rabs) grows shallow 
or even disappears for such a large angular momentum. The incoming flux in Eq (13) cannot, however, be clearly 
identified. The quasi-elastic problem frequently uses the regular boundary conditions at the origin in order to avoid using 
the incoming wave boundary conditions. When using the standard boundary conditions, a complex potential 
VN(r) = VN0(r)+iw(r) is needed to simulate the fusion reaction. After obtaining the nuclear S-matrix in Equation (Eq11). 
The scattering amplitude may be calculated using  

 𝑓 𝜃.𝐸 𝑖 ∑ 𝑖  𝑒 2𝐽 1 𝑌 𝜃 𝑆 𝛿 . 𝛿 . 𝑓 𝜃.𝐸 𝛿 . 𝛿 .  (17) 

The Coulomb phase shift is 𝜎 .and given by the equation, 

 𝜎 |Γ 𝑙 1 𝑖𝜂 |, (18) 

As for 𝑓 , which is the Coulomb scattering amplitude and is determined by[16]: 

 𝑓 𝜃.𝐸  𝑒 , (19) 

where η is the Somerfield parameter which is given by 𝜂  𝑍 𝑍  𝑒 /ћ𝑣 , and utilizing Equation (16), the differential 
cross section may be evaluated 

 
.

 ∑ |𝑓 𝜃.𝐸 | , (20) 

May be evaluate the Rutherford cross section. 

 
.

|𝑓 𝜃.𝐸 |  , (21) 

The distribution of the barrier of fusion is defined as [15]:  

 𝐷 𝐸 𝐸 𝜎 𝐸  , (22) 

The definition of the total scattering distribution of the barrier of scattering D tot (E) is[15]. 

 𝐷 𝐸 𝐸  ,  (23) 

 
3. RESULTS AND DISCUSSION 

The single-channel and coupled-channel computations were performed with the CQEL program, which is the most 
recent edition of the computer code CCFULL[12]. To eliminate systematic errors in the current study, the chi square 
technique χ2 was used as a normalizing factor between the theoretical calculation and the experimental data. These 
computations were performed using a WS form for the nuclear potential, which has real and imaginary components. The 
imagined potential was utilized to explain the relatively low internal absorption following barrier penetration. The 
parameters of the actual potential were investigated in order to obtain the best fit to the experimental data, which was then 
replicated for all interactions. 
 

3.1 16O+160Gd System 
In this reaction were processed in two cases, the first case, where both the projectile and target nuclei were considered 

inert (SC) at three values of the real nuclear potential (potential depth V0) (58.7, 83.7 and 108.7) MeV and we considered 
the diffusion parameter 0.50 fm. It was previously determined by χ2 method as the best value for matching the 
experimental data with the theoretical data. In the second case, the target core 160Gd was rotation this was deduced 
according to the ratio 𝐸 𝐸⁄  3.3 with a deformation coefficient of 𝛽 =0.280 and 𝛽 = 0.065. We used the 
single-quadrupole and third-octupole phonon excitation to the state 2+ (0.075263 MeV), at coupled-channel (CC). While 
the projectile nucleus was 16O vibration where 𝐸 𝐸⁄ 1.49 with a deformation coefficient of 𝛽  = 0.364 with single-
quadrupole phonon excitation to the state 2+ (6.9171 MeV) and the radius parameter r0=1.2 fm 
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Table 1. The values of the WS potential's parameters and χ2 fitting between experimental and theoretical data for the 16O+160Gd reaction. 

𝝌𝟐 𝜽𝒄𝒎 
𝒅𝒆𝒈.  

𝑽𝟎 
𝑴𝒆𝑽  

𝒓𝟎 
𝒇𝒎  

𝒂𝟎 
𝒇𝒎  

Channel System 
𝑫𝒒𝒆𝒍 𝝈𝒒𝒆𝒍 𝝈𝑹⁄  

0.0072179 0.04873 
170 

58.7 
1.2 0.50 SC 

16O+160Gd

0.0055259 0.12627 83.7 
0.0074302 0.27427 108.7 
0.0034521 0.00522 

170 
58.7 

1.2 0.50 CC 0.0034493 0.01035 83.7 
0.0057510 0.02409 108.7 

By the comparing between the experimental data and the theoretical calculations, we shown that in Table (1), we notice 

that the better value for the quasi-elastic scattering   = 0.04873 at the depth potential V0 = 58.7MeV, which was acquired 

from SC data analysis where the projectile 16O nucleus and target 16Gd nucleus are inert. It was shown by the hard red line in 
Fig. 1a. (A). This is the curve that is nearest to the curve of the experimental data. The batter value for the distribution D = 
0.0055259 at the depth potential V0 = 83.7 MeV. According to the coupled-channel calculation with a rotating target (T) and 

vibrating projectile (P), the best value of  = 0.00522 at the depth potential V0 = 58.7 MeV, was shown by the hard red 

line in Fig. 1.b (B) We note from the draw It is the curve nearest to the curve of the experimental result, while the best value to 
the distribution D = 0.0034493 at the depth potential V0=83.7 represented by the green colored curve. 

(a) (b)
Figure 1a. The ratio of the quasi-elastic scattering to the Rutherford cross sections for 16O+160Gd system at sub-barrier energies. Banal 
A and B using the single channel and coupled-channels calculations, respectively. Figure 1.b. (C, D) shows the distribution at sub-
barrier energies, using the single and coupled channels calculations, respectively. 

3.2 12C+197Au system 
In this reaction, the results were split into two stages. In the first stage, according to single channel (SC) calculations, 

the projectile and target nuclei were inert at various real nuclear potentials (potential depth V0) (48.8, 58.8, and 68.8) MeV, 
and the diffusion parameter was 0.63 fm, which had previously been determined by the chi-square χ2 method to be the 
nearest value between the experimental and theoretical data. In the second stage, at coupled-channel (CC) calculations, 
the projectile nucleus 12C was rotation where 𝐸 𝐸⁄ = 2.9 with a deformation coefficient of    𝛽  = 0.582 with single 
quadrupole phonon excitation to the state 2+ (4.43982 MeV). The target nucleus was 197Au. In the rotation state, this was 
deduced according to the ratio 𝐸 / 𝐸 /⁄  = 3.6 with a deformation coefficient of 𝛽  =-0.131, 𝛽 = - 0.031. We excited 
the state 2+ (0.077351 MeV) with single-quadrupole and third-octupole phonons. The radius parameter r0 is equal 
to 1.2 fm. 
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Table 2. The values of the WS potential's parameters and χ2 fitting between experimental and theoretical data for the 12C+197Au reaction. 

𝝌𝟐 𝜽𝒄𝒎 
𝒅𝒆𝒈.  

𝑽𝟎 
𝑴𝒆𝑽  

𝒓𝟎 
𝒇𝒎  

𝒂𝟎 
𝒇𝒎  

Channel System 
𝑫𝒒𝒆𝒍 𝝈𝒒𝒆𝒍 𝝈𝑹⁄  

0.0099349 0.0508598 
180 

48.8 
1.2 0.63 SC 

12C+197Au 

0.0149919 0.1054816 58.8 
0.0349948 0.2342481 68.8 
0.0230850 0.0133151 

180 
48.8 

1.2 0.63 CC 0.0350599 0.0059362 58.8 
0.0522743 0.0063233 68.8 

The comparing between the experimental data and the theoretical calculations show in Table (2), from this table, We 

notice that the best value for the quasi-elastic scattering  = 0.0508598 at the depth potential V0 = 48.8MeV, which 

was obtained from SC data analyses when the projectile 16O nucleus and target 197Au nucleus are inert and it was 
represented by the hard red line in Fig.2.a (A). This is the curve that is closest to the experimental data curve. The batter 
value for the distribution D = 0.0099349 at the same depth potential V0. Then, by using the coupled-channel accounts 

with a rotating target (T) and vibrating projectile (P), the better value of the quasi-elastic scattering  = 0.0059362 

at the depth potential V0 = 58.8 MeV. It was represented by the hard green line in Fig. 2.b (B) as the figure shows. It is 
the curve closest to the experimental data curve, with the best value for the distribution D = 0.0230850 at the depth 
potential V0 = 48.8 MeV represented by the red colored curve.  

 
  (a) (b) 
Figure 2.a. The ratio of the quasi-elastic scattering to the Rutherford cross sections for 12C+197Au system at sub-barrier energies. Banal A 
and B using the single channel and coupled-channels calculations, respectively. Figure 2.b. (C, D) shows the distribution at sub-barrier 
energies, using the single and coupled channels calculations, respectively. The experimental data are taken from Ref. [17]. 
 

4. CONCLUSIONS 
In this research we concluded the following: 

1- When the value of the potential depth decreases, it leads to a decrease in the value of the nuclear potential, and thus 
the height of the potential barrier will increase, the Quasi-elastic scattering calculations will increase, and the 
potential barrier distribution curve will shift to the right. 

2- When the potential depth increases, the nuclear potential also increases, so the potential barrier will decrease and 
lead to a decrease in semi-elastic scattering calculations and a decrease in the height of the potential barrier 
distribution and its shift to the left. 
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ВПЛИВ ЗМІНИ ЯДЕРНОГО ПОТЕНЦІАЛУ НА КВАЗІПРУЖНЕ РОЗСІЮВАННЯ 
В СИСТЕМАХ 16O+160Gd ТА 12C+197Au 
Фараx Дж. Хамуд, Халід С. Джасім 

Факультет фізики, Освітній коледж чистих наук, Вавилонський університет, Ірак 
У цьому дослідженні було вивчено вплив зміни глибини потенціалу V0 на квазіпружне розсіювання та розрахунки розподілу 
бар’єрів за допомогою потенціалу Вуда-Саксона (WS) для систем 16O+160Gd і 12C+197Au. Хі-квадрат (χ2) використовується для 
порівняння найкраще підігнаного значення параметра дифузності між теоретичними розрахунками та експериментальними 
даними. Параметр дифузності, який використовується в цій роботі, повинен мати стандартне значення 0,63. χ2 було 
застосовано до найбільш підходящого, краще підігнаного значення потенційної глибини V0. Відповідно до результатів ми 
помітили, що деякі системи досягли гарної відповідності між теоретичними розрахунками та експериментальними даними 
квазіпружного розсіювання (dσqel)/dσR) і розрахунками розподілу при стандартному значенні глибини потенціалу або при 
значенні нижче ніж стандартне значення, і не було досягнуто відповідності при значенні, більшому за стандартне значення 
потенційної глибини V0. Зроблено висновок, що значення величин квазіпружного розсіювання зростають при зменшенні 
величини потенціальної глибини. 
Ключові слова: квазіпружне розсіювання; потенціал Вудса-Саксона (WS); спарювання; система важких іонів; параметр 
дифузності поверхні 




