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The total wave function and the bound state energy are investigated by involving Nikiforov-Uvarov method to Schrodinger equation
in spherical coordinates employing Hartmann Potential (HP). The HP is considered as non-central potential that is mostly recognized
in nuclear field potentials. Every wave function is specified by principal quantum number #, angular momentum number [/, and magnetic
quantum number m. The radial part of the wave function is obtained in terms of the associated Laguerre polynomial, using the
coordinate transformation x = cos 8 to obtain the angular wave function that depends on inverse associated Legendre polynomials.
Keywords: Schrodinger equation; Nikiforov-Uvarov method,; Hartmann Potential

PACS: 03.56.-w, 03.65.Fd, 03.65Ge

INTRODUCTION

The Hartmann Potential is a kind of non-central potentials that have been studied in nuclear physics field, which

consider as the coulomb potential surrounded by the ring-shaped inverse square potential. Organic molecules such as

cyclic polyenes and benzene, handling this potential since 1972 [1-2]. In spherical coordinate the Hartmann potential is

coulomb potential adding a one potential proportional to ( tan 8)~2. So, it defined by [3-4]:
a . PBcos?h

V(r,08)=—-+

r  r2sin2@’

M

Where o, § are constants that consider as positive real numbers. Obtaining this HP in Schrodinger equation, assuming
(u=nh=1)[5]

Far (%) + o (500 55) + oy (32) + = = 2B 522} (. 6,0) + 2B9(,0,0) = 0. (2)

r2sin2 6 r r2sin2 6

The equation (2) depends on the total coordinates in spherical coordinates (7, 8, @), to find the total wave function
we need apply separation of variables method on equation (2). The main object in this work is to determine the bound
state energy and the wave function.

SEPARATION OF VARIABLES METHOD
Obviously, in spherical potential, we let [6]:

P(r,0,0) =22 H(O) $(p). 3)
Now, by Separating variables in equation (2), we hold that:

The Radial Part

d2u(r)
dr?

a A
+ [ZE + 27‘72] u@r) =0,
where A is separation constant. And, to solve the equation, we let

A=T0+1) - 28.

m2—m2
B=—

Where [" and m’ are positive integers or zero.

L=§{J1+4[(k+m)(k+JWH)—zﬁ]—l}. @
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So, one can easily show that A = L(L + 1) (see Appendix I)
The radial Schrodinger equation can displayed as:
d2u(r)
dr?

+ |26+ 22 -2y =o. )

r

Where the angular part can displayed as:

The Angular part
Insert a new variable x = cos 8 and using Chain rules technique, to get the angular Schrodinger equation.
d*H(x)  2x dH(x) 1 ( B m2+2ﬁ) B
dx2 1-x2 dx + 1—x2 /1 + Zﬁ 1—x2 H(x) = 0 (6)

Andwelet, A+ 28 =1L+ 1), m2=m?+2Bandv ='(' + 1).
After applying all assumes into equation (6), we get

d’H(x)  2x (dH(x) (—v'x?+v'-m'2) _
dx? 1—x2{ dx } (1-x2)2 H(x) =0. ™
The Azimuthal Part
1 d? )
2@ (dT)z) (@) =m?. ®

Where m is the magnetic quantum number.

NIKIFOROV-UVAROV METHOD
The Nikiforov-Uvarov method is a one of the methods used to predict the solutions of generalized second order liner
differential equation like Schrodinger equation with particular orthogonal function, we could be obtaining the solution by
NU-method when make some transforming to Schrodinger equation to be the same of the below equation [7]

ut(z) + 22 0 (2) + 28

o(z) 02(z)

u(z) = 0. 9

Where equation (9) is considering the standard form of NU-method. Where, ¢(z) and & (z) are polynomials with a
maximum degree of 2; ¥ (z)is polynomial with a maximum degree of 1; u(z) is a hypergeometric function type, and the
primes intending the derivatives respect to z. by supposing that:

u(z) = ¢p(2)X(2). (10)
The equation (9) become as hypergeometric form:
o)X (2)+1(2)X (2) + 1 X(2) =0. (11)
Where
1(2)=2n(@) +1(2) ,+-1(2)<0. (12)
Where 1t(z) is a parameter of 1 polynomial degree and introduces by equation (13):
. 2
m(z) ="+ J("z") —6(2) + ko. (13)
While A is introduced by equation (14)
A=k+1(2). (14)

Since 7(z) is 1% degree polynomial, this implies that second order function under square root must be equal to zero,
then the quadratic equation can determine k.
To obtain ¢(z) we can use the integral below equation:

92 _ n(2)
b o) (15)
And the parameter A in equation (14) defined by;
A=21,=-nt(2) — nn-1) o (2). (16)

2

The weight function p(z) is obtained in (Eq. 17).
~lo(2) p()] = 1(2) p(2). (17
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While the Rodrigue relation (Eq. 18) is used to determine X, (z).

B, am

Xa(2) = 25 220" p(2)] (18)

Where B,is normalization constant, now Substitute X,,(z) and ¢(z) into equation (10) to find u(z) [8-12].

DEVELOPING HARTMANN POTENTIAL IN SCHRODINGER EQUATION
The Radial Schrodinger Equation
From equation (5) we can write the radial part by the below form
d2u(r)
dar?

+ riZ[ZErZ +2ar — L(L + D]UG) = 0. (19)

By comparing equation (9) by equation (19) to obtain the NU-Coefficients, we get

t(r)=0, (20-a)
or)=r, (20-b)
F () =2Er?+2ar —L(L +1). (20-c)
Using equations (20-a) (20-b) and (20-c) into equation (13) to get the parameter (r)
n(r) =§i§J—8Er2 +4(k —20)r+4L(L+ 1D + 1. @0
Now, taking this quadratic equation's discriminant equal zero, then the value of constant k could be determined.
k% — dak + 4a® + 2E{4L(L + 1) + 1} = 0. (22)
The quadratic equation (22) provides two roots for k
ky =2a +/—2E{4L(L + 1) + 1}. (23)
Substituting equation (23) into equation (21), to get:
() =m,,(r) = %+ {\/—_ZEr + (L + %)}, (24-a)
m,(r) =ny(r) = %+ {\/—_ZEr — (L + %)}, (24-b)
m3(r) = ng(r) = i— { —2Er + (L + %)], (24-¢)
my(r) =m__ (r) = - {\/—_ZEr —(L+ %)} (24-d)
Taking 1, (1) where t(r) is negative in equation (12) to hold the well value by NU method; so:
T, =1-2 <\/ﬁr - (L + %)) 25)
Returning to the equations (14) and (16) respectively, and developing equation (25) we get:
A=2a— 2L+ 2)V—2E. (26)
An = 2n(V—-2E). 27)
Comparing equations (26) and (27) one can predict bound state energy.
E= o (28)

2(L+n+1)2’

Where L is given by equation (4).
Depending on previous result especially equation 25 we can hold the function ¢ () and the weight function p(r)
that in equations (15) and (17) in a new form:

(l)(,r) — T.(L+1)e— —2Er (29)
p(r) — e—2v—2Err(2L+1) (30)

By obtaining equation (18) and (30); one can establish the polynomial X, (r):

- _ A" [ o =
X,(r) = Be?V-2Ery (2L+1) ﬁ[e 2 2Err(2L+1+n)] 31
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Also, the wave function U(r) is hold by multiply X,,(r) with ¢ ().

— L+1) ,—V=2Er ,2V=2E7,.—(2L+1) 4" [ ,—2v=2Er.(2L+1+n
Uy (r) = B, rttVe e r-CL+D) el 4 7 .

Involving associated Laguerre polynomial in equation [4] then U,,;(r) can be defined as:
Uni(r) = B, r(t+De=V=2ET [2L+1(9\[_2F7). (32)

By substituting vV—2E as in equation (28) where @ = ze?, then the radial wave function R(r), which defined as
R(r) = @ is obtained as:

Zez 2
— L, Tans)’ j2L+1 [_22€
R;,(r) = Byrte @+ L2 ( LoD r). (33)

Where, B, is the normalized constant for orthogonally associated Laguerre polynomial. So, the normalized constant equal

L
B, = J s A (34)

r(2L+n+2) {2n+2L+2}

Substituting equation (34) to write the final form of radial Schrodinger equation

9ge2 2L*3 2ze2
n! (L+n+1) L -, 2L+1( 2ze? )
= 2 e
R"l(r) r(2L+n+2) 2{n+L+1} (r) € L" (L+n+1)r 335)

The Angular Schrodinger Equation
Now, to determine the angular wave function H(x); compare equation (7) with equation (9) to obtain

T (x) =—-2x (36-a)
o(x) =1 —x? (36-b)
Fx)=—vxt+v —m? (36-¢)

Substitute equations (36 — a), (36 — b)and (36 — ¢) into (13), then one can conclude 7 (x):

nx) =t/ —k)x2—v +m2+k 37)
following the NU-method technic, both values of constant k.
ki=v-m?, k,=v (38)
So, the values of parameter 7 (x) giving by;
M1 () = D2 = m'x (39-a)
My, (x) = —W =—-mx (39-b)

Ty (x) =Vm2 =m (39-¢)
Ty (x) = —Vm'2 = —m’ (39-d)

Substituting the four values of (x) into equation (14) and equation (36-a), we obtain 7(z); where T°,(r) < 0
T,(x) = —2x —2m’x (40)
We have obtained the constants A and A,, from the equations (14) and (16) respectively.
A=v —m?—-m (41)
Ay =-—n(-2-2m) +nn-1) (42)
Comparing equation (41) with equation (42), we get:

l‘:—%+%J1+4{n+\/m2+23}(n+\/m2+2ﬁ+1)} (43)

Now, depending on the upon result we return to use equations (15) and (17) to determine the function ¢(r) and weight
function p(r)
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¢ (x) _—mx
p(x)  1-x2
p(r) {=2x(1+m)+ 2x}
p(r) 1—x2
By integration the above equations we get;
P =1 -x)*F (44)
p(x) =1 —x)™ (45)
Now we can determine the polynomial X, (r) by equation (18) and (45).
X, (1) = By(1—2)™ o[- 2™ (1-x?)"] (46)

And by using H(x) = X,,(x) ¢(x) that are defined by equations (46) and (44) and where

n+m =1
N m r-m
Ho(x) = (-D'B, (1 —x) 72 L [(x? - 1) @7)
By use some relations in associated Legendre polynomials
(=™ _m g -m) .
-m _ A2 2 _ L — (1 \ym: m
pi o (1-x3)77 e (62 = 1) = (-1) S P ()
1 1
e (2 = D= (CDm (- ) S (6 - 1! (48)
Now apply the equation (48) into equation (47);
Ha() =~ By(1 = 277 fem(@ — 2™ S0 (2 — 1) (49)
Where:
= (D)™ (=m)! (50)
+m)!
Where associated Legendre polynomials is giving by equation [13];
So, equation (49) become:
. 2t .
Hy (%) = (=1)" By e 5 P () (51
Where the normalization constant is
2l
= (=" By Com (52)
So H,(x)become H,(x) = Ny, pI" (x).
To find the normalized constant, use the normalized condition f_ll H2(x)dx = 1.
By use associated Legendre polynomials orthogonally [13], we get
2141 (0-m)!
Nim = |75~ (C+m)! (>3)
So, the angular wave function become:
2l+1 (' = m)!
H =
8e) J Ty P
Where associated Legendre polynomials equal;[14]
r-m
(—DrEer-2v+1) P —2v

2

™ () = _ZEZ

P (¥) = (1= x%)2 021\v!(l‘—m‘—2v)!l“(l‘—v+1)x
v=

So, after replacing x = cos 6 the angular wave function equal;
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r-m
[z @-md)r ——  (-1)'T@l-2v+1) P —2v
Hn(x) = 2 (C+m)! sin™ 6 X ZV=0 2UpI(C-m —20)IT (' -v+1) (cos6) (54)

The Azimuthal Wave Function
From equation (8) we can easily determine the azimuthal part equation [15]:

$(p) = =em® (55)

by including the equations (35), (54) and (55), then the total wave function ¥ (, 8, ¢) can be expressed as:

2ze2 2L*3 _2ze?
_@TAn+D

Y(r,6,0) = n {ftnt) (ke z 7 L%L"'l( 2ze? r) 9

r(2L+n+2) 2{n+L+1} (L+n+1)
r-m
2141 (U-m)! . 2 (-1)r(2r'-2v+1) r-m-2vy_1 _—img
\/ 2 (4+m)! sin™" 0 v=0 2Upl(I'—m —2v)IT(L -v+1) (cos 0) Xx/ﬁe (56)

CONCLUSIONS
The total wave function and bound state energy using Hartmann potential are determined explicitly where they show
a great similarity with other studies. The total wave function depends firstly, on associated Laguerre functions in the radial
part, secondly, on the value of cosine in the angular part, and lastly, on the exponential function in the azimuthal part.
The number of states n and quantum numbers [, m are also appeared and established.

ORCID ID
Abdulrahman N. AKkour, https://orcid.org/0000-0002-9026-4098

REFERENCES

G.G. Blado, Theor. Chim. Acta, 94, 53 (1996). https://doi.org/10.1007/BF00190155

C. Chang-Yuan, L. U. Fa-Lin, and S. Dong-Sheng. Theor. Phys. 45, 889 (2006).

C. Quesne, J. Phys. A: Math. Gen. 21, 3093 (1988). https://doi.org/10.1088/0305-4470/21/14/010

C.Y. Chen, and S.H. Dong, Physics Letters, Section A: General, Atomic and Solid-State Physics, 335(5-6), 374

(2005). https://doi.org/10.1016/j.physleta.2004.12.062

[S] D. Griffiths, and D.F. Schroeter, Introduction to quantum mechanics, 3rd ed, (United Kingdom, 2018), pp. 172-175.

[6] S.P. Singh, European J. of Physics Education, 10(4), 1309 (2019). https://typeset.io/pdf/solving-hydrogen-atom-
problem-using-spherical-polar-1ml17d8yfi.pdf

[71 A.F.Nikiforov, and V.B. Uvarov. Special Functions of Mathematical physics, (Birkhduser Verlag, Basel 1988), pp.1-20.

[8] C. Berkdemir, Application of the Nikiforov-Uvarov Method in Quantum Mechanics: a Unified Introduction with
Applications, edited by M.R. Pahlavani, (Pennsylvania State University, USA, 2012), https://doi.org/10.5772/33510

[9] M. Abusini, M. Serhan, M.F. Al-Jamal, A. Al-Jamel, and E.M. Rabei, Pramana - Journal of Physics. 93, 93 (2019),
https://doi.org/10.1007/s12043-019-1860-x

[I0]H. Mansour, and A. Gamal. Advance In High Energy Physics, 2018, 7269657 (2018).
https://doi.org/10.1155/2018/7269657

[[1] M. Abu-Shady. International Journal of Modern Physics A, 34 (31), 1950201 (2019),
https://doi.org/10.1142/S0217751X19502014

[12] I.B. Okon, O. Popoola, and C.N. Isonguyo, Advances in High Energy Physics, 2017, Article 9671816 (2017),
https://doi.org/10.1155/2017/9671816

[13] M.R. Spiegel, S. Lipschutz, and J. Liu, Mathematical Handbook of Formulas and Tables, 3rd ed, (McGraw-Hill, 2008)

[14]C.Y. Chen, FL. Lu, D.S. Sun, Y. You, and S.H. Dong, Appl Math. Lett. 40, 90 (2015).
https://doi.org/10.1016/j.am1.2014.10.001

[15] A.D. Antia, C.C. Eze, and L.E. Akpabio, Physics & Astronomy International Journal, 2 (3), 187 (2018),
https://doi.org/10.15406/paij.2018.02.00084

1
2
3
4

———_——
e ey

Appendix (I)
d2u(r) JE+ 2" A UG = 0
a2 2T -|ve -
A=0C+1)—-28 (1)
p=r @)

L=%{\/1+4[(k+m)(k+ 23+m2+1)—2ﬁ]—1}

Substation equation (2) into equation (1):
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A=TC+1D)-m?+m? 3)
Let '=k+m
k=0-m

From equation (2), we get:
26 +m? =m?
From equation (3), we get:
A=k2+2km’+m2+k+m + 1 —m?+m?
A= k% +2k\J2B + m2 + /2B + m2 + 2k + /2B + m2 + m?
A =Kk?%+2k\2B + m? + 2\/28 + m? + 2k + m?
To proof L(L + 1) = A, we use Some simple calculations.

LP+L=2
7‘1‘{\/1+4[(k+\/23+m2)(k+\/2ﬁ +m2+1)—2[3]—1}2+%{\/1+4[(k+J2ﬁ +m2)(k+¢2ﬁ+m2+1)—2[3]—1}:;1 “4)

The value that under square root in equation (4):

(k+ V2B +m?) (k+ 2B +m? +1) = k? + 2km + k +m? +m’

Equation (4) become:

1 2 1
Z{J1+4[k2+2km‘+k+m‘2+m‘—2ﬁ]—1} +E{\/1+4[k2+2km‘+k+m‘2+m‘—2ﬁ]—1}=l

After use equation (2), we get:

2
i{\/1+4[k2+2km‘+k+m‘2+m‘—m‘2+m2]—1} +%{\/1+4[k2+2km‘+k+m‘2+m‘—m‘2+m2]—1}=/1 ®)

Substation equation (1) into equation (5), and simple mathematics.

1 2 1
Z{\/l +4[C —m)Z+ 20 —m)m + [ +m2 -1} + E{‘/l 4T —m)Z+ 200 —m)m + T +m2] — 1}
=I'(C+1)-m?+m?

by expand the Quadratic Arc, we get:

1 1 1
2t (P —m)?2+2(0 —m)Y)m' + ' + m?] — E‘/l +4[( —=m)2 +2(0 = m)m' + ' + m2] + 2

1 1

+ 5\/1 +4[(" =m)2 +2(' =mOY)m’ + ' + m?] — 3= FC+1)-m?2+m?
1 1
2t [T -—m)?+2(0 —m)Ym + '+ m?] — i FC+1)-—m?2+m?
C-m+20-mm++m? =0 +1)—-m?+m?
=2ml+m?+2im —-2m2+0+m?> =01+ 1)—m?+m?
P+lr-m?2+m?=0r(C+1) —-m?+m?
FC+1) —m2+m? =00 +1) —m?2+m?

3ACTOCYBAHHS METOAY HIKI®OPOBA-YBAPOBA 10 PIBHSIHHSA HIPEJAIHI'EPA, 3 BUKOPUCTAHHSAM
HOTEHLIAJIY TAPTMAHA
Maxmyna A. Aab-Xasamae?, Aoayapaxman H. Axyp®, Eman K. [lkapagar?®, Omap K. J:xapagar®
“Dizuynuii paxynsmem, Yuicepcumem Myma, Hopdanis
b Tenapmamenm pynoamenmanvnux nayx, xonedsc Ano-Xycon, npuxradnuii ynisepcumem Anv-banka, Hopoanis
@axynomem mamemamuxu, Ynisepcumem Myma, Hopoanis
[ToBHa XBHIIEOBA (DYHKIIIS Ta €HEPTis 3B’S13aHOTO CTaHY AOCITIPKYIOThest MeTotoM Hikidoposa-YBaposa mo pisusuHs llpeninrepa B
ceprIHUX KOOpAMHATaX 3 BUKOpHCTaHHAM moteHiiany [aptmana (HP). HP BBaxkaeThcs HELEHTpaJIbHUM IOTECHIIATIOM, KU B
OCHOBHOMY BU3HAEThCS B IOTEHIiaNax syiepHoro mojst. KokHa XBUIbOBa (DyHKIiSE BU3HAYAETHCS TOJIOBHUM KBAaHTOBHM YHCIIOM 1,
YUCIOM KYTOBOTO MOMEHTY / i MarHiTHUM KBaHTOBMM YMCIOM m. PajianbHy 4yacTHHY XBHIbOBOI (YHKLIl OTpMMaHO uepes
acouifioBanuii oniHoM Jlareppa 3a JOIOMOTOIO NEPETBOPEHHSI KOOPAMHAT X = €OS 6§ JUIsl OTPUMaHHS KyTOBOI XBHJILOBOI (PyHKIII,
sIKa 3aJIKUThH Bil 00EPHEHHX acolliiioBaHUX ToJiHOMIB Jlexxanapa.
KurouoBi cinoBa: pisusnns Llpedinzepa,; memoo Hixighoposa-Yeaposa; nomenyian I apmmana





