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An investigation of the quadrupole deformation of Kr, Sr, Zr, and Mo isotopes has been conducted using the HFB method and SLy4 
Skyrme parameterization. The primary role of occupancy of single particle state 2d5/2 in the existence of the weakly bound structure 
around N = 50 is probed. Shell gaps are performed using a few other calculations for the doubly magic number 100Sn using different 
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along with the deformations of 100Sn. 
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1. INTRODUCTION
The mass region around neutron number N = 50 is a fascinating region characterized by many phenomena. Unlike other 

shape phenomena, nuclear deformation leads to the bound structure of a quantum state characterized by different equilibrium 
contributions. Many theories and experiments have been performed to study these contributions. One of the most influential 
theories widely used to study nuclear deformation and structure is the Skyrme-Hartree-Fock (SHF) theory. The nuclear 
system is a self-bound system consisting of nucleons that move in a mean field (MF). The nucleons occupy single-particle 
states according to the Pauli exclusion principle. HF theory is a fundamental MF theory that was studied using Skyrme 
parameterizations to describe the nuclear interaction with different terms in the framework of the Slater determinant. 

The Hartree-Fock-Bogoliubov (HFB) method is formulated for the Hamiltonian. It is expressible in the second 
quantization, which includes two phenomena: the HFMF and the pairing correlations, considering the relationship 
between them. This method will be used in the present work to investigate the deformed shape of nuclear systems with 
SLy4 Skyrme parameterization using the HFBTHO (v1.66p) code [1]. This code uses the axially transformed harmonic 
oscillator (THO) on a single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes the HFB 
Hamiltonian based on the Skyrme forces and zero-range pairing interaction until a self-consistent solution is found. In 
addition, the single-particle energy of 100Sn will be investigated using the shell model with different Skyrme 
parameterizations as single particle potential via the shell model code NuShellX@MSU [2], which used data files for 
different model spaces, mixing configurations, and Hamiltonians to generate input for NuShellX. As well as the 
quadrupole deformation, Fermi level, pairing strength, and density profile of 100Sn with Skyrme tensor parameterization 
are studied using the code [3], which is a highly optimized two-dimensional HF+ Bardeen-Cooper-Schrieffer (BCS) code 
used for computing ground states and deformation energy surfaces for axially symmetric deformed nuclei. 

2. HARTREE-FOCK-BOGOLIUBOV METHOD
In the HFB method, the Hamiltonian is essentially reduced to two potentials: the self-consistent average potential (Γ) 

from HF method, and an additional pairing field (Δ), known from the BCS, the BCS theory states basically that the pairing 
strength is constant for the matrix elements. 

In the following section we will introduce the general quasiparticle picture in the standard HFB formalism. The basic 
idea in the most general quasiparticle concept is to define the HFB approximate ground state of the many-body system as 
a vacuum with respect to quasiparticles. The many-body Hamiltonian of a system of fermions can be expressed in terms 
of a set of annihilation and creation operators [4]: 

† † †1ˆ ˆ ˆ ˆ ˆ ˆ ˆ
4ij i j ijkl i j l k

ij ijkl
H t a a a a a aυ= +  (1) 

where the first term corresponding to the kinetic energy and the second term ῡijkl=<ij|V|kl> is anti-symmetrized two-body 
interaction matrix elements of the effective nucleon-nucleon interaction. An eigenstate of this Hamiltonian can be 
expanded as a sum over states which all have the same total number of nucleons, but with the nucleons occupying the 
available single-particle states in all possible combinations. The Skyrme interaction for nuclear structure calculations was 
developed from the idea that the energy functional could be expressed in terms of a zero-range expansion, leading to a 
simple derivation of the HF equations, in which the exchange terms have the same mathematical structure as the direct 
terms. This approximation greatly reduces the number of integrations over single-particle states when solving the 
equations. 
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The Skyrme effective interaction is a two-body density-dependent interaction that models the strong force in the 
particle-hole channel and contains a central and spin-orbit, given by Ref [5]: 
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where ( ),Sky i jV r r   is the Skyrme effective interaction and k̂, k̂ʹ are the relative momentum operators, which operate on the 
wave functions to the right and to the left, given by: 

 ( ) ( )1 2 1 2
1 1ˆ ˆ  ,  
2 2

k k
i i

′ ′ ′= ∇ − ∇ = − ∇ − ∇
   

 (3) 

The terms t˳, t1, t2, t3, x˳, x1, x2, x3, α and W˳ are the free parameters describing the strengths of the different interaction 
terms which are fitted to the nuclear structure data. The t˳ parameter represents the central term, the parameters (t1, t2) are 
the momentum dependent term, the t3 parameter represents the effective density-dependence term, the W˳ parameter 
represents a two-body spin-orbit term and p̂σ being the spin exchange operator: 

 ( )1 2
1ˆ ˆ ˆ1
2

Pσ σ σ= + ⋅  (4) 

To obtain HF equations, we have to evaluate the expectation value of the Hamiltonian in a Slater determinant HF . 
It is given by: 

 ( )
1
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2

A A
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=

= = +   (5) 

The expectation value of the HF Hamiltonian or energy of the Skyrme can be rewritten as a spatial integral over a 
Hamiltonian density: 

 ( )3 ˆE d r H r= 
   (6) 

By substituting the Skyrme interaction terms into the full energy expression, the form of the density function, H can 
be derived. Where V(i,j) contains all parts of the nucleon-nucleon force, including the coulomb interaction. The full 
expression for the expectation value of the HF equations with the Skyrme force is then: 
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In the HFB method, the ground state wave function is defined as the quasiparticle vacuum, where the quasiparticle 
operators ( β̂ , †β̂ ) are connected to the original particle operators ( â , †â ) via a linear Bogoliubov transformation [4] 

 ( ) ( )† * * † † † †
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where k and i run over the whole configuration space (k = 1, …, A) and U and V are transformation matrices. 
The Hermitian conjugation of these equations gives the quasiparticle operators. Therefore, we have unitary 

transformation is a transformation from the system of single particle operators to the system of quasiparticle operators),  

 ( ) ( )† † † †
1 1 1 1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ,..., ; ,..., ,..., ; ,...,m K m Ka a a a a β β β β β= → =  (10) 

which it can be written in the matrix form [4]: 
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The matrices U and V satisfy the relations: 
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and allows us to invert Eqs. (8) and (9), 

 ( )* * †

1

ˆ ˆˆ
A

l li i li i
i

a U Vβ β
=

= +  (13) 

 ( )† †

1

ˆ ˆˆ
A

l li i li i
i

a V Uβ β
=

= +  (14) 

which means that the Bogoliubov transformation of Eq. (11) is unitary and it can be easily inverted, 
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Using the inverse Bogoliubov transformation Eqs. (13) and (14), the Hamiltonian in Eq. (1) can be expressed in 
terms of the generalized quasiparticle operators 
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the last three terms in Eq. (16) are usually involved in so called residual interaction term intĤ . So, the expression of 
Eq. (16) is written as: 
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1 2 1 2
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The HFB is a variational theory that treats in a unified fashion MF and pairing correlations. The HFB equations can be 
written in matrix form as: 
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where Ek are the quasiparticle energies, λ is the chemical potential, h and Δ are the HF Hamiltonian and the pairing 
potential, respectively, and the Uk and Vk are the upper and lower components of the quasiparticle wave functions. 

These equations are solved subject to constraints on the average numbers of neutrons and protons in the system, 
which determine the two corresponding chemical potentials, λn and λp. Pairing is important as one moves away from 
spherical closed shell nuclei and therefore becomes a necessary ingredient within MF models for describing properties 
that vary strongly with shell effects. Pairing correlations are accounted for within the HF framework by generalizing the 
MF concept to include a pairing field, which is calculated through the HFB equations [6].  

As we move away from close shells, pairing correlations play an important role and should be taken into account. If 
one were dealing with a fundamental many-body Hamiltonian, where one of the proceed to apply HFB formalism to it, 
and dealing with Skyrme force that have been simplified with the aim of reproducing average, one would have to include 
additional parameterization in order to warranty that sensible pairing matrix elements are obtained [4]. 
 

3. SKYRME TENSOR INTERACTION 
The Skyrme tensor interaction is the sum of the triplet-even and triplet-odd tensor zero range tensor parts, has the 

following form [7]: 
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where the coupling constant T and U measure the strength of the tensor forces in even and odd states of relative motion. 
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The combined effect of central exchange interactions α plus tensor contribution β give extra terms to the energy 
density 

( ) ( ) ( ) ( ) ( )2 21  
2 n p n pH r J r J r J r J rα β Δ = + + 

      (20) 

where ( )nJ r and ( )pJ r are the spin-orbit densities for neutrons and protons, respectively, defined by [8]
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where i runs over all occupied states having the given q: the isospin quantum number q = (1-tz)/2 for neutrons and protons 
(q = 0,1), respectively. 2

iυ  is refers to the occupation probability determined by the BCS theory. The spin-orbital potential 
is given by [9] 
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Interactions between like, and unlike particles are presented by q (qʹ) where the first term comes from the Skyrme 
two body spin-orbit interaction. The second term with T cα α α= +  and T cβ β β= +  where ,c cα β  are the parameters of 
the central exchange part [11,7] 
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and in terms of the tensor parameters 
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4. DENSITY PROFILE, PAIRING STRENGTH AND NUCLEAR DEFORMATION
Nuclei is a quantum many-body system exhibiting the quadrupole collectivity associated with the shape of the mean 

field. The collective degree of freedom is associated with the measure of the operator Q̂ . 
The local nucleon density is defined as [3] 
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and the pairing energy is 
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where dV stands for the volume element in full three-dimensional space, e is the elementary charge with e2=1.43989 
MeV.fm, and qξ  is the pairing density 
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q S

r w u r s r sα α α α α
α

ξ υ ψ ψ
∈

=    (30) 

where wα stands for a soft cut-off of pairing space. The s ϵ ±1 variables indicate the spinor component of the wave 
functions. 

The pairing energy contains the parameter ρ0,pair which regulates the balance between volume and surface 
pairing [12]. Nuclear deformation is defined as the deviation from the spherical symmetry about center of mass (c.m.) 
which expressed by the electric quadrupole moment. Thus, the most important moments are the center of mass 
moments [3] 
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
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where ''type'' can refer to proton from ρp neutron from ρn isoscalar or total from the total density ρ= ρp+ρn or isovector 
moment from the isovector density ρT=1 = (N/A) ρp –(Z/A) ρn. The anisotropic combinations can be quantified in terms of 
the spherical quadrupole moments  

 ( )2
2 , 2m type m type typeQ dVr Y r Rρ= −

  (32) 

The axial symmetry allows non-vanishing quadrupole moments only for m=0. It is often convenient to express them 
as a dimensionless quadrupole moment (quadrupole deformation parameter) 

 1 320
20 0 02

4 ,   ,    1.2 fm
3

Q R R A R
AR

πβ = = =  (33) 

We briefly outline the formalisms used in our calculations. Further details can be found in the cited references. 
 

5. RESULTS AND DISCUSSIONS 
The calculated quadrupole deformation parameter (β2) for Kr, Sr, Zr, and Mo isotopes from N = 52 to 58 neutron numbers 

are shown in Fig. 1. Results were calculated using the HFB method with SLy4 parameterization and listed in Table 1. 
Table 1. SkX, Skxta, Skxtb, Skxcsb, SkM, and SLy4 Skyrme parameterizations [2] 

Parameters SkX Skxta Skxtb Skxcsb SkM SLy4 
α 0.5 0.5 0.5 0.5 0.5 0.167 
Χw 0 0 0 0 0 0 
Χc 0 0 0 0 0 0 
Χ 0.72 - - - 0.91 - 
Χa - - - 0.014±0.002 - - 
t0 -1445.3 -1443.180 -1446.8 -1437.353 -1803.1 -2488.91 
t1 246.9 257.229 250.9 238.390 273.8 486.82 
t2 -131.8 -137.843 -133.0 -111.766 -95.9 -546.39 
t3 12103.9 12139.420 12127.6 12157.747 12755.1 13777.0 
Χ0 0.340 0.341 0.329 0.348 0.306 0.834 
Χ1 0.580 0.580 0.518 -0.845 0.225 -0.344 
Χ2 0.127 0.167 0.139 0.407 0.698 -1.000 
Χ3 0.030 0.000 0.018 0.373 0.116 1.354 
W0 148.6 180.441 153.1 149.779 155.9 123.0 
α - 93.6 -83.9 - - - 
β - 94.2  96.1 - - - 

One can see different equilibrium distributions around β2=0 with two minima for 88,90,92Kr, 90,92,94Sr, and 98Mo, but 
these two minima are arranged symmetric about β2=0, then the breaking symmetry for β2 ≠ 0 removed in a symmetry 
point [13] and the nuclei will as a spherical shape with weakly bound structure. For 92,94,96Zr and 94,96Mo have a spherical 
shape. The curve for 94Kr has prolate and oblate quadrupole deformations corresponding to the two close-lying energy 
minima; this indicates that their ground states have shape coexistence. All the isotopes with N=58, 96Sr, 98Zr, and 199Mo, 
have an oblate shape (corresponding to the significant negative deformations). 

The weakly bound structure of these nuclei is observed due to their occupancy in the 2d5/2 neutron single particle 
state; when it is completely filled, this state causes deformation of nuclei shapes. The pairing correlations and collective 
motion of the nucleons result in an oblate shape for all isotopes with neutron number N = 58. Many Skyrme 
parameterizations are fitted to the properties of the nuclei: Skxta and Skxtb with the tensor term, SkX, SkM, SLy4 without 
tensor term, and Skxcsb with consideration of the effect of charge symmetry breaking (CSB), which is tabulated in 
Table 1. Based on the Skyrme parameterizations, Figs 2 and 3 show the neutron and proton shell gaps for 100Sn, as 
compared to the experimental data [14] shown in Tables 2 and 3. 

Skxcsb parameterization includes CSB in the s- wave part of Skyrme interaction together with the usual direct and 
exchange Coulomb terms. The CSB modification of the Skyrme is expressed as a change to proton-proton and neutron-
neutron s- wave interaction [15]: 
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( )( )0 01 1pp
Skyrme aV t x x δ= − + (34)

( )( )0 01 1nn
Skyrme aV t x x δ= − − (35)

where 0.014 0.002ax = − ± [14]. Charge symmetry assumption is based on the equality of p-p and n-n interactions.

Figure 1. The quadrupole deformation parameter as a function of binding energy of the Kr, Sr, Zr, and Mo isotopes 
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According to SLy4 parameterization, the gaps between the states are too large compared to experimental data. This 
parameterization fails to describe the spin-orbit splitting between the states, whereas using the SkX, SkM, and Skxtb 
parameterizations, the state ordering of single-particle energies is nearly identical and gives good results compared with 
the experimental data. The Skxta fails to give acceptable results. The interaction with the Skxcsb gives outstanding results 
where the symmetry-breaking effects on the nuclear structure are associated with Coulomb interaction between nucleons. 

Figure 2. The neutron particle states for 100Sn with different 
Skyrme parameterizations 

Figure 3. The proton particle states for 100Sn with different 
Skyrme parameterizations 

Table 2. Experimental and calculated neutron single particle energy for 100Sn in MeV by using different Skyrme parameterizations 
Skxta, Skxtb, Skxcsb, SkX, SkM, and SLy4 

nlj ɛexp [13] ɛSkxta ɛSkxtb ɛSkxcsb ɛSkX ɛSkM ɛSLy4 
ν1h11/2 -8.60 -6.73 -7.67 -7.85 -7.66 -7.57 -5.67
ν2d3/2 -9.20 -9.49 -9.24 -9.34 -9.25 -9.29 -7.83
ν3s1/2 -9.30 -9.40 -9.25 -9.33 -9.23 -9.37 -8.18
ν1g7/2 -10.93 -11.39 -10.02 -10.09 -10.06 -9.70 -8.19
ν2d5/2 -11.13 -11.27 -11.29 -11.36 -11.27 -11.41 -10.47
ν1g9/2 -17.93 -15.50 -16.44 -16.52 -16.44 -16.46 -16.34
ν2p1/2 -18.38 -18.75 -18.62 -18.62 -18.64 -18.78 -19.45

Table 3. Experimental and calculated proton single particle energy for 100Sn in MeV by using different Skyrme parameterizations Skxta, 
Skxtb, Skxcsb, SkX, SkM, and SLy4 

nlj ɛexp [13] ɛSkxta ɛSkxtb ɛSkxcsb ɛSkX ɛSkM ɛSLy4 
π1g7/2 3.90 3.00 4.22 4.40 4.31 4.60 4.44 
π2d5/2 3.00 3.03 3.02 3.03 3.04 2.84 2.67 
π1g9/2 -2.92 -1.29 -2.10 -2.16 -2.16 -2.16 -2.39
π2p1/2 -3.53 -4.13 -3.98 -3.91 -4.00 -4.12 -5.23
π2p3/2 -6.38 -5.30 -5.30 -5.18 -5.29 -5.47 -6.94
π1f7/2 -8.71 -9.33 -10.05 -9.96 -10.12 -10.29 -12.84

Proton and neutron Fermi energies for 100Sn as a function of the quadrupole deformation parameter β2 are shown in 
Fig. 4 (a and b) (on the left). Fermi energy correlates with the potential energy surface (on the right) in terms of binding 
energy. Interestingly, the ground state of the potential energy surface at β2=0 reflected with large proton and neutron Fermi 
energies. In contrast, the appearance of minima around β2=0 (transition between prolate and oblate shape) decreased the 
binding of the single-particle energies, which affected the nucleus's stability. As a result, one can conclude that the 
collective motion and the pairing correlations between the protons and neutrons caused a slight distortion in the energy 
curve. However, the symmetry in the number of protons and neutrons filling the same orbit enhances the stability of 100Sn. 

Fig. 5 depicts the corresponding neutron pairing strength and neutron density profile in two dimensions (on the right) 
and the deformation for 100Sn (on the left). The pairing strength effect is found as the nucleons are concentrated. No pairing 
strength for β2=0 (region a) with a large concentration of nucleons in the central region as compared with β2=0.252 
(region b), where there is a small concentration of nucleons on the exterior surface, leads to the slight distortion. 
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Furthermore, the red and blue colors correspond to the high density (0.08 fm-3) and low density (0.02 fm-3) of the neutron 
density profile. The central density of β2 = 0 is very high compared to the central density of β2 = 0.252. 

 
Figure 4. Left: The Fermi energy curve of 100Sn of (a) protons and (b) neutrons and Right: the potential energy curve, with tensor 

force term as a function of the quadrupole deformation parameter 

  
Figure 5. Left: The Potential energy curve of 100Sn with tensor force term as a function of the quadrupole deformation parameter. 
The pairing strength and density profile of neutrons for 100Sn corresponding to the two regions, marked a and b, are shown in the 
Right panel 

In Fig. 6 the corresponding pairing energies for 100Sn is plotted along with quadrupole deformation. It is found that 
there is a great correlation between the n-p pairings leads to a small distortion in the region β2 = 0.252. 

 
Figure 6. The potential energy curve (a) and (b) the corresponding neutrons and protons pairing energies for 100Sn 
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6. CONCLUSIONS
In summary, we have used the SHFB method to estimate the quadrupole deformation and examine the bound 

structure of nuclei around the magic number N=50. We find that while the neutrons in the 2d5/2 state increase, nuclei have 
a weakly bound structure, the deformed shape developed, and then the nuclei with filled 2d5/2 state (N=58) have total 
deformation in their ground state (0+); 94Kr,96Sr,98Zr, and 100Mo. Shell gaps of doubly magic number 100Sn with different 
Skyrme parameterizations are giving rise that SLy4 and Skxta falling in describing the spin-orbit splitting between the 
states. In contrast, Skxtb and Skxcsb in both calculations give acceptable results with the experimental data. More results 
have been performed by using a few other calculations of neutron pairing strength and neutron density profile in two 
dimensions using Skyrme tensor parameterization and the deformations of 100Sn. The energy curve gives rise to a weakly 
bound structure leading to a slight distortion. However, the symmetry in the number of protons and neutrons filling the 
same orbit enhances the stability. 

We find that the equilibrium contribution is deformed for the isotopes with a small number of nucleons outside the 
closed shell (N=50) might be attributed to the pairing correlations that lead to raising the collective motion between the 
nucleons, and this fact changes the bound structure of these nuclei around N=50. 
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ДОСЛІДЖЕННЯ СЛАБКОЗВ’ЯЗАНОЇ СТРУКТУРИ ЯДЕР НАВКОЛО МАГІЧНОГО ЧИСЛА N = 50 
Рувайда С. Обейд, Алі А. Алзубаді 

Департамент фізики, Науковий коледж, Багдадський університет, Багдад, Ірак 
Досліджено квадрупольну деформацію ізотопів Kr, Sr, Zr і Mo за допомогою методу HFB та параметризації SLy4 Skyrme. 
Досліджено першочергову роль зайнятості одночастинкового стану 2d5/2 у слабкозв'язаній структурі навколо N = 50. Щілини 
в оболонці розраховуються за допомогою кількох інших розрахунків для подвійного магічного числа 100Sn з використанням 
різних параметрів Скірма. Досліджено взаємодію між силою сполучення нейтронів і профілем густини нейтронів у двох 
вимірах у напрямку деформацій в 100Sn. 
Ключові слова: слабозв�язана структура; квадрупольна деформація; сила сполучення 


