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Quantum electrodynamics (QED) is a highly precise and successful theory that describes the interaction between electrically charged
particles and electromagnetic radiation. It is an integral part of the Standard Model of particle physics and provides a theoretical basis
for explaining a wide range of physical phenomena, including the behavior of atoms, molecules, and materials. In this work, the
Lagrangian density of Composite Fermions in QED has been expressed in a fractional form using the Riemann-Liouville fractional
derivative. The fractional Euler-Lagrange and fractional Hamiltonian equations, derived from the fractional form of the Lagrangian
density, were also obtained. When a is set to 1, the conventional mathematical equations are restored.
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1. INTRODUCTION

Composite Fermions are a theoretical concept in condensed matter physics that explains the behavior of
electrons when subjected to a strong magnetic field [1-4]. These electrons can form composite particles with unique
physical properties, such as those seen in fractional quantum Hall states [5-7]. Understanding composite fermions
provides insights into the behavior of electrons in high magnetic fields and has applications in various fields, from
technology development to the discovery of basic physical principles.

Fractional derivatives [8-12] have become a valuable tool in various fields because they provide the ability to
accurately model physical phenomena that cannot be captured by ordinary derivatives. There has been a surge of
research in fractional calculus, leading to its application in physics, engineering, and related areas [13-16]. The
Maxwell equations have been expressed in fractional form [17-19], as have those in quantum mechanics, including
the fractional Schrodinger equation [20, 21] and the fractional Dirac equation [22]. These advancements demonstrate
the versatility of fractional calculus in describing a wide range of physical systems.

The main goal of this work is to examine the composite Fermions QED Lagrangian density and transform it into
a fractional form using the Riemann-Liouville (RL) fractional derivative. The ultimate purpose is to derive the
fractional Hamilton's equations and fractional Euler-Lagrange (EL) equations from this reformulation, thereby
providing a fresh perspective on the dynamics of composite Fermions within a QED framework.

The structure of the paper is as follows: In Sec. 2, a brief explanation of RL fractional derivative is provided.
The topic of the QED Lagrangian density is discussed in Sec. 3. In Sec. 4, the fractional form of the Lagrangian
density and the fractional Euler-Lagrange equations are presented. The focus of Sec. 5 is on the Hamiltonian equations
derived from the Lagrangian density. The paper concludes with a concise summary of the key points in Sec. 6.

2. PRELIMINARIES
This section provides essential definitions used in this study. For a more comprehensive understanding, readers
can refer to reference [23]. The following are the definitions of the left and right RL fractional derivative.
The Left RL fractional derivative

DI f(x) = — (%)n fax(x — )" 1 f(7) dr. 0

I'(n—-a)
The right RL fractional derivative

<D fO0) =— ( d)n [ (t =%t £(7) dr. ©)

'(n—-a) Tax

The value of a signifies the order of differentiation, where n-1<a<n, with I symbolizing the gamma function.
In cases where o is an integer, the derivative is calculated using the conventional definition.
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3. COMPOSITE FERMIONS QED LAGRANGIAN DENSITY
The Lagrangian density for composite fermions in QED, with the speed of light set to 1, has the following
mathematical form [1]:

-, 1 emv?, —
L =(iy*a, —m)p — S Fu F* + Wfs#VPAH 0,4, — (1 +vepp)edy*y A4,. 4)

This equation involves the Levi-Civita symbol eé#V?, which is an antisymmetric tensor, as well as i which is a

Dirac's spinor and made up of four complex parts, § = p*y°, y# is Dirac matrix, e is the charge of an electron, ¢, is
a unit of magnetic flux, it also includes a gauge parameter, 8, for the Chern-Simons fields. F,,, is the electromagnetic
field tensor and the A,, are electromagnetic fields. The first term represents the fields that are associated with spinors,
while the second term represents fields related to electromagnetism. The third term involves gauge Chern-Simons
fields, and the final two terms describe the coupling of the spinor fields to both the electromagnetic fields and the
Chern-Simons fields.

4. FRACTIONAL FORM OF COMPOSITE FERMIONS QED LAGRANGIAN DENSITY
The fractional Lagrangian density of (4) can be written as:

- (. 1 em v?, —
L= (iy*Dg, —m) P — T, PR + T emea, DEA, = (1+ver)eby 4, (5)
Begin by expanding the second term in the Lagrangian:

Fl-wF/,w — gltpgvﬂ. ( aD)Cc!uAv — aD?vAH) ( aDJ‘chAA - aDJ?AAp)

Hence, we have
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In the case of a Lagrangian involving multiple fields, there will be a separate equation for each field. The EL
equation for the field Ag is expressed as follows:
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Thus, the equation of motion is expressed as
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using Fof = ( D% AP — aD;",;A”), as a result of this
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By replacing the dummy indices v with u and p with ¢ in the first term on the left-hand side, we obtain
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on the other hand, the EL equation for s reads as

L @ oL _
which becomes
(iv* oDg, —m) P — (1 + vers)e v p 4, =0, (10)
finally, the EL equation of the field v is presented as follows:
9L pa |2t |_
e R o

which can be written as
—mE - (1 + veff)e y”EA# - aD,‘j‘G(ﬁ iy* 6;) =0

my + (1+ vesp)e Y*P A, = —iy® DEY. (12)

5. FRACTIONAL HAMILTONIAN FORMULATION
In the following section, we will derive the fractional Hamiltonian equations using the RL fractional derivative
approach, based on the fractional Lagrangian density. Let us consider the fractional Hamiltonian density as

H = (E, W, oDEY, Ay, DEALTT, T, ) (13)

Now, taking the total differential of H, we get:

T O g 4 O G @ G @ )+ 2 g 4 P g 4 2
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(14)
The canonical momenta 7, 7, T, are given as follows:
oL — oL oL
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In order to construct H, we start by defining it in its general form as follows:
H =7 DFY+1  DEY + 1y (DEA, — LY, oDE W, Ag, oDE A ). (16)

The total differential of H can also be defined as:
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Using Eqgs. (18), (19), and (20) Eq. (17) can be written as
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By comparing Egs. (14) and (22), we obtain Hamilton’s equation of motion
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Consider the Lagrangian density given in Eq. (5)
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Then we can write the fractional Hamiltonian density of the system as follows:
H=H =7 DfY+7 DfP + 1, DEA, — L(Y, U, DE W, Ag, DEAp ). (29)

By inserting Egs. (5) and (28) into Eq. (29), we obtain
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Substituting for F° from equation (28c), we get

_ 1 2 a - (. i 1 ETTUZeff . 2 2 1 Pr envzeff 0i
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Now we will find the Hamiltonian equations of motion for the same system. Initially, the equation of motion for 4,

2 2
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The substitution of ,DEF°F = ,DFF°F 4+ DFFI® + ,DFF/¥ into Eq. (31) gives
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By substituting Eq. (28c) into Eq. (32) and undergoing mathematical manipulation, the following equation is
obtained:

em v?, —
Toffeﬁ!w aDEA, — (1 +vepf)ewyPyp — DE FF =0. (33)

While the equation of motion for 1 reads
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but
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Thus, Eq. (34) becomes

my + (1 + veff)e YA A, =—iy°? aD,‘j‘g@. (35)

Similarly, the equation of motion for s is

oOH _ oL
— =—,Df - D& | ———
1T alt (@) alx; (6( aDgl?]E))

(iv/ oDg —m) 9 — (14 very)e yip 4, = 0. (36)

The results from Eqgs. (33), (35), and (36) are in full accordance with those derived from the fractional EL
method.

or

6. CONCLUSION
The Riemann-Liouville fractional derivative were employed to reformulate the composite Fermions QED
Lagrangian density. It was observed that the fractional Euler-Lagrange equations and the fractional Hamilton's
equations of motion, both derived from the same Lagrangian density, produced the same outcomes. The fractional
formulation was demonstrated to encompass the classical results as a specific case.
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IMIJIBHICTH JATPAHKIAHA KOMIIO3UIIVHUX ®EPMIOHIB QED Y JPOEOBOMY ®OPMYJIIOBAHHI
Amep JI. Anb-Oxaini
Henapmamenm pizuxu, Yuisepcumem Myma, Anv-Kapax, Hopoanis

KganroBa enexkrpoaunamika (KEJ[) — TouHa it ycmimHa Teopis, sika OIKCY€ B3a€EMOJII0 MDK EIEKTPUYHO 3aps/KCHUMH
YaCTUHKAMH Ta EJICKTPOMArHiTHUM BHIPOMIHIOBaHHAM. BoHa € HeBix emHOI0 uacTuHOKO CraHmapTHOi Mogmeni (isuku
CJIEMECHTapHHUX YaCTHHOK 1 3a0e3Meuye TeOpeTHIHY OCHOBY /ISl TIOSICHEHHSI IIMPOKOTO CHEKTPY (PI3SHYHHX SBHUIL, Y TOMY YUCIi
MIOBE/IIHKH aTOMIB, MOJIEKYJ i MaTepiaiiB. Y miit poOoTi minbHicTh Jlarpamkiana koMno3utHuX GepmioHiB y KE/J] Oyna Bupaxena
y Ipo0oBiif ¢opmi 3a momomororo apo6oBoi moximHoi Pimana-JliyBinsa. Bymu Takoxx otpumani apo6ose piHsHHs Eiinepa-
Jlarpanxa i npoGoBe piBHAHHs ['aminbToHa, BUBeIEHI 3 ApoOoBoi dopmu sarpamkiana rycruau. Konm o BcraHoBieHo Ha 1,
BiJIHOBJIIOBAJIUCH 3BMYaliHi MaTeMaTH4HI PiBHSHHSI.

Kuro4oBi ciioBa: keanmosa enekmpoounamixa, KomMnosumHi gpepmionu, 0poooea noxiona,; winbHicme Na2pandiCiana; pieHAHHA
Etinepa-Jlazpaniica



