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The bound state energy eigenvalues and the corresponding eigenfunctions of the generalized Woods-Saxon potential reported in
[Phys. Rev. C, 72, 027001 (2005)] is extended to the fractional forms using the generalized fractional derivative and the fractional
Nikiforov-Uvarov (NU) technique. Analytical solutions of bound states of the Schrodinger equation for the present potential are
obtained in the terms of fractional Jacobi polynomials. It is demonstrated that the classical results are a special case of the present
results at & = f =1. Therefore, the present results play important role in molecular chemistry and nuclear physics.
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1. INTRODUCTION

The fractional calculus (FC) has numerous applications in all connected fields of science and engineering [1].
However, the use of this extremely powerful tool in many studies is still in its infancy. Fractional calculus has recently
expanded its scope to include the dynamics of the complicated real world, and new concepts are now being put to the test
on actual data. Although FC has been around for a while and is used in numerous scientific and technical sectors, the FC
still has a crucial role to play in promoting applications. Many theoretical FC researchers are likewise unfamiliar with the
application-related aspects. Because FC is not universal and has specific applications, we should understand this and
provide examples of some significant FC applications that have been successful in the past to serve as a model for future
FC application research. The FC has grown throughout decades in numerous disciplines of mathematics, but until recently
they had little use in physics and other mathematically focused sciences.

There are now more and more physics study fields that use FC, which indicates that the situation is starting to
change [2,3]. Scholars in physics and its related fields have recently become interested in the applications of FC to the
Schrodinger equation (SE). For instance, Laskin [4] explored the fractional SE that contains the quantum Riesz
fractional operator and the Caputo fractional derivative (FD). In order to solve the local fractional SE for the harmonic
oscillator potential, the Hulthen potential (HP), and the Woods-Saxon potential (WSP), Karayer et al. [5] deduced the
conformable fractional form of the NU technique. By utilizing the fractional version of the NU technique, Karayer et
al. [6] have investigated the analytical solutions of the local Klein-Gordon problem for the generalized HP. The
applications of FC in complicated and nonlinear physics were also presented by Baleanu et al. [7]. Another
development was the study in [9-12] of the energy spectrum of heavy quarkonium in the context of fractional SE with
an extended Cornell potential model in different systems. To examine the fractional version of Newtonian mechanics,
conformable FD and integral have been used by Chung [13]. The fractional parameter (FP) O <a <1 is connected to
the space-roughness time's properties through the FC and its use in quantum physics. Additionally, the nature of wave
equation solutions for different values of the FP indicates the fundamental behavior of the quantum mechanical
systems [14].

Abu-Shady and Kaabar, recently introduced the generalized fractional derivative in [15,16] that gives advantageous
results more than the classical definitions. In addition, the definition gives good results in applying to different models
such as in Refs. [17-19].

The WSP is a short-range potential and is used to study the nuclear structure within the shell model [20]. This
potential has been presented in many forms to investigate the elastic and quasi-elastic scattering of nuclear particles.
The usual (q = 1) and the g-deformed WS potentials have been applied in nuclear calculations [21]. The helium model
and the nonlinear scalar theory of mesons both use it to explore the behavior of valence electrons in metallic
systems [22].

The WSP and its various modifications have been crucial in microscopic physics in determining the energy level
spacing, particle number dependence of energy quantities, and universal properties of electron distributions in atoms,
nuclei, and atomic clusters because they can be used to describe the interaction of a neutron with a single heavy-ion
nucleus as well as for the optical potential model [23]. We are motivated to consider the solutions of the fractional SE for
the generalized WSP using the generalized fractional (GF) NU method. This work is generalized to the work reported
in [24] in the fractional model.
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The following is how the paper is set up: The GF-NU approach is briefly presented in Section 2. In Section 3, the
GF-NU technique is applied on the fractional Schrodinger equation. The results are discussed in Section 4. The overview
and conclusion are offered in Section 5.

2. THE GENERALIZED FRACTIONAL NU METHOD
This section provides a brief explanation of the GF-NU technique for solving the generalized fractional differential
equation that has the following equation (see Refs. [6, 15] for more information).

D*| D¥(s)] L) DY (5)+ 5(s) ¥ (s)=0, (1)

a(s) o (s)

where o(s) and 6(s) are polynomials of maximum second degree of & and 2 « , respectively, and 7 (s) has a maximum

degree of «
where
D W (s)=Is""% (s), @)
D* [ D“\P(s)} =r { (1-a)s>¥’ (s)+s29 (s)J : 3
where
LA )
L(f-a+1)
where 0 <a <1 and 0< £ <1. Substituting by Egs. (2) and (3) into Eq. (1), we obtain
TN ACINEAC)
¥ (s)+—LW (s)+—4 L (s) =0, Q)
o, (s) a7 (s)
where
5 (s)=(1-a)s “o(s)+ 172 (s),0, (s) =" “o(s),6, (5)= 1?6 (s). ©
If one works with the transformation, one may use the separation of variables to determine the specific solution of Eq. (5).
‘P(s) = @(S);((S), @)
it is reduced to the following hypergeometric equation.
o ()7 (s)+7,(s)7 (5)+22(s)=0, (®)
where
@ (s)
o (s)=7r,(5)— , )
)= ()
7, (s)=7,(s)+27,(s); 7,(s)<0, (10)
and
, -1) ..
A=2, =-nt, (S)_n(nz )O'f (s),n=0,1,2,... (11)
x(s)=y,(s) It has the following form and is an n-degree polynomial that satisfies the hypergeometric equation.
B, d", .
7 (s)= "o (9)p(s). (12)

where B, is a normalization constant and p(s) is a weight function which satisfies the following equation

L o(s) = a(s): w(s)=0,(5)0(s) (13)

RRAUSACN J{ a}(s)—a(s)] 5, (5)+ Ko, (5] .
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and
A :K+7rf (s),

(15)

the 7 ,(s) is a first-degree polynomial. If the expressions beneath the square root are squares of expressions, it is feasible

to determine the values of K in Eq. (14). If its discriminate is zero.

3. THE GENERALIZED FRACTIONAL OF SCHRODINGER EQUATION

The generalized WSP takes the form [24]

V. ce
V — 0 —
(V) 1+q82ﬂ1r (1+qewl,_ )2

2pr

(16)

where 1 is the potential depth, ¢ is a real parameter, and ¢ is the surface thickness. This is often modified to reflect the

experimental ionization energy values.
By substituting by Eq.(14), we can write Schrodinger equation [24]

2 V 24
d_2 Z_é’ 2y — | | R(r)=0
dr- h 1+ge (1 +qe” )
281
By assuming x = —e l , Eq. (17) takes the following form
5 247
% % £ 1+V02ﬂ|r+ | |R()=0
r q¢ (1 +qe )
We introduce the following dimensional parameters:
where
HE mV, uC
E = -, = R =
2h2 l2 ﬁ 2h2 12 }/ 2h2ﬂ12

The following equation is obtained

2

1—gx
_2+
dx x(l—qx) dx §° (l—qs)

To transfer Eq. (20) to the fractional form as in Eq. (1)

1_ a
DD‘|:DQ’R()C):| +wq);xa)DaR(x)+
| R(x)zO.
—2(—5q2x2“ +(2eq—-Bg—y)x” +,B—5)

x2a (1 _ qxa )

Substituting by Egs. (2) and (3) into (21), we obtain

R (e g (x)+i§£3R(x)=0,

sz(S)=(1—0{)(1—q}c“)+1’2 (l—qxa),

where

o, (s) :x(l—qx“),

G,(s)=1" (—8q2x2“ +(2eq-pg-y)x* +ﬂ—g).

Using Eq. (14)
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(—2+I’2)qx”‘ +a-17 1

T, = > iz\/(A1—4qw)x2"’+4(A2+w)x"‘+A3 5 (26)
where
A =(—2+1’2)q2 +417%q?, 27)
1 2 -2 -2
4y == (2417 )@ =17)g =17 (269~ Pa-7) , (28)
A, =4(a-17)g+4(s-p) . (29)

The quantity w is selected so that the discriminant of the function under the square roots equals zero, giving the
function a double zero. Hence, In addition, k = wx“"" that defined in the following equation

-(84, +4A3q)i\/(8Az +44,9) ~16(4; —44,4,)
- 8

So, we can write Eq. (26) as follows

. (30)

\/mx“+2\/(g_ﬂ)+(a_l,z)z

J_r% : 31
(A4 —4gw_ )x* —2\/(5—ﬁ)+(a—1_2)

By using Eq. (8), we write and select a negative sign as in Ref. [24]

(—2+I’2)qx“ +a-1"
2

7Z'f=

rf(s)z(l—a)(l—qx“)+1'2(1—qx")+(—2+1'2)qx“ +a-1"

(32)
—{ ,/(Al —4qw_)x" —2\/(5—,6’)4-(0:—]2)2}
using Egs. 11 and 15, we can write
A, =n(l-a)agx”" +nlagx"" —n(—2+1’2)aqx‘H +any|( A4 —4qw_)x*"!
- (33)
+M(l+oz)ochc”"1

o o .
A=wx 1+5(—2+12)05qx 1—5[a1/(A1—4qwf)x 1} , (34)

by using the 4, = A, we obtain the energy eigenvalue in the fractional form

w. +%(—2+1’2)aq —%[ an( A4 —4qw. )x"’l}

(3%5)
-1
= n(l—a)aq+n[’2aq—n(—2+l’2)q+0m (4, —4qw_)+@(l+a)aq.

The special case at = f=1,=/ =1,

gnqzi{ /1+4—7+(1+2n):| + p 2+£ (36)
16 q [1/1+%+(1+2n)J 2

Eq. (36) is compatible with Ref. [24].
Let us now find the corresponding eigenfunctions as in Ref. [24]. It is necessary to identify the hypergeometric
function that solves the differential equation in order to determine the polynomial solutions of the hypergeometric function

p(x) satisfying the equation [ o, p] =17,0,. Thus, p(x) is calculated as
px) =————mr (37)

By using the following relation
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n

B d n
v, (x)= %W(af(x) p(x))

where B, is a normalization constant, we obtain

Y. (x) = XBTTI(l — qxa )7%25” i[ KA (1 _qxa )"WJ

d x n
where

4, = 2\/(g—ﬂ)+(a—l'2 )

B, :Zaq—l’2q+(—2+l’2)q— (A1 —4qw)

0]
By using the relation o = we can obtain

D(x) =
(l—qx

CqtD
a \ aq

where

C=%(a—l‘2)+\/(g—ﬁ)+(a—l'2)2

D:%(—2+I’2)q—% (A1 —4qw)

Thus, we can write final form the corresponding wave function R(x) =y, (x)®(x) as follows

_ A1g+B11+Cq+D dn

R = 40 (g | 5 gy
X

A1 19+B)1+Cq+D 4 A 19+B11

:Anx_(C””)(l—qx“) “ P( e )(l—qx“)

n
. . . (An A )
where A, is the normalization constant and P, !

n

is the orthogonal Jacobi polynomials.

At = =1 and ¢ =1, we obtain the special of classical case with compatible with Ref. [24].
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Figure 1. Variation of the generalized Woods-Saxon potential as a function of
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In Fig. 1, the variation of the generalized WSP is plotted where the empirical values are taken from Perey et al. [25]
as ro = 1.285 fm and a = 0.65 fm. Moreover, the WSP parameter is investigated at /0 = 40.5 + 0.13 4 MeV. Here, 4 is
the atomic mass number of target nucleus. We note that the potential shifts to higher values by increasing parameter c.

4. SUMMARY AND CONCLUSION

We have adopted a generalized WSP to obtain the solutions of the fractional SE using the GF-NU method. Analytical
solutions are obtained for the eigenvalues and eigenfunctions in the fractional forms. The results of Ref. [24] are obtained

as a special case at o = ff =1. The present results are not considered in the recent works. Therefore, the present results

play an important role in molecular physics and nuclear physics. We hope to extend this work to hot and dense media,
mass spectra of heavy and heavy-light mesons, and/or the present of magnetic field as future works as in Refs. [26-40].
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JPOBOBE PIBHSIHHSI HIPEATHT'EPA 3 Y3ATAJIBHEHUM IOTEHIIAJIOM BYICA-CAKCOHA
Moxamen A0y-Ilany?, Etino I1. lusur®
“Kagpedopa mamemamuru ma iHpopmamuxu, axyivmem npupooHudux Hayk, Yuieepcumem Menygis, €eunem
b®izuunuii haxyremem, Hayionanonuii eioxpumuil ynicepcumem Hizepii, [oicabi, A6yooca, Hizepisn

BnacHi 3HaueHHsI eHeprii 3B'13aHOTO CTaHy Ta BIMNOBIAHI BiacHI (QyHKUIi y3arampHeHOrO MOTeHMiany Bynca-CakcoHa, HaBeJeHi B
[Phys. Rev. C, 72, 027001 (2005)] mommproeTsest Ha 1poOoBi GopMH 3 BUKOPHCTAHHSM y3araJbHEHOI IpoOOoBOi MoXiqHoI Ta 1po6oBoi
meroqukn Hikidoposa-YBaposa (NU). OtprmaHo aHamiTHYHI pO3B’sI3KM 3B’s3aHUX cTaHiB piBHSHHS lllpeninrepa uist HasiBHOTO
MOTEHIliaTy B TepMiHax ApoOoBHX noniHOMIB fJk06i. [IpogeMoHCTpOBaHO, 110 KITACHYHI PE3YJIBTATH € OKPEMUM BHUIAIKOM CYYaCHHX
pe3ynbTaTiB npu a=f=1, TOMy 1Ii pe3yJIbTaTH BiAirpaloTh BAXKJIMBY POJIb Y MOJCKYJLSIPHIN XiMii Ta saepHiil ¢izuii.
KurouoBi cnoBa: yzacarvhena 0pobosa noxiona; pisuanus Lllpedineepa; Memoo Hikigpoposa-Yeaposa; nomenyian Byoca-Cakcona



