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In recent years, modified theories of gravity have been extensively studied because of the discovery and confirmation of the current 
phase of accelerated expansion of the universe. The 𝑓(𝑅, 𝑇) theory of gravity is one such theory, proposed by Harko et al. in 2011, in 
which 𝑅 is the Ricci scalar and 𝑇 is the trace of the stress-energy tensor. In this paper, we study Bianchi type V universe in 𝑓(𝑅, 𝑇) 
theory of gravity with time varying cosmological constant and a quadratic equation of state 𝑝 = 𝛼𝜌 − 𝜌, where 𝛼 ≠ 0 is a constant. 
We obtain exact solutions of the field equations for two cases: one with a volumetric expansion law and the other with an exponential 
expansion law. The physical features of the two models are discussed by examining the behavior of some important cosmological 
parameters such as the Hubble parameter, the deceleration parameter etc. We find that the models have initial singularity and the 
physical parameters diverge at the initial epoch. The model 1, corresponding to the volumetric expansion law does not resemble 
ΛCDM model while the model 2, corresponding to the exponential expansion law, resembles ΛCDM model. The energy conditions 
of the models are also examined and found to be consistent with recent cosmological observations.  
Keywords: Bianchi type V universe; 𝑓(𝑅, 𝑇) theory of gravity; Equation of state; ΛCDM model 
PACS: 98.80.jk, 04.20.jb 
 

1. INTRODUCTION 
Various astrophysical and cosmological observations like type Ia supernovae [1-3], Cosmic Microwave 

Background (CMB) [4, 5], Large Scale Structure (LSS) [6, 7] and other improved measurements of supernovae 
conforms the discovery of the late-time cosmic acceleration although it is yet to be ascertained what led to the start of 
this acceleration. According to the recent Planck collaboration results [8], it is found that about 95% of the total 
constituent of the universe is mysterious. Within the framework of General Relativity, the observed cosmic acceleration 
can be attributed to an exotic component of the universe with large negative pressure which contributes nearly 68% of 
the total energy content of the universe. This unknown energy fluid, supposed to be responsible for the late-time cosmic 
acceleration, is given the name dark energy. In literature, several dark energy candidates like quintessence [9,10], 
k-essence [11], tachyon [12], phantom [13], Chaplygin gas [14], Holographic dark energy [15] etc. have been proposed 
and studied in various cosmological background. It is seen that even though the hypothetical dark energy can smoothly 
explain the accelerated expansion of the universe, many dark energy models encounter with problems when tested by 
some old red-shift objects [16, 17]. Therefore, the other way considered to explain the cosmic acceleration is 
modifications of Einstein’s theory of gravitation. Some of the most studied modifications of Einstein’s General theory 
of Relativity are the 𝑓(𝑅) theory of gravity [18, 19], 𝑓(T) gravity [20], 𝑓(𝑅, 𝑇) theory of gravity [21], 𝑓(𝐺) gravity 
[22] etc. In the 𝑓(𝑅, 𝑇) theory of gravity, the gravitational Lagrangian in the Einstein-Hilbert action is modified by 
replacing the Ricci scalar 𝑅  by an arbitrary function 𝑓(𝑅, 𝑇)  of 𝑅  and the trace 𝑇  of the stress-energy tensor. 
Harko et al. [21] have derived the gravitational field equations of this theory in the metric formalism, as well as the 
equations of motion for test particles, which follow from the covariant divergence of the stress-energy tensor. They 
have also presented the field equations corresponding to the homogeneous and isotropic FRW metric and provided a 
number of specific cosmological models that correspond to some explicit forms of the function 𝑓(𝑅, 𝑇)  such as 𝑓(𝑅, 𝑇) = 𝑅 + 2𝑓(𝑇) , 𝑓(𝑅, 𝑇) = 𝑓 (𝑅) + 𝑓 (𝑇) , 𝑓(𝑅, 𝑇) = 𝑓 (𝑅) + 𝑓 (𝑅)𝑓 (𝑇).  Since then many researchers have 
studied various isotropic and anisotropic cosmological models in different contexts within this framework of modified 
theory of gravity.  

In literature, various homogeneous and anisotropic cosmological models such as the Bianchi type models are 
studied in the context of dark energy as well as in alternative or modified theories of gravity. Homogeneous and 
anisotropic models of the universe are becoming more and more popular because of the anomalies found in the 
observations like Cosmic Microwave Background (CMB) and Large-Scale Structure [23, 24]. Also, models that are 
spatially homogeneous and anisotropic are helpful in describing the evolution of the early stages of the universe. 
Bianchi type V models are significant because they include the space of constant negative curvature as a special case. 

In this paper, we study a spatially homogeneous and anisotropic Bianchi type V universe with a time dependent 
cosmological constant Λ and a quadratic equation of state 𝑝 = 𝛼𝜌 − 𝜌 [25], where 𝛼 ≠ 0 is a constant within the 
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framework of 𝑓(𝑅, 𝑇) theory of gravity. In Sect.2, we provide basic field equations of the 𝑓(𝑅, 𝑇) theory of gravity for 
the functional form 𝑓(𝑅, 𝑇) = 𝑅 + 2𝑓(𝑇). In Sect. 3, we obtain explicit field equations corresponding to Bianchi type 
V metric for𝑓(𝑅, 𝑇) = 𝑅 + 2𝑓(𝑇) = 𝑅 + 2𝜆𝑇, where 𝜆 is a constant. The expressions for the directional scale factors 𝐴, 𝐵, 𝐶 in terms of the average scale factor 𝑎 are also obtained. In Sect. 4, we find exact solutions of the field equations 
for two cases: one with a volumetric expansion law and the other with an exponential expansion law. Evolutions of 
some relevant cosmological parameters are investigated in Sect. 5, and physical and geometrical properties of the 
models are discussed. We conclude the paper in Sect. 6. 
 

2. BASIC FIELD EQUATIONS OF THE 𝒇(𝑹, 𝑻)THEORY OF GRAVITY 
The gravitational Lagrangian in 𝑓(𝑅, 𝑇)theory of gravity, proposed by Harko et al. [21], is given by an arbitrary 

function 𝑓(𝑅, 𝑇) of the Ricci scalar 𝑅 and of the trace 𝑇 of the stress- energy tensor 𝑇 . The field equations of this 
theory are derived by varying the action 

 𝑆 = 𝑓(𝑅, 𝑇) −𝑔𝑑 𝑥 + 𝐿 −𝑔𝑑 𝑥, (1) 

with respect to the metric tensor 𝑔 , where 𝐿 is the matter Lagrangian density. 
The stress-energy tensor of matter is defined as 

 𝑇 = √ (√ ). (2) 

Assuming the matter Lagrangian density 𝐿  to depend only on the metric tensor components 𝑔 , and not on its 
derivatives,  𝑇 can be obtained as 
 𝑇 = 𝑔 𝐿 − 2 . (3) 

Hence, the variation of (1) with respect to the metric tensor 𝑔  provides the field equations of the 𝑓(𝑅, 𝑇) theory of 
gravity as 

 𝑓 (𝑅, 𝑇)𝑅 − 𝑓(𝑅, 𝑇)𝑔 + 𝑔 ∇ ∇ − ∇ ∇ 𝑓 (𝑅, 𝑇) = 8𝜋𝑇 − 𝑓 (𝑅, 𝑇)𝑇 − 𝑓 (𝑅, 𝑇)Θ , (4) 

where 𝑓 (𝑅, 𝑇) = ( , ), 𝑓 (𝑅, 𝑇) = ( , ) ,∇  is the covariant derivative with respect to the symmetric connection Γ 
associated to the metric 𝑔 and 

 Θ = −2𝑇 + 𝑔 𝐿 − 2𝑔 . (5) 

Since there is no unique definition of the matter Lagrangian density 𝐿 , therefore, by assuming the stress-energy tensor 
of matter to be given by the stress-energy tensor of a perfect fluid of density 𝜌 and pressure 𝑝 in the form 

 𝑇 = (𝜌 + 𝑝)𝑢 𝑢 − 𝑝𝑔 , (6) 

where the four velocity 𝑢  satisfies the conditions 𝑢 ∇ 𝑢 = 0 and 𝑢 𝑢 = 1, the matter Lagrangian density can be taken 
as 𝐿 = −𝑝. Then from Eq. (5), we obtain  

 Θ = −2𝑇 − 𝑝𝑔 . (7) 

And for the functional form 

 𝑓(𝑅, 𝑇) = 𝑅 + 2𝑓(𝑇), (8) 

where 𝑓(𝑇) is an arbitrary function of the trace 𝑇 of the stress-energy tensor of matter, the gravitational field equations, 
from Eq (4) are obtained as 

 𝑅 − 𝑅𝑔 = 8𝜋𝑇 − 2𝑓ˊ(𝑇)𝑇 − 2𝑓ˊ(𝑇)Θ + 𝑓(𝑇)𝑔 , (9) 

where the prime denotes differentiation with respect to the argument. 
In view of Eq. (6), the Eq. (9) becomes 

 𝑅 − 𝑅𝑔 = 8𝜋𝑇 + 2𝑓ˊ(𝑇)𝑇 + [2𝑝𝑓ˊ(𝑇) + 𝑓(𝑇)]𝑔 . (10) 

 
3. METRIC AND FIELD EQUATIONS 

We consider a spatially homogeneous and anisotropic Bianchi type V metric in the form 

 𝑑𝑠 = 𝑑𝑡 − 𝐴 𝑑𝑥 − 𝑒 (𝐵 𝑑𝑦 + 𝐶 𝑑𝑧 ), (11) 

where 𝐴, 𝐵, 𝐶 are functions of the cosmic time 𝑡 only. 
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Using comoving coordinates the field equations (10) for the metric (11) with a time dependent cosmological 
constant Λ and the functional, 𝑓(𝑅, 𝑇) = 𝑅 + 2𝑓(𝑇) = 𝑅 + 2𝜆𝑇 

where 𝜆 is a constant, are obtained as 

 + + − = −(8𝜋 + 3𝜆)𝑝 + 𝜆𝜌 − Λ (12) 

 + + − = −(8𝜋 + 3𝜆)𝑝 + 𝜆𝜌 − Λ (13) 

 + + − = −(8𝜋 + 3𝜆)𝑝 + 𝜆𝜌 − Λ (14) 

 + + − = (8𝜋 + 3𝜆)𝜌 − 𝜆𝑝 − Λ (15) 

 −2 + + = 0 (16) 

where an overhead dot indicates differentiation with respect to the cosmic time 𝑡. 
For the Bianchi type V metric given in Eq. (11), the various parameters of cosmological importance are: 

The spatial volume, 

 𝑉 = 𝐴𝐵𝐶 (17) 

The average scale factor, 

 𝑎 = 𝑉 = (𝐴𝐵𝐶)  (18) 

The mean Hubble parameter, 

 𝐻 = = + +  (19) 

The deceleration parameter, 

 𝑞 = −  (20) 

The expansion scalar, 

 𝜃 = 3𝐻 = + +  (21) 

The shear scalar, 

 𝜎 = ∑ 𝐻 − 3𝐻  (22) 

The anisotropy parameter, 

 𝐴 = ∑  (23) 

where 𝐻 = , 𝐻 = , 𝐻 =   are the directional Hubble parameters.  
 

4. SOLUTIONS OF THE FIELD EQUATIONS 
From equation (16), on integration, we get 

 𝐴 = 𝐵𝐶 (24) 

From (12), (13) and (14), we obtain 

 𝐴 = 𝑙 𝑎exp (𝑚 ) (25) 

 𝐵 = 𝑙 𝑎exp (𝑚 ) (26) 

 𝐶 = 𝑙 𝑎exp (𝑚 ) (27) 

where the constants satisfy the relations 𝑚 + 𝑚 + 𝑚 = 0 and 𝑙 𝑙 𝑙 = 1. 
Using (25), (26), (27) in Eq. (24), we get 𝑙 = exp (−𝑚 ) 
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Now, since 𝑙  is a constant, so we may assume that 𝑚 = 0 so that 𝑙 = 1 and consequently 𝑙 𝑙 = 1 and 𝑚 + 𝑚 = 0. 
Without loss of generality, we take 𝑙 = 𝑙 = 𝑐  and 𝑚 = −𝑚 = 𝑐  

where 𝑐  and 𝑐  are non-zero constants. 
Then from (25)-(27), we obtain the directional scale factors as 

 𝐴 = 𝑎 (28) 

 𝐵 = 𝑐 𝑎 exp 𝑐  (29) 

 𝐶 = 𝑎 exp −𝑐  (30) 

Now, to find exact solution of the field equations, we need one extra condition for which we consider a volumetric 
expansion law. We also find another exact solution by using the exponential expansion law. 

For volumetric expansion law, we consider 

 𝑉 = 𝑉 𝑡  (31) 

where 𝑉 = 𝐴𝐵𝐶 = 𝑎 , and 𝑉  and 𝑛 are non-zero constants. 
Then from (28), (29) and (30), we get 

 𝐴 = 𝑉 𝑡  (32) 

 𝐵 = 𝑐 𝑉 𝑡 exp − ( )  (33) 

 𝐶 = 𝑉 𝑡 exp ( )  (34) 

For exponential expansion law, we consider 𝑉 = 𝑉 𝑒  

where 𝑉 = 𝐴𝐵𝐶 = 𝑎 , and 𝑉  and 𝑛 are non-zero constants. 
Then from (28), (29) and (30), we get 

 𝐴 = 𝑉 𝑒  (35) 

 𝐵 = 𝑐 𝑉 𝑒 exp  (36) 

 𝐶 = 𝑉 𝑒 exp  (37) 

 
5. PHYSICAL AND GEOMETRICAL PROPERTIES OF THE MODELS 

Model 1 
The average Hubble parameter 𝐻, the expansion scalar 𝜃, the deceleration parameter 𝑞 and the shear scalar 𝜎 and 

the anisotropy parameter 𝐴  for the model corresponding to the volumetric expansion law are obtained as 

 𝐻 =  (38) 

 𝜃 = 3𝐻 =  (39) 

 𝑞 = − = −1 +  (40) 

 𝜎 =  (41) 

 𝐴 =  (42) 

From equation (40), we see that the cosmic expansion accelerates for 𝑛 > 1. 
Now, adding equations (14) and (15) and using quadratic equation of state 𝑝 = 𝛼𝜌 − 𝜌, where 𝛼 ≠ 0 constant, we get 
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𝜌 = ( ) − − (43)

𝑝 = ( ) − − − ( ) − − (44)

Using 𝑝 and 𝜌 in (12), we obtain 

Λ = ( )( ) + − + 4(2𝜋 + 𝜆) ( ) − − − + − +  (45) 

Figure 1. The plot of energy density 𝜌 vs. cosmic time 𝑡 graph 
with 𝛼 = 0.1,  𝑐 = 0.1, 𝑉 = 1, 𝑛 = 1.5, 𝜆 = 1 

Figure 2.The plot of pressure 𝑝 vs. cosmic time 𝑡 graph with 𝛼 = 0.1, 𝑐 = 0.1, 𝑉 = 1, 𝑛 = 1.5, 𝜆 = 1 

Figure 3.The plot of the cosmological constant Λ vs. cosmic 
time 𝑡 graph with 𝛼 = 0.1,  𝑐 = 0.1,  𝑉 = 1, 𝑛 = 1.5, 𝜆 = 1 Figure 4. The plot of anisotropy parameter 𝐴 vs. cosmic time 𝑡 graph with 𝑐 = 0.1, 𝑉 = 1, 𝑛 = 1.5 

From the graphs we observe that the energy density𝜌 is a decreasing function of cosmic time, pressure𝑝  is 
negative throughout the evolution of the universe and the cosmological constant Λ decreases rapidly and tend to zero. 
The figure 4 shows that the universe is highly anisotropic at its early stage and the anisotropy dies out in the course of 
evolution. 

The Cosmic Jerk Parameter. 
The cosmic jerk parameter is defined as 𝑗(𝑡) = ⃛ (46)

The equation (46) can be written in terms of the deceleration and the Hubble parameter as  𝑗(𝑡) = 𝑞 + 2𝑞 − (47)

From equations (38) and (40), using (47), we get the cosmic jerk parameter for this model as 
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𝑗(𝑡) = ( )( ) (48)

At late times, the value of the cosmic jerk parameter is 1 for ΛCDM model. For this model, 𝑗(𝑡) = 1 for 𝑛 = . But we 
have a restriction 𝑛 > 1. Hence, this model does not resemble with ΛCDM model. 

Energy Conditions 
Weak Energy Condition (WEC), Null Energy Condition (NEC), Dominant Energy Condition (DEC) and Strong Energy 
Condition (SEC) are given by 
WEC : 𝜌 ≥ 0 
NEC : 𝜌 + 𝑝 ≥ 0 
DEC : 𝜌 − 𝑝 ≥ 0 
SEC :𝜌 + 3𝑝 ≥ 0 
For this model, we have 𝜌 + 𝑝 = 1(4𝜋 + 𝜆) 𝑛𝑡 − 𝑐𝑉 𝑡 − 1𝑉 𝑡  

𝜌 − 𝑝 = 2 1(4𝜋 + 𝜆)𝛼 𝑛𝑡 − 𝑐𝑉 𝑡 − 1𝑉 𝑡 − 1(4𝜋 + 𝜆) 𝑛𝑡 − 𝑐𝑉 𝑡 − 1𝑉 𝑡  

𝜌 + 3𝑝 = 3(4𝜋 + 𝜆) 𝑛𝑡 − 𝑐𝑉 𝑡 − 1𝑉 𝑡 − 2 1(4𝜋 + 𝜆)𝛼 𝑛𝑡 − 𝑐𝑉 𝑡 − 1𝑉 𝑡  

Figure 5. The plot of left hand sides of energy conditions vs. cosmic time 𝑡 graph with 𝛼 = 0.1, 𝑐 = 0.1, 𝑉 = 1, 𝑛 = 1.5, 𝜆 = 1 

From figure 1 and figure 5, we see that the WEC and DEC are satisfied. NEC is satisfied only at late times while the 
SEC is violated for this model. 

Model 2 
The average Hubble parameter 𝐻, the expansion scalar 𝜃, the deceleration parameter 𝑞 and the shear scalar 𝜎 and 

the anisotropy parameter 𝐴  for the model corresponding to the exponential expansion are obtained as  𝐻 = 𝑛 (49)𝜃 = 3𝑛 (50)𝑞 = − = −1 (51)𝜎 = (52)

𝐴 = (53)
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From the expression for the deceleration parameter 𝑞, we see that the expansion of the universe is decelerating 
throughout the evolution and does not depend on 𝑛. 

Now, adding (12) and (15) and using quadratic equation of state 𝑝 = 𝛼𝜌 − 𝜌, where 𝛼 ≠ 0 is a constant, we get 

 𝜌 = ( ) +  (54) 

 𝑝 = + − ( ) +  (55) 

Using 𝑝 and 𝜌 in (12), we obtain 

 Λ = 2 + 4 − 3𝑛 + 4(2𝜋 + 𝜆) ( ) +  (56) 

  

Figure 6. The plot of energy density 𝜌 vs. cosmic time 𝑡 graph 
with 𝛼 = −0.1, 𝑐 = 0.1, 𝑉 = 1, 𝑛 = 0.1, 𝜆 = 1 

Figure 7. The plot of pressure 𝑝 vs. cosmic time 𝑡 graph with 𝛼 = −0.1, 𝑐 = 0.1, 𝑉 = 1, 𝑛 = 0.1, 𝜆 = 1 

  

Figure 8. The plot of cosmological constant Λ vs. cosmic time 𝑡 graph with 𝛼 = −0.1, 𝑐 = 0.1, 𝑉 = 1, 𝑛 = 0.1, 𝜆 = 1 
Figure 9. The plot of anisotropy parameter 𝐴  vs. cosmic time 𝑡 graph with 𝑐 = 0.1, 𝑛 = 0.1, 𝑉 = 1 

 
From the figures 6, 7, 8 and 9, we see that the behavior of the energy density, pressure, cosmological constant and 

anisotropy parameter satisfies the present cosmological observations. However, in this case, the constant 𝛼  should 
assume negative values  
 

The Cosmic Jerk Parameter: 
From equations (49) and (51), using (47), we obtain the cosmic jerk parameter for this model as 𝑗(𝑡) = 1 

This shows that this model resembles ΛCDM for any value of 𝑛. 
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Energy Conditions 
For this model, the energy conditions are obtained as 𝜌 + 𝑝 = − 14𝜋 + 𝜆 𝑐𝑉 𝑒 + 1𝑉 𝑒  

𝜌 − 𝑝 = 2 −1𝛼(4𝜋 + 𝜆) 𝑐𝑉 𝑒 + 1𝑉 𝑒 + 14𝜋 + 𝜆 𝑐𝑉 𝑒 + 1𝑉 𝑒  

𝜌 + 3𝑝 = − 34𝜋 + 𝜆 𝑐𝑉 𝑒 + 1𝑉 𝑒 − 2 −1𝛼(4𝜋 + 𝜆) 𝑐𝑉 𝑒 + 1𝑉 𝑒  

 

Figure 10. The plot of left-hand side of energy conditions vs. cosmic time 𝑡 graph with 𝛼 = −0.1, 𝑐 = 0.1, 𝑉 = 1, 𝑛 = 0.1, 𝜆 = 1 

From figures 6 and 10, we see that for this model, the WEC and DEC are satisfied and NEC and SEC are violated. 
 

6. CONCLUSION 
In this paper, we study a spatially homogeneous and anisotropic Bianchi type V universe with time varying 

cosmological constant and a quadratic equation of state in 𝑓(𝑅, 𝑇) theory of gravity for the functional form (𝑅, 𝑇) =𝑅 + 2𝜆𝑇, where 𝜆 is a constant. We construct two cosmological models corresponding to a volumetric power law 
expansion (Model 1) and an exponential expansion (Model 2). We find that 

 Both the models have initial singularity as the metric coefficients 𝐴, 𝐵 and 𝐶 vanish at the initial moment. 
 The physical parameters 𝐻, 𝜃, 𝜎 for both the models diverge at the initial epoch and for large 𝑡 , these 

parameters tend to 0. Also, the volume of the universe is zero at 𝑡 = 0 and increases exponentially with time 𝑡. 
Hence, both the models start with the big bang singularity at 𝑡 = 0 and then expand throughout the evolution. 

 The energy density of the model 1 increases at the beginning but it decreases in the course of evolution and 
tends to 0 at late time. The energy density of the model 2 decreases from the evolution of the universe and 
tends to 0 as time goes on. 

 For both the models, the cosmological constant is a decreasing function of the cosmic time and tends to 0 at 
late time. 

 The model 1 exhibits accelerated expansion for 𝑛 > 1, while for model 2, it happens for any values of 𝑛. 
 The model 1 never approaches ΛCDM model while the model 2 resembles ΛCDM model for any values of 𝑛. 
 The model 1 satisfies present cosmological observations for positive values of 𝛼 while the model 2 satisfies the 

same for negative values of 𝛼. 
 For both the models, the energy conditions WEC and DEC are satisfied and NEC and SEC are violated. The 

violation of SEC shows that the universe has anti-gravitating effect which results accelerating expansion of the 
universe. 
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ВСЕСВІТ Б’ЯНЧІ ТИПУ V ЗІ ЗМІННОЮ В ЧАСІ КОСМОЛОГІЧНОЮ СТАЛОЮ ТА КВАДРАТИЧНИМ 
РІВНЯННЯМ СТАНУ В ТЕОРІЇ ГРАВІТАЦІЇ f(R,T) 

Чандра Рекха Махантаa, Шаяніка Декаa, Манаш Пратім Дасb 
aФакультет математики, Університет Гаухаті, Гувахаті-781014, Індія 

bФакультет математики, коледж BBK, Барпета, Індія 
В останні роки модифіковані теорії гравітації широко вивчалися через відкриття та підтвердження поточної фази 
прискореного розширення Всесвіту. Теорія гравітації f(R,T) є однією з таких теорій, що запропонована Харко та ін. у 
2011 році, де R є скаляром Річчі, а T є слідом тензора енергії напруги. У цій статті ми вивчаємо Всесвіт типу Б’янчі V в 
теорії гравітації f(R,T) із змінною в часі космологічною константою та квадратним рівнянням стану 𝑝 = 𝛼𝜌 − 𝜌, де 𝛼 ≠ 0 є 
константою. Отримано точні розв’язки рівнянь поля для двох випадків: один з законом об’ємного розширення, а інший – з 
експоненціальним законом розширення. Фізичні характеристики двох моделей обговорюються шляхом вивчення поведінки 
деяких важливих космологічних параметрів, таких як параметр Хабла, параметр уповільнення тощо. Ми виявили, що моделі 
мають початкову сингулярність, а фізичні параметри розходяться в початкову епоху. Модель 1, що відповідає закону 
об’ємного розширення, не нагадує модель ΛCDM, а модель 2, яка відповідає закону експоненціального розширення, нагадує 
модель ΛCDM. Енергетичні умови моделей також досліджуються та виявляються узгодженими з нещодавніми 
космологічними спостереженнями. 
Ключові слова: Всесвіт типу Б’янчі V; теорія гравітації f(R,T); рівняння стану; модель ΛCDM 


