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In recent years, modified theories of gravity have been extensively studied because of the discovery and confirmation of the current
phase of accelerated expansion of the universe. The f (R, T) theory of gravity is one such theory, proposed by Harko ef a/. in 2011, in
which R is the Ricci scalar and T is the trace of the stress-energy tensor. In this paper, we study Bianchi type V universe in f (R, T)
theory of gravity with time varying cosmological constant and a quadratic equation of state p = ap? — p, where a # 0 is a constant.
We obtain exact solutions of the field equations for two cases: one with a volumetric expansion law and the other with an exponential
expansion law. The physical features of the two models are discussed by examining the behavior of some important cosmological
parameters such as the Hubble parameter, the deceleration parameter etc. We find that the models have initial singularity and the
physical parameters diverge at the initial epoch. The model 1, corresponding to the volumetric expansion law does not resemble
ACDM model while the model 2, corresponding to the exponential expansion law, resembles ACDM model. The energy conditions
of the models are also examined and found to be consistent with recent cosmological observations.
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1. INTRODUCTION

Various astrophysical and cosmological observations like type Ia supernovae [1-3], Cosmic Microwave
Background (CMB) [4, 5], Large Scale Structure (LSS) [6, 7] and other improved measurements of supernovae
conforms the discovery of the late-time cosmic acceleration although it is yet to be ascertained what led to the start of
this acceleration. According to the recent Planck collaboration results [8], it is found that about 95% of the total
constituent of the universe is mysterious. Within the framework of General Relativity, the observed cosmic acceleration
can be attributed to an exotic component of the universe with large negative pressure which contributes nearly 68% of
the total energy content of the universe. This unknown energy fluid, supposed to be responsible for the late-time cosmic
acceleration, is given the name dark energy. In literature, several dark energy candidates like quintessence [9,10],
k-essence [11], tachyon [12], phantom [13], Chaplygin gas [14], Holographic dark energy [15] etc. have been proposed
and studied in various cosmological background. It is seen that even though the hypothetical dark energy can smoothly
explain the accelerated expansion of the universe, many dark energy models encounter with problems when tested by
some old red-shift objects [16, 17]. Therefore, the other way considered to explain the cosmic acceleration is
modifications of Einstein’s theory of gravitation. Some of the most studied modifications of Einstein’s General theory
of Relativity are the f(R) theory of gravity [18, 19], f(T) gravity [20], f(R, T) theory of gravity [21], f(G) gravity
[22] etc. In the f(R, T) theory of gravity, the gravitational Lagrangian in the Einstein-Hilbert action is modified by
replacing the Ricci scalar R by an arbitrary function f(R,T) of R and the trace T of the stress-energy tensor.
Harko et al. [21] have derived the gravitational field equations of this theory in the metric formalism, as well as the
equations of motion for test particles, which follow from the covariant divergence of the stress-energy tensor. They
have also presented the field equations corresponding to the homogeneous and isotropic FRW metric and provided a
number of specific cosmological models that correspond to some explicit forms of the function f(R,T) such as
fR,T)=R+2f(T), fRT) =fAR)+ f,(T),f(R,T) = f,(R) + f,(R)f3(T). Since then many researchers have
studied various isotropic and anisotropic cosmological models in different contexts within this framework of modified
theory of gravity.

In literature, various homogeneous and anisotropic cosmological models such as the Bianchi type models are
studied in the context of dark energy as well as in alternative or modified theories of gravity. Homogeneous and
anisotropic models of the universe are becoming more and more popular because of the anomalies found in the
observations like Cosmic Microwave Background (CMB) and Large-Scale Structure [23, 24]. Also, models that are
spatially homogeneous and anisotropic are helpful in describing the evolution of the early stages of the universe.
Bianchi type V models are significant because they include the space of constant negative curvature as a special case.

In this paper, we study a spatially homogeneous and anisotropic Bianchi type V universe with a time dependent
cosmological constant A and a quadratic equation of state p = ap? — p [25], where @ # 0 is a constant within the

7 Cite as: C.R. Mahanta, S. Deka, and M.P. Das, East Eur. J. Phys. 1, 44 (2023), https://doi.org/10.26565/2312-4334-2023-1-04
© C.R. Mahanta, S. Deka, M.P. Das, 2023


https://orcid.org/0000-0002-1179-8068
https://doi.org/10.26565/2312-4334-2023-1-04
https://periodicals.karazin.ua/eejp/index
https://portal.issn.org/resource/issn/2312-4334

45
Bianchi Type V Universe with Time Varying Cosmological Constant and Quadratic... EEJP. 1 (2023)

framework of f (R, T) theory of gravity. In Sect.2, we provide basic field equations of the f (R, T) theory of gravity for
the functional form f(R,T) = R + 2f(T). In Sect. 3, we obtain explicit field equations corresponding to Bianchi type
V metric forf(R,T) = R + 2f(T) = R + 2AT, where 1 is a constant. The expressions for the directional scale factors
A, B, C in terms of the average scale factor a are also obtained. In Sect. 4, we find exact solutions of the field equations
for two cases: one with a volumetric expansion law and the other with an exponential expansion law. Evolutions of
some relevant cosmological parameters are investigated in Sect. 5, and physical and geometrical properties of the
models are discussed. We conclude the paper in Sect. 6.

2. BASIC FIELD EQUATIONS OF THE f(R,T)THEORY OF GRAVITY
The gravitational Lagrangian in f(R, T)theory of gravity, proposed by Harko et al. [21], is given by an arbitrary
function f(R,T) of the Ricci scalar R and of the trace T of the stress- energy tensor T;;. The field equations of this
theory are derived by varying the action

S = —[f(R,T)\=gd* + [ Ly J=gd*x, (1)

with respect to the metric tensor g¥/, where L,,is the matter Lagrangian density.
The stress-energy tensor of matter is defined as

— 2 8(/=gLlm)

L= a0 2)
Assuming the matter Lagrangian density L,, to depend only on the metric tensor components g;;, and not on its
derivatives, T;jcan be obtained as
dLm

Tij = gULm - Zagij.

(©)

Hence, the variation of (1) with respect to the metric tensor g¥/ provides the field equations of the f(R, T) theory of
gravity as

1
frR,TIR;; —> f(R, T)gy; + (9ijVkV* = V,V;)fo(R,T) = 8aT;; — fr(R, T)T;; — fr(R, T)O;, 4)
where fz(R,T) = of ;’;'T), fr(R,T) = of ;};'T) ,V; is the covariant derivative with respect to the symmetric connection I’

associated to the metric g and

9%Lm,
agijaglk'

Since there is no unique definition of the matter Lagrangian density L,,, therefore, by assuming the stress-energy tensor
of matter to be given by the stress-energy tensor of a perfect fluid of density p and pressure p in the form

T;j = (p + P)uwy; — pgij, (6)

where the four velocity u; satisfies the conditions uiVjui = 0 and u'u; = 1, the matter Lagrangian density can be taken
as L,, = —p. Then from Eq. (§), we obtain

0;; = —2T;; — pgy;- @)
And for the functional form
f(R,T) =R+ 2f(T), (3

where f(T) is an arbitrary function of the trace T of the stress-energy tensor of matter, the gravitational field equations,
from Eq (4) are obtained as

Rij — %Rgij =8nT;; — 2f ' ()T;; — 2f (10 + f(T) gy, ©)

where the prime denotes differentiation with respect to the argument.
In view of Eq. (6), the Eq. (9) becomes

R — %Rgij = 8nT;; + 2f (T)T;; + [2pf (T) + f(T)]g;;- (10

3. METRIC AND FIELD EQUATIONS
We consider a spatially homogeneous and anisotropic Bianchi type V metric in the form

ds? = dt? — A%dx? — e?*(B?dy? + C?dz?), (11)

where A, B, C are functions of the cosmic time t only.
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Using comoving coordinates the field equations (10) for the metric (11) with a time dependent cosmological

constant A and the functional,
f(R,T)=R+2f(T) =R+ 2AT

where A is a constant, are obtained as
; 1
too—z=—@r+3Dp+ip—A

+é£—i=—(8n+31)p+lp—A
éé—i——(87r+3/1)p+/1p—A

AB A2

22 EE.+£é—i—(81r+3/1)p—/lp—A

AB  BC CA A2
A, B  C
—2=-+-+-=0
A B C

where an overhead dot indicates differentiation with respect to the cosmic time ¢t.

For the Bianchi type V metric given in Eq. (11), the various parameters of cosmological importance are:

The spatial volume,
V = ABC
The average scale factor,
a = Vi = (ABC):

The mean Hubble parameter,

The deceleration parameter,
The expansion scalar,

The shear scalar,
1
0% =~ (T, H? —3H?)
The anisotropy parameter,

A =1y (Hi—H)z
m T g &i=1 H

where H; ==,H, =—,H3 = %are the directional Hubble parameters.

.
w | @

4. SOLUTIONS OF THE FIELD EQUATIONS
From equation (16), on integration, we get

A% = BC
From (12), (13) and (14), we obtain

d

A = liaexp (my [ a—;)
dt

B = lyaexp (m, f;)
d

C = lzaexp (m; fa—i)

where the constants satisfy the relations my + m, + m3 = 0 and [y 1,15 = 1.
Using (25), (26), (27) in Eq. (24), we get

dat
L = exp (—m, [ %

(12)
(13)
(14)
(15)
(16)

an

(18)

(19)

(20)

@n

(22)

(23)

24

(25)
(26)

27
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Now, since l; is a constant, so we may assume that m; = 0 so that [; = 1 and consequently l,l; = 1 and m, + m3 = 0.
Without loss of generality, we take

-1
lz ::l3 =0 and m, = —MmM3 = Cy

where c; and ¢, are non-zero constants.
Then from (25)-(27), we obtain the directional scale factors as

A=a (28)
B = c,aexp (cz f%) (29)
= ia exp (—c2 f%) (30)

Now, to find exact solution of the ficld equations, we need one extra condition for which we consider a volumetric
expansion law. We also find another exact solution by using the exponential expansion law.
For volumetric expansion law, we consider

V = Vyt3n 31

where V = ABC = a3, and V,, and n are non-zero constants.
Then from (28), (29) and (30), we get

1
A =Vy3th (32)
1 —3n+1
_ =n _ Czt
B = ¢, V3t exp[ V0(3n_1)] (33)
_1,t, cot 3+
C = ZVoit" exp 2o (34)
For exponential expansion law, we consider
V = VOeSnt
where V = ABC = a?, and V, and n are non-zero constants.
Then from (28), (29) and (30), we get
1
A =Vyze™ (35)
1 -3nt
— 3pnt —C28
B = ¢,Vy3e exp{ — } (36)
_ 1y ont cae 3
C —aVo3e exp{ v } 37

5. PHYSICAL AND GEOMETRICAL PROPERTIES OF THE MODELS
Model 1
The average Hubble parameter H, the expansion scalar 8, the deceleration parameter q and the shear scalar o and
the anisotropy parameter A,, for the model corresponding to the volumetric expansion law are obtained as

n
=z (38)
6=3H=2" (39)
__@ed_ 4,1

q=-——=-1+- (40)

2 GF
ot = (41)

2
Ap =22 42)

T 3Vy2n2t6n-2

From equation (40), we see that the cosmic expansion accelerates for n > 1.
Now, adding equations (14) and (15) and using quadratic equation of state
p = ap? — p, where a # 0 constant, we get
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2_ 1 nor 1
P = Grina [tz Vo2t6n Vogtzn] (43)
1 n cp? 1 1 n c2 1
= - - — - — - 44
p (4m+2) [tz Vo2ton Vothn] (am+)a [tz Vo2 ton Voéth (44
Using p and p in (12), we obtain

_ (B3| p? n 1 n + 421+ 2) 1 nor 1 —£+2—n— cp? n 1 (45)

T (am+d) |vpleen Voétzn t2 (n+a |t2 Vp2ten Voétm t2 2 ypleen VoétZ"

Figure 2.The plot of pressure p vs. cosmic time ¢t graph with

Figure 1. The plot of energy density p vs. cosmic time t graph
a=01c¢=01V,=1,n=151=1

witha =01, ¢, =01,V =1,n=151=1

Figure 4. The plot of anisotropy parameter A,,vs. cosmic time

Figure 3.The plot of the cosmological constant A vs. cosmic
t graph withc, = 0.1,V =1,n = 1.5

time t graph witha = 0.1, ¢, = 0.1,V =1,n=151=1

From the graphs we observe that the energy densityp is a decreasing function of cosmic time, pressurep is
negative throughout the evolution of the universe and the cosmological constant A decreases rapidly and tend to zero.
The figure 4 shows that the universe is highly anisotropic at its early stage and the anisotropy dies out in the course of

evolution.
The Cosmic Jerk Parameter.
The cosmic jerk parameter is defined as
() = L
j@®) === (46)

The equation (46) can be written in terms of the deceleration and the Hubble parameter as

. q

Jj® =q+2q*— (47)

From equations (38) and (40), using (47), we get the cosmic jerk parameter for this model as
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. (n-1)(n-2)
(o) = S (48)

. .. . . . 2
At late times, the value of the cosmic jerk parameter is 1 for ACDM model. For this model, j(t) = 1 forn = 3 But we
have a restriction n > 1. Hence, this model does not resemble with ACDM model.

Energy Conditions
Weak Energy Condition (WEC), Null Energy Condition (NEC), Dominant Energy Condition (DEC) and Strong Energy
Condition (SEC) are given by

WEC:p=>0
NEC:p+p=0
DEC:p—p =0
SEC:p+3p =0

For this model, we have

e 1 n c,? 1
PTP=ln+ ) |0 Vo?ton V0§t2n
5 1 n c,2 1 1 n ;2 1
p=p (4 + Da [t2  V,2ten V0§t2n 4+ ) |t2 V,2eon Vogtzn
L3y 3 n c? 1 ) 1 n 2 1
PEP=lan s |2 vy2con AT U+ Daler Vo*tn  ySiom
E.C.

Figure 5. The plot of left hand sides of energy conditions vs. cosmic time t graph witha = 0.1,¢; = 0.1,V =1,n=151=1

From figure 1 and figure 5, we see that the WEC and DEC are satisfied. NEC is satisfied only at late times while the
SEC is violated for this model.

Model 2
The average Hubble parameter H, the expansion scalar 6, the deceleration parameter q and the shear scalar o and
the anisotropy parameter A,, for the model corresponding to the exponential expansion are obtained as

H=n (49)

0 =3n (50)

g=-3=-1 (51)
c 2

% = V02:6nf (52)

Ap = 22 (53)

T 3n2y2ednt
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From the expression for the deceleration parameter g, we see that the expansion of the universe is decelerating
throughout the evolution and does not depend on n.

Now, adding (12) and (15) and using quadratic equation of state
p = ap? — p, where @ # 0 is a constant, we get

S . (54)
P = a(4m+d) \ Vp2ebnt Vogeznf
-1 cy? 1 _ -1 c? 1
P=ima (Voze""t + Voéeznt> a(4m+d) (Vozeént * V0§82nt> (55)
Using p and p in (12), we obtain
_ 2w+ cp? (3n:+/1) 1 4 -1 cy2 1
A=2 (4n+l) Vo2ebnt +4 ATT+A Vogeznf 3n® +4(2m + 1) a(am+i) \ Vp2ebnt + Voéeznf (56)
t
0 5 10 15 20
-0.5
1
p 1
0.5 p
-1.5
1] 5 10 15 t 20 25 30 2.

Figure 6. The plot of energy density p vs. cosmic time t graph Figure 7. The plot of pressure p vs. cosmic time t graph with
witha =-0.1,¢, =01V, =1,n=01,1=1 a=-01,c,=01V=1,n=011=1

Figure 8. The plot of cosmological constant A vs. cosmic time  Figure 9. The plot of anisotropy parameter A,, vs. cosmic time
t graph witha = —0.1,¢, = 0.1,V;=1,n=01,1=1 t graph withc, =0.1,n =0.1,V, =1

From the figures 6, 7, 8 and 9, we see that the behavior of the energy density, pressure, cosmological constant and
anisotropy parameter satisfies the present cosmological observations. However, in this case, the constant a should
assume negative values

The Cosmic Jerk Parameter:
From equations (49) and (51), using (47), we obtain the cosmic jerk parameter for this model as

j@®) =1
This shows that this model resembles ACDM for any value of n.
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Energy Conditions
For this model, the energy conditions are obtained as

e 1 ;2 N 1
prP= 4+ A V0266nt VogeZnt

_ 2 _1 C22 + 1 + 1 sz + 1
pP—p= a(4m + 1) \ V,2esnt V0§82nt 41 + A\ V,2ebnt Vogezm

+ 3 _ 3 C2 + 1 2 _1 C22 + 1
PTP =" Vy2etnt V0§e2nt a(4m + 1) \ V,2ednt Voéeznt

Figure 10. The plot of left-hand side of energy conditions vs. cosmic time t graph witha = —0.1,¢, = 0.1,V =1,n=0.1,1=1
From figures 6 and 10, we see that for this model, the WEC and DEC are satisfied and NEC and SEC are violated.

6. CONCLUSION
In this paper, we study a spatially homogeneous and anisotropic Bianchi type V universe with time varying
cosmological constant and a quadratic equation of state in f(R, T) theory of gravity for the functional form (R,T) =
R + 2AT, where A is a constant. We construct two cosmological models corresponding to a volumetric power law
expansion (Model 1) and an exponential expansion (Model 2). We find that
= Both the models have initial singularity as the metric coefficients 4, B and C vanish at the initial moment.
» The physical parameters H,6,c?for both the models diverge at the initial epoch and for large t, these
parameters tend to 0. Also, the volume of the universe is zero at t = 0 and increases exponentially with time t.
Hence, both the models start with the big bang singularity at ¢ = 0 and then expand throughout the evolution.
= The energy density of the model 1 increases at the beginning but it decreases in the course of evolution and
tends to 0 at late time. The energy density of the model 2 decreases from the evolution of the universe and
tends to 0 as time goes on.
=  For both the models, the cosmological constant is a decreasing function of the cosmic time and tends to 0 at
late time.
= The model 1 exhibits accelerated expansion for n > 1, while for model 2, it happens for any values of n.
=  The model 1 never approaches ACDM model while the model 2 resembles ACDM model for any values of n.
= The model 1 satisfies present cosmological observations for positive values of @ while the model 2 satisfies the
same for negative values of a.
=  For both the models, the energy conditions WEC and DEC are satisfied and NEC and SEC are violated. The
violation of SEC shows that the universe has anti-gravitating effect which results accelerating expansion of the
universe.
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PIBHSIHHSIM CTAHY B TEOPIi T'PABITALII f(R,T)
Yanapa Pexxa Maxanta?, [llasinika lexa®, Manam Ipatim JTac®
“@akynomem mamemamuru, Yuieepcumem I ayxami, I'veaxami-781014, Inois

"(DaKyﬂbmem Mmamemamuxku, koneoxc BBK, bBapnema, Inoia
B ocranni poku MmoaudikoBaHi Teopil rpaBiTamii IIMPOKO BUBYAIKCS UYEpe3 BIAKPUTTA Ta MIATBEPIKEHHS NHOTOYHOI (asu
prucKopeHoro posmmpenHs: BeecBity. Teopist rpasitamii f(R,7) € omHi€I0 3 TaKUX TEOpiid, IO 3ampomoHOBaHa XapKo Ta iH. Y
2011 poui, ne R € ckamsipoM Piudi, a T € ciinoMm TeH3opa eHepril Hanpyru. Y il crarti Mu BuBYaeMo BceecBit tumy B’suHui V B
Teopii rpasitanii f{R,T) i3 3MiHHOIO B Yaci KOCMOJIOTIYHO KOHCTAHTOIO Ta KBAJPATHUM PiBHAHHAM CTaHY p = ap? —p, nea # 0 €
KOHCTaHTOr. OTpUMaHO TOYHI PO3B’S3KU PIBHAHB MOJIS AJs ABOX BHUMAKIB: OAWH 3 3aKOHOM 00’€MHOTO PO3IMIMPEHHS, a 1HIIHN — 3
EKCTIOHCHITIaTbHAM 3aKOHOM po3IIipeHHs. Di3nyHi XapaKTepHUCTUKH ABOX MOJEJe 0OrOBOPIOIOTHCS MIISIXOM BUBYCHHS ITOBEIIHKH
JeSKIX BaXXJIMBAX KOCMOJIOTIYHUX IapaMeTpiB, TAKKX SIK mapaMeTp Xabia, mapaMeTp YHOBUIBHEHHS TOIIO0. MU BHSBIIIM, IO MOJIEN1
MaroTh IIOYaTKOBY CHHTYIIPHICTH, a ()i3UUYHI IapaMeTpH PO3XOIAThCS B MOYATKOBY emoxy. Mozenb 1, Mo BiINOBigae 3aKoHY
00’eMHOr0 po3IIKPeHHs, He Haraaye Moaens ACDM, a Mozensb 2, sika BiNOBiIa€ 3aKOHY CKCITOHCHIIATBHOTO PO3IIUPEHHS, HAraye
monenb ACDM. EnepretnuHi yMOBH MojeNieldl TakoX IOCHI/UKYIOTBCS Ta BUSIBISIIOTHCS Y3TO/DKCHHMH 3 HEI[OAaBHIMHU
KOCMOJIOTIYHUMH CIIOCTEPEKEHHAMU.
Kurouosi cinoBa: Beecsim muny b sinui V; meopis epasimayii f(R,T), pieusnns cmany, mooens ACDM



