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The energy eigenvalues with the Extended Cornell potential were obtained by analytically solving the radial Schrédinger equation
using the Exact Quantization Rule technique. It was then used for computing the mass spectra of the heavy mesons like charmonium
(cc ) and bottomonium (bI; ) as well as heavy-light mesons such as bottom-charm (bc) and charm-Strange (cs) for various
quantum states. Two exceptional cases such as the Coulomb and Cornell potentials, were taken into consideration when some of
the potential parameters were set to zero. The current potential offers good outcomes when compared to experimental data and the
work of other researchers with a maximum error of 0.0065 Gel .
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1. INTRODUCTION

The development of the radial Schrodinger equation (SE) in quantum mechanics and its solutions plays a
fundamental role in many fields of modern physics. The study of the behavior of quite a lot of physical problems in
physics requires the solving of the SE. The solutions can be well-known only if we know the confining potential for a
particular physical system [1-4]. The theory of quantum chromodynamics (QCD) which is described by the meson system
is mediated by strong interactions [5]. The heavy mesons are the constituents of quark and antiquark such as charmonium
and bottomonium that are considered as the non-relativistic system described by the SE [6]. In recent times, researchers
have obtained the solutions of the SE and Klein-Gordon equation (KGE) with the quarkonium interaction potential model
such as the Cornell or the Killingbeck potentials [7-9]. The Cornell potential is the sum of the Coulomb plus linear
potentials. The Cornell potential and its extended form have been solved with SE with different analytical methods
[10,11]. The exact solutions of the SE with some potentials are solvable for/ = 0, but insolvable for any arbitrary angular
momentum quantum number/ # 0. In this case, several approximate techniques are employed in obtaining the solutions.
Example of such techniques include, the asymptotic iteration method (AIM) [12], the Nikiforov-Uvarov functional
analysis (NUFA) method [13-17] the Laplace transformation method [18], the Nikiforov-Uvarov (NU) method [19-24],
the series expansion method (SEM) [25-27], analytical exact iterative method (AEIM) [28], WKB approximation method
[29-31] and others [32,33].

Recently, the mass spectrum of the quarkonium system has been studied by researchers [34,35]. For instance, Vega
and Flores [36] obtained the solution of the SE with the Cornell potential via the variational method and super symmetric
quantum mechanics (SUSYQM). Ciftci and Kisoglu [37] addressed non-relativistic arbitrary / -states of quark-antiquark
through the Asymptotic Iteration Method (AIM). An analytic solution of the N-dimensional radial SE with the mixture
of vector and scalar potentials via the Laplace transformation method (LTM) was studied by [18]. Their results were
employed to analyze the different properties of the heavy-light mesons. Also, Al-Jamel and Widyan [38] studied heavy
quarkonium mass spectra in a Coulomb field plus quadratic potential by employing the Nikiforov-Uvarov (NU) method.
In their work, the spin-averaged mass spectra of heavy quarkonia in a Coulomb plus quadratic potential is analyzed within
the non-relativistic SE. In addition, Al-Oun et al. [39] examined heavy quarkonia characteristics in the general framework
of a non-relativistic potential model consisting of a Coulomb plus quadratic potential. Furthermore, Omugbe et al. [29]
solved the SE with Killingbeck potential plus an inversely quadratic potential model via the WKB method. They obtained
the energy eigenvalues and the mass spectra of the heavy and heavy-light meson systems. In addition, Inyang et al. [40]
obtained the KGE solutions for the Yukawa potential via the NU method. They obtained energy eigenvalues both in the
relativistic and non-relativistic regimes, and the results were then applied to calculate heavy-meson masses of

charmonium ¢ and bottomonium bb . Ibekwe et al. [41] solved the radial SE with an exponential, generalized, harmonic
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Cornell potential via the series expansion method. They applied the bound state eigenvalues to study the energy spectra
for CO, NO, CH and N, diatomic molecules and the mass spectra of heavy quarkonium systems.
Therefore, in this present work, we aim at studying the SE with the extended Cornell potential via the Exact

quantization rule (EQR) to obtain the mass spectra of heavy mesons such as charmonium (cc) , bottomonium (bI; ) and
the heavy—light mesons such as the charm-Strange (cs)and bottom-charm (bc).The extended Cornell potential (ECP)
takes the form [29].

M, 7
V()= + =4 (M
r r
where 77,, 1,, 1, and 7, are potential strength parameters. The second term in Eq. (1) is a linear term for confinement

feature and the third term is the Coulomb potential that describes the short distance between quarks. While the first and
the last terms are quadratic and the inverse quadratic potentials.
It is important to note that if we set 77, =7, =71, =0, the (ECP) reduces to the Coulomb potential also, if we set

17, =1, =0 the (ECP) reduces to the standard Cornell potential. The paper is organized as follows: in section 2, the brief

EQR formalism is presented. Section 3, the analytical solution of the bound states of the SE is solved via the EQR. In
section 4, we present the results of the mass spectrum of the mesons. Finally, in section 5, the study is concluded.

2. EXACT QUANTIZATION RULE FORMALISM
In this section, we give a brief review of exact quantization rule. The details can be found in [42.43]. It is a well
known fact that, in one dimension, the SE is given as:

dy») 2#

— BV @]y (0=0 )

Equation (2) can be written in the following form:

§ (0)+p(0) +k(x) =0 3
with

k(x) = [E —V(x)] (4)
where ¢(x) = (//’ (x)/w(x) is the logarithmic derivative of the wave function, z is the reduced mass of the quarkonium
particles, k(x) is the momentum, and ¥ (x) is a piecewise continuous real potential function of x. The phase angle of

the SE is the logarithmic derivative ¢(x) . From Eq. (3), as x increases across a node of wave function y(x), ¢(x)

decreases to —co , jumps to +oo, and then decreases again. We can generalize EQR to the three — dimensional radial SE
with spherically symmetric potential by simply making the replacement x — and V'(x) =¥, (r) [42,43].

[ ke =N+ [ o0 ){ dk(”“%} 5)

k) =\/i—“[ E,~V, )] ©)

where 7, and 1, are two turning points determined by E =V, (r). N =n+1 is the number of the nodes of ¢(r) in the

region E,, =V, (r) and is larger by 1 than the n of the nodes of the wave function y/(#). The first term Nz is the

Vey
contribution from the nodes of the logarithmic derivatives of the wave function, and the second one is called the quantum
correction. It was found that for all well-known exactly solvable quantum systems, this quantum correction is independent
of the number of nodes of the wave function. This means that it is enough to consider the ground state in calculating the
quantum correction (Q,), i.e.

0 I K (r)ﬁdr ™

To determine the energy eigenvalues, we equate Egs. (5) and (7).
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3. APPROXIMATE SOLUTIONS OF THE SCHRODINGER EQUATION
WITH EXTENDED CORNELL POTENTIAL

The SE for two particles interacting via potential V' (r) is given by [44].

[(1+1)R
2ur’

dR(r) 2u B, —V(r)-
dr’ h

} R(r)=0, ®

where [, 1,7 and % are the angular momentum quantum number, the reduced mass for the quarkonium particle, inter-

particle distance and reduced plank constant respectively.
We substitute Eq. (1) into Eq. (8) and obtain

d’R(r) . 2/1[

S B, 1, ()| R =0, ©)

where

2
:

V() =y +mr =12 . (10)

2ur
We transform the coordinate of Eq. (9) by setting

w1, (11
r

Upon substituting Eq. (11) into Eq. (10) we have

L Il +DR*x’
Vg )=+ LD (12)
by 2u
To deal with the first and second terms of Eq. (12), we propose the following approximation scheme. We assume
that there is a characteristic radius 7, of the meson. Then the scheme is based on the expansion of A and 77—(2) in a power
X X

series around7, ; i.e. around o = —, up to the second order. This is similar to Pekeris approximation, which helps to
To

deform the centrifugal term such that the modified potential can be solved by NU method [45].
Setting y =x—3J and around y =0 it can be expanded into a series of powers as:

mom o _m ol ) (13)
X y+o sl14? o 5) °
1)
which yields
n 3 3x X
mo_ 22X X 14
. 771(5 575 (14)
Similarly,
7, 6 8x 3x°
x—iz%(y?*? | as)

We then substitute Eqs. (14) and (15) into Eq. (12) and obtain

eff(x) §1+§2x+§3 > (16)

where
617, 377 37, 8
fl 52 — 52 - 521 _E
11 +Dn* +l)h2 3770 A
Ty sy

-1,
(17)

The non-linear Riccati equation for ground state is written in terms of the new variable x as,
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g () () = (), (18)
where
2
k(x) = Jh_é‘[ EX*+Ex+E —EJ . (19)

We now apply the quantization rule to study the potential. To this end we first calculate the turning points x, and x, ,
which is determined by solving the content of the square bracket of Eq. (19), these yields:

_égz " 522 _4533(631 _E)

X =

’ 2¢;
(20)
Y, = _égz +'\/§22 _453(51 _E)
' 26,
From Eq. (20) we have
§1 )
X, X,
S Q@
X, +x, = _e
S
Also, from Eq. (19) we have
k(x)= \/i—’g@ [xz +§—jx+§1§%EJ (22)
Substituting Eq.(21) into Eq.(22) we obtain
k(x):\/z’:—?(x—xa)(x—xb) (23)

where k(x)is the momentum between the two turning points x,and x, .
From Eq.(18), since the logarithmic derivative ¢,(x) for the ground state has one zero and no pole, therefore we
assume the trial solution for the ground states

@(x)=A+Bx (24)

Substituting Eq. (24) into Eq. (18) and then solving the non-linear Riccati equation, we obtain the ground state
energy as

nA
Eo = 51 - (25)
2u
Also, we obtain 4 and B as follows
_ U,
BHi*
3 (26)
B :l n 1 ﬂzé
2 4 h

Here we choose the positive sign in front of the square root for B .This is as a result of the logarithmic derivatives
@,(x) which decreases exponentially, which is required. We now calculate the quantum correction and obtain

[oof [ 0], g eosio,

dr dr X ¢<;(x)

From Eq. (27) we have
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A x,+ xb A ( X+ % J
2
/ ”53 j B2 dx (27a)
h x\/x x,)(x—x,) xz\/(x—xa)(x—xb)

We utilized the integrals given by Appendix A, and obtain

A x,+x, A(xa+xbj[ X, X, _1]
2 e B\ 2 0 2(x, +x
o ;tzé B__2 (x, +x,) @)

+
\/1+(xa +xb)+xaxb \/‘xa‘xb

We substitute Eq. (21) into Eq.(27b) and obtain

A g A§2 hz A+ §3
& | B 2g 2BE (\2pg " 28
7| _
hZ

(27¢)
/s n
(4+B) 4
2u¢, 2ug;
Inserting Eq. (27¢) into Eq. (5) we obtain
. ( o A+;§]
7
7| me| B 26 T i 2+ Nx (27d)
h n n
\/ 5 (4+B) \/ 5 A
HS,s HSs
Furthermore, the integral of Eq.(7) is obtain as
[ k(rydr=—[ %dx 28)

From Eq. (28) we have

- 2“253 (r= )dx (282)
7
21“53 (xa +xb)_ xaxb
- b
n’ |: 24x,x, } (250)

We substitute Eq. (21) into Eq. (28b) and obtain

Using Eq. (29), Eq. (28a) becomes

_é_ )
_ 2ug, 53 53 (28¢)
\ 7 ) &-E
&

In order to obtain the integral of Eq.(28a), we used maple software to obtain the following useful integral, which is not

available in integral table
/ b x a+b f br
,r (29)
2J_

By equating Eqs.(27d) and (28c) ,and substituting Eqs.(17) and (26) ,setting 7i=1 we obtain the energy equation for
extended Cornell potential as

2
3
3, 6 2”[5’721+577;)+77]
PO (30)

nl 2
s 9 8un 1)° 1 24un
M H1ly
2n+1)+ 1+ +4| | I+=| ——| -8umn, +
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3.1. Special case
In this subsection, we present some special cases of the energy eigenvalues of the ECP.
1. When we set 7, =77, =717, =0 we obtain energy eigenvalues expression for Coulomb potential

2
_ /’”72 (31)

Enl - 2
2(n+1+1)

2. When we set 77, =77, =0 we obtain energy eigenvalues expression for Cornell potential

3 ?
2/1[ —t 772}
_3m g (32)

Enl
d 8 1" 1
(2n+1)+ |1+ ,u3771+4 I+—| ——
o 2 4

The result of Eq. (32) is consistent with the result obtained in Eq. (30) in Ref. [9]

4. RESULTS
Using the relation in Ref. [46], we calculate the mass spectra of the heavy quarkonia such as charmonium and
bottomonium, and heavy-light mesons.

M=2m+E, 33)

where m is quarkonium bare mass and E, is energy eigenvalues.
By substituting Eq. (30) into Eq. (33) we obtain the mass spectra for extended Cornell potential for heavy quarkonia as,

2
2ﬂ(37]l+8’70+772J

M=am 2y T - 2 2 (34)
(2n+1)+\/1+ 8213771 +4[[1+;J _iJ ~8un, + 24;770
We also obtain the mass spectra of the special case of Eq. (32) for heavy-light mesons by substituting into Eq.(33)
3, 24 ( 35%1 ' '72j 2
M=m +m, +——— . (35)

d 8 1" 1
(2n+1)+ 1+@+4 I+~ ——
1) 2 4

We test the accuracy of the predicted results, by using the Chi square function defined by [47]

B | ( M[Exp, _ M[Thea.)
e G6)

i

wheren rtuns over selected samples of mesons, M,"" is the experimental mass of mesons, while M/™ is the
corresponding theoretical prediction. The A, quantity is experimental uncertainty of the masses. Intuitively, A, should

be one. The tendency of overestimating Chi square value is that, it reflects some mean error.
We calculate mass spectra of charmonium and bottomonium for states from 1S to 1F, as presented in Tables 1 and 2.
Also calculated the mass spectra of heavy-light mesons for states from 1S to 1D as presented in Tables 3 and 4. The free
parameters of Eq. (34) were obtained by solving two algebraic equations of mass spectra in Eq. (34) for charmonium.
We followed the same procedure for bottomonium and obtained the free parameters of mass spectra. Equation (35)
was fitted with experimental data of mass spectra of 1S, 2S to obtain the free parameters for bottom-charm (bc) and

charm-strange (cs) heavy-light mesons.

For bottomonium bb , charmonium c¢ and strange systems we adopt the numerical values of m, = 4.823 Gel’,
m, = 1209 GeV and m_ =0.419 GeV , and the corresponding reduced mass are p, = 2.4115GeV , u. =0.6045 GelV
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and u =0.2095 GeV , respectively [48-50]. We note that the theoretical prediction of the mass spectra of charmonium

and bottomonium are in excellent agreement with experimental data and the work of other researchers like;
Refs.[28,9,18,37,41] as shown in Tables 1 and 2. Also , the results for charm-strange meson presented in Table 4 , are in
excellent agreement with the work of other authors in Refs.[28,37] Furthermore, in Table 3 ,the mass spectra of the
bottom-charm meson are very close to the ones obtained in Refs[28,18,37] with other methods and experimental data
indicating an improvement compared to the other methods. The maximum error in comparison with experimental data is
0.0065 GeV .

Table 1. Mass spectra of charmonium in (GeV) (m, =1.209 GeV, u = 0.6045 GeV, 7, =0.001 GeV , 1, =14.94 GeV ,n, =0.02 GeV,

n,=—-15.04 GeV ,5=1.7 GeV' )

State Present work  AEIM[28]  NUJ9] AIM[37] LTM[18] SEM[41] Experiment[48,49]
1S 3.096 3.0954 3.095 3.096 3.0963 3.095922 3.097

28 3.686 3.5673 3.685 3.686 3.5681 3.685893 3.686

1P 3.295 3.5677 3.258 3.214 3.5687 - 3.525

2P 3.802 4.0396 3.779 3.773 3.5687 3.756506 3.773

38 4.040 4.0392 4.040 4275 4.0400 4322881 4.040

48 4269 45110 4262 4.865 45119 4.989406 4263

1D 3.583 4.0396 3.510 3.412 4.0407 - 3.770

2D 3.976 - - - - - 4.159

IF 3.862 - - - - - -

Table 2. Mass spectra of bottomonium in (GeV) (m, =4.823 GeV, u =2.4115GeV 5, =0.798 GeV , 1, =5.051 GeV , 1, = 0.02 GeV,
1, =-3.854 GeV ,6 =1.5 GeV')

State Present work  AEIM[28] NU[9] AIM[37] LTM[18] SEM[41] Experiment[48,49]
1S 9.460 9.74473 9.460 9.460 9.745 9.515194 9.460

2S 10.023 10.02315 10.022 10.023 10.023 10.01801 10.023

1P 9.661 10.02406  9.609 9.492 10.025 - 9.899

2P 10.138 10.30248 10.109 10.038 10.303 10.09446 10.260

3S 10.355 10.30158 10.360 10.585 10.302 10.44142 10.355

4S 10.567 10.58000 10.580 11.148 10.580 10.85777 10.580

1D 9.943 10.30248  9.846 9.551 10.303 - 10.164

2D 10.306 - - - - - -

IF 10.209 - - - - - -

Table 3. Mass spectra of bottom-charm (bc) in (GeV) (m, = 4.823 GeV, m, =1.209 GeV , 1, =0.202 GeV ,n, =1.213 GeV',
5=0371GeV )

State Present work AEIM[28] LTM[18] AIM[37] Experiment[50]
1S 6.274 6.2774 6.2770 6.277 6.275

28 6.845 7.0376 7.0372 6.814 6.842

38 7.125 7.7978 7.7973 7.351 -

4S 7.283 7.0386 - 7.889 -

1P 6.519 7.7987 7.0381 6.340 -

2P 6.959 - 7.7983 6.851 -

1D 6.813 - - 6.452 -

Table 4. Mass spectra of charm-strange (cs) meson in (GeV) (m, =0.419 GeV , m, =1.209 GeV ,n, =0.202 GeV ,n, =2.046 GeV,
0=0.561 GeV)

State Present work AEIM [18] AIM [37] Experiment [48, 51]
1S 1.969 1.968 2.512 1.968[48]

28 2.709 2.709 2.709 2.709[51]

3S 2913 2.932 2.906 -

4S 2.998 - 3.102 -

1P 2.601 2.565 2.649 -

2P 2.877 - 2.860 -

1D 2.863 2.857 2.859 2.859[51]

5. CONCLUSION
In this study, we used the EQR technique to derive the approximate Schrodinger equation solutions for energy
eigenvalues with extended Cornell potential. Consideration was given to two particular instances that lead to Cornell and
Coulomb potentials. We use the current findings to determine the masses of heavy mesons like charmonium and
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bottomonium as well as the heavy-light mesons such as bottom-charm and charm-strange for various quantum states. We
noticed that the mass spectra of the meson systems reported in this current work are also consistent with those of other
researchers and are enhanced. This research could be expanded to study the thermodynamic properties of the mesons.

Appendix A: Some Useful Standard Integrals
J"’ ! dr=r (A1)

\/(r—ra)(rb -r)

i ! dr = dd (A2)

f (a-i—br)\/(r—ra)(rb—r) \/(a+brb)(a+bra)
[ =) =r)ar =20, +n) =, (A3)

r, I
h 1 T
dr = (A4)
T T (r—ra)(rb—r) .,
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TEOPETUYHE JOCJIIKEHHS CIHEKTPY ME3OHIB 3A METOJUKOIO ITPABUJIA TOYHOI'O KBAHTYBAHHS
Etino I1. Inbsinr?, ®ina O. @eiitnpaiiz, [Ixxo3ed Amamkama®, Exai C. Biabam®, Eddionr O. O6icynr, [xosed E. HTioiP
“@izuynuii paxyremem, Hayionanvnuil eiokpumuil ynisepcumem Hizepii, [ocabi, Abyoaca, Hicepis
bpyna meopemuunoi ¢izuxu, gizuunuii paxyrvmem, Yunieepcumem Kanabapa, P.M.B 1115, Karabap, Hizepis
“Dizuynuii paxynomem, Yuisepcumem Kanabapa, P.M.B 1115, Kanabap, Hicepis
[InsxoM aHaTITHIHOTO PO3B’sI3aHH pajiaigbHoro piBHAHH Llpeninrepa 3a 70moMororo TeXHiKM TOYHOTO IPAaBUJIa KBAHTYBaHHS OYIJIN
OTpHMaHI BJIACHI 3HaUCHHS eHepril 3 po3mmpeHnM noteHmianoM Kopaema. IToTiM #oro BUKOpUCTOBYBaNM JUIsi OOYMCICHHS Mac-

CHEKTPIB BAXKKMX ME30HIB, TAKNX SIK YapMOHiil (cc ) 1 60oTTOHIH (bb ), a TaKkoXX BaXKKUX 1 JIETKMX ME30HIB, TakHX sIK bottom-charm
(bc) i charm-strange (cs) Ans pi3HUX KBAaHTOBHX CTaHiB. Bynm B34Ti 10 yBaru, ABa BUHATKOBHX BHUIIAIKH, Taki SIK HOTEHI[aTH

Kynona ta KopHemna, ko fesiki 3 mapaMeTpiB MOTeHIIaTy OyJid BCTAHOBIIEHI Ha HyJb. [loTouHMi moTeHIian 3a0e3neuye Xopori
pe3ybTaTH B TOPIBHSHHI 3 EKCIEPUMCHTAJIBHUMH JAaHUMH Ta POOOTOI0 IHINMX JOCHIIHUKIB 3 MaKCHMAaJIbHOI MOXHOKOI Y
0.0065 GeV .

Kuarouosi cnoBa: nomenyian Kopuena; pienanus LLpedineepa; Ilpasuno mounoeo keanmyesanns, Mezonu



