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The energy eigenvalues with the Extended Cornell potential were obtained by analytically solving the radial Schrödinger equation 
using the Exact Quantization Rule technique. It was then used for computing the mass spectra of the heavy mesons like charmonium 
( cc ) and bottomonium ( bb ) as well as heavy-light mesons such as bottom-charm ( )bc and charm-Strange ( )cs  for various 
quantum states. Two exceptional cases such as the Coulomb and Cornell potentials, were taken into consideration when some of 
the potential parameters were set to zero. The current potential offers good outcomes when compared to experimental data and the 
work of other researchers with a maximum error of 0.0065 GeV . 
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1. INTRODUCTION 
The development of the radial Schrödinger equation (SE) in quantum mechanics and its solutions plays a 

fundamental role in many fields of modern physics. The study of the behavior of quite a lot of physical problems in 
physics requires the solving of the SE. The solutions can be well-known only if we know the confining potential for a 
particular physical system [1-4]. The theory of quantum chromodynamics (QCD) which is described by the meson system 
is mediated by strong interactions [5]. The heavy mesons are the constituents of quark and antiquark such as charmonium 
and bottomonium that are considered as the non-relativistic system described by the SE [6]. In recent times, researchers 
have obtained the solutions of the SE and Klein-Gordon equation (KGE) with the quarkonium interaction potential model 
such as the Cornell or the Killingbeck potentials [7-9]. The Cornell potential is the sum of the Coulomb plus linear 
potentials. The Cornell potential and its extended form have been solved with SE with different analytical methods 
[10,11]. The exact solutions of the SE with some potentials are solvable for 0l  , but insolvable for any arbitrary angular 
momentum quantum number 0l  . In this case, several approximate techniques are employed in obtaining the solutions. 
Example of such techniques include, the asymptotic iteration method (AIM) [12], the Nikiforov-Uvarov functional 
analysis (NUFA) method [13-17] the Laplace transformation method [18], the Nikiforov-Uvarov (NU) method [19-24], 
the series expansion method (SEM) [25-27], analytical exact iterative method (AEIM) [28], WKB approximation method 
[29-31] and others [32,33]. 

Recently, the mass spectrum of the quarkonium system has been studied by researchers [34,35]. For instance, Vega 
and Flores [36] obtained the solution of the SE with the Cornell potential via the variational method and super symmetric 
quantum mechanics (SUSYQM). Ciftci and Kisoglu [37] addressed non-relativistic arbitrary l -states of quark-antiquark 
through the Asymptotic Iteration Method (AIM). An analytic solution of the N-dimensional radial SE with the mixture 
of vector and scalar potentials via the Laplace transformation method (LTM) was studied by [18]. Their results were 
employed to analyze the different properties of the heavy-light mesons. Also, Al-Jamel and Widyan [38] studied heavy 
quarkonium mass spectra in a Coulomb field plus quadratic potential by employing the Nikiforov-Uvarov (NU) method. 
In their work, the spin-averaged mass spectra of heavy quarkonia in a Coulomb plus quadratic potential is analyzed within 
the non-relativistic SE. In addition, Al-Oun et al. [39] examined heavy quarkonia characteristics in the general framework 
of a non-relativistic potential model consisting of a Coulomb plus quadratic potential. Furthermore, Omugbe et al. [29] 
solved the SE with Killingbeck potential plus an inversely quadratic potential model via the WKB method. They obtained 
the energy eigenvalues and the mass spectra of the heavy and heavy-light meson systems. In addition, Inyang et al. [40] 
obtained the KGE solutions for the Yukawa potential via the NU method. They obtained energy eigenvalues both in the 
relativistic and non-relativistic regimes, and the results were then applied to calculate heavy-meson masses of 
charmonium cc  and bottomonium bb . Ibekwe et al. [41] solved the radial SE with an exponential, generalized, harmonic 
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Cornell potential via the series expansion method. They applied the bound state eigenvalues to study the energy spectra 
for CO, NO, CH and N2 diatomic molecules and the mass spectra of heavy quarkonium systems. 

Therefore, in this present work, we aim at studying the SE with the extended Cornell potential via the Exact 
quantization rule (EQR) to obtain the mass spectra of heavy mesons such as charmonium ( )cc , bottomonium ( )bb  and 
the heavy–light mesons such as the charm-Strange ( )cs and bottom-charm ( )bc .The extended Cornell potential (ECP) 
takes the form [29]. 

 2 32
0 1 2( )V r r r

r r


      (1) 

where 0 1 2 3,  ,    and    are potential strength parameters. The second term in Eq. (1) is a linear term for confinement 
feature and the third term is the Coulomb potential that describes the short distance between quarks. While the first and 
the last terms are quadratic and the inverse quadratic potentials. 

It is important to note that if we set 0 1 3 0     , the (ECP) reduces to the Coulomb potential also, if we set 

0 3 0    the (ECP) reduces to the standard Cornell potential. The paper is organized as follows: in section 2, the brief 
EQR formalism is presented. Section 3, the analytical solution of the bound states of the SE is solved via the EQR. In 
section 4, we present the results of the mass spectrum of the mesons. Finally, in section 5, the study is concluded. 
 

2. EXACT QUANTIZATION RULE FORMALISM 
In this section, we give a brief review of exact quantization rule. The details can be found in [42.43]. It is a well 

known fact that, in one dimension, the SE is given as: 

  
2

2 2

( ) 2 ( ) ( ) 0nl
d x E V x x

dx
    


 (2) 

Equation (2) can be written in the following form: 

 2 2( ) ( ) ( ) 0x x k x      (3) 

with 

  2

2( ) ( )nlk x E V x
 


 (4) 

where ( ) (x) / (x)x    is the logarithmic derivative of the wave function,  is the reduced mass of the quarkonium 
particles, ( )k x  is the momentum, and ( )V x  is a piecewise continuous real potential function of .x  The phase angle of 
the SE is the logarithmic derivative ( )x  . From Eq. (3), as x  increases across a node of wave function ( ),  ( )x x   
decreases to  , jumps to , and then decreases again. We can generalize EQR to the three – dimensional radial SE 
with spherically symmetric potential by simply making the replacement x r  and ( ) ( )effV x V r [42,43]. 
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   (5) 
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2( ) (r)nl effk r E V     
 (6) 

where   a br and r are two turning points determined by ( ).   1effE V r N n    is the number of the nodes of ( )r  in the 
region ( )nl effE V r  and is larger by 1 than the n  of the nodes of the wave function ( )r . The first term N  is the 
contribution from the nodes of the logarithmic derivatives of the wave function, and the second one is called the quantum 
correction. It was found that for all well-known exactly solvable quantum systems, this quantum correction is independent 
of the number of nodes of the wave function. This means that it is enough to consider the ground state in calculating the 
quantum correction ( )cQ , i.e. 

 0

0

( )
b

a

r

c o
r

Q k r dr



  . (7) 

To determine the energy eigenvalues, we equate Eqs. (5) and (7). 
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3. APPROXIMATE SOLUTIONS OF THE SCHRÖDINGER EQUATION 
WITH EXTENDED CORNELL POTENTIAL 

 
The SE for two particles interacting via potential 𝑉(𝑟) is given by [44].  

   22

2 2 2

1( ) 2 ( ) ( ) 0
2nl

l ld R r E V r R r
dr r




        




, (8) 

where , ,l r  and   are the angular momentum quantum number, the reduced mass for the quarkonium particle, inter-
particle distance and reduced plank constant respectively. 

We substitute Eq. (1) into Eq. (8) and obtain 
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where 
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We transform the coordinate of Eq. (9) by setting 

 1x
r

 . (11) 

Upon substituting Eq. (11) into Eq. (10) we have 
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To deal with the first and second terms of Eq. (12), we propose the following approximation scheme. We assume 

that there is a characteristic radius 0r  of the meson. Then the scheme is based on the expansion of 1

x


 and 0
2x


 in a power 

series around 0r ; i.e. around
0

1
r

  , up to the second order. This is similar to Pekeris approximation, which helps to 

deform the centrifugal term such that the modified potential can be solved by NU method [45]. 
Setting y x    and around 0y   it can be expanded into a series of powers as: 
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which yields 
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Similarly, 
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. (15) 

We then substitute Eqs. (14) and (15) into Eq. (12) and obtain 

 2
1 2 3( )effV x x x     , (16)

 where 
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. (17) 

The non-linear Riccati equation for ground state is written in terms of the new variable x  as, 
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 2 2( ) ( ) ( )x x x k x    , (18) 

where 

 2
3 2 12

2( )k x x x E         
. (19) 

We now apply the quantization rule to study the potential. To this end we first calculate the turning points and  a bx x , 
which is determined by solving the content of the square bracket of Eq. (19), these yields: 
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From Eq. (20) we have 
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Also, from Eq. (19) we have 

 2 2 1
32

3 3
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 (22) 

Substituting Eq.(21) into Eq.(22) we obtain 

   3
2

2( ) a bk x x x x x


  


 (23) 

where ( )k x is the momentum between the two turning points a bx and x . 
From Eq.(18), since the logarithmic derivative 0 ( )x  for the ground state has one zero and no pole, therefore we 

assume the trial solution for the ground states 

 0 ( )x A Bx    (24) 

Substituting Eq. (24) into Eq. (18) and then solving the non-linear Riccati equation, we obtain the ground state 
energy as 

 
2 2

0 1 2
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  (25) 

Also, we obtain   A and B  as follows 
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Here we choose the positive sign in front of the square root for B .This is as a result of the logarithmic derivatives
0 ( )x  which decreases exponentially, which is required. We now calculate the quantum correction and obtain 
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From Eq. (27) we have 



57
Theoretical Investigation of Meson Spectrum Using Exact Quantization Rule Technique          EEJP. 1 (2023)

 
     

3
2 2

2 22
b

a

a ba bx

x a b a b

x xAx xA
BB dx

x x x x x x x x x x


   
  

  
    
 
 


 (27a) 

We utilized the integrals given by Appendix A, and obtain 

 
 

 3
2

1
2 22 2

1

a b
a b a b

a b

a ba b a b

x xAx xA x x
B x xB

x xx x x x




                
  


 (27b) 

We substitute Eq. (21) into Eq.(27b) and obtain 
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Inserting Eq. (27c) into Eq. (5) we obtain 
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Furthermore, the integral of Eq.(7) is obtain as 
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From Eq. (28) we have 
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Using Eq. (29), Eq. (28a) becomes 
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We substitute Eq. (21) into Eq. (28b) and obtain 
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In order to obtain the integral of Eq.(28a), we used maple software to obtain the following useful integral, which is not 
available in integral table 
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By equating Eqs.(27d) and (28c) ,and substituting Eqs.(17) and (26) ,setting 1  we obtain the energy equation for 
extended Cornell potential as 
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3.1. Special case 
In this subsection, we present some special cases of the energy eigenvalues of the ECP. 

1. When we set 0 1 3 0      we obtain energy eigenvalues expression for Coulomb potential 

 
2

2
22( 1)nlE
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 (31) 

2. When we set 0 3 0    we obtain energy eigenvalues expression for Cornell potential 
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The result of Eq. (32) is consistent with the result obtained in Eq. (30) in Ref. [9] 
 

4. RESULTS 
Using the relation in Ref. [46], we calculate the mass spectra of the heavy quarkonia such as charmonium and 

bottomonium, and heavy-light mesons.  

 2 nlM m E    (33) 

where m is quarkonium bare mass and nlE is energy eigenvalues. 
By substituting Eq. (30) into Eq. (33) we obtain the mass spectra for extended Cornell potential for heavy quarkonia as, 
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We also obtain the mass spectra of the special case of Eq. (32) for heavy-light mesons by substituting into Eq.(33) 
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We test the accuracy of the predicted results, by using the Chi square function defined by [47] 

 
 Exp. .

2

1

1
Theo

n i i

i i

M M
n







 , (36) 

where n  runs over selected samples of mesons, Exp.
iM  is the experimental mass of mesons, while .Theo

iM  is the 
corresponding theoretical prediction. The i  quantity is experimental uncertainty of the masses. Intuitively, i  should 
be one. The tendency of overestimating Chi square value is that, it reflects some mean error. 

We calculate mass spectra of charmonium and bottomonium for states from 1S to 1F, as presented in Tables 1 and 2. 
Also calculated the mass spectra of heavy-light mesons for states from 1S to 1D as presented in Tables 3 and 4. The free 
parameters of Eq. (34) were obtained by solving two algebraic equations of mass spectra in Eq. (34) for charmonium. 

We followed the same procedure for bottomonium and obtained the free parameters of mass spectra. Equation (35) 
was fitted with experimental data of mass spectra of 1S, 2S to obtain the free parameters for bottom-charm ( )bc  and 
charm-strange ( )cs  heavy-light mesons. 

For bottomonium bb , charmonium cc  and strange systems we adopt the numerical values of bm   4.823 GeV , 
cm   1.209 GeV  and 0.419 sm GeV , and the corresponding reduced mass are b   2.4115 GeV , c  0.6045 GeV
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and 0.2095 s GeV  , respectively [48-50]. We note that the theoretical prediction of the mass spectra of charmonium 
and bottomonium are in excellent agreement with experimental data and the work of other researchers like; 
Refs.[28,9,18,37,41] as shown in Tables 1 and 2. Also , the results for charm-strange meson presented in Table 4 , are in 
excellent agreement with the work of other authors in Refs.[28,37] Furthermore, in Table 3 ,the mass spectra of the 
bottom-charm meson are very close to the ones obtained in Refs[28,18,37] with other methods and experimental data 
indicating an improvement compared to the other methods. The maximum error in comparison with experimental data is
0.0065 GeV . 
Table 1. Mass spectra of charmonium in (GeV) ( cm =1.209 GeV,   = 0.6045 GeV, 1 0.001 GeV  , 2 14.94 GeV  , 0 0.02 GeV  , 

3 15.04 GeV   , 1.7 GeV  ) 

State Present work AEIM[28] NU[9] AIM[37] LTM[18] SEM[41] Experiment[48,49]
1S 3.096 3.0954 3.095 3.096 3.0963 3.095922 3.097 
2S 3.686 3.5673 3.685 3.686 3.5681 3.685893 3.686 
1P 3.295 3.5677 3.258 3.214 3.5687 - 3.525 
2P 3.802 4.0396 3.779 3.773 3.5687 3.756506 3.773 
3S 4.040 4.0392 4.040 4.275 4.0400 4.322881 4.040 
4S 4.269 4.5110 4.262 4.865 4.5119 4.989406 4.263 
1D 3.583 4.0396 3.510 3.412 4.0407 - 3.770 
2D 3.976 - - - - - 4.159 
1F 3.862 - - - - -  - 

Table 2. Mass spectra of bottomonium in (GeV) ( bm = 4.823 GeV,   = 2.4115 GeV 1 0.798 GeV  , 2 5.051 GeV  , 0 0.02 GeV  ,

3 3.854 GeV   , 1.5 GeV  ) 

State Present work AEIM[28] NU[9] AIM[37] LTM[18] SEM[41] Experiment[48,49]
1S 9.460 9.74473 9.460 9.460 9.745 9.515194 9.460 
2S 10.023 10.02315 10.022 10.023 10.023 10.01801 10.023 
1P 9.661 10.02406 9.609 9.492 10.025 - 9.899 
2P 10.138 10.30248 10.109 10.038 10.303 10.09446 10.260 
3S 10.355 10.30158 10.360 10.585 10.302 10.44142 10.355 
4S 10.567 10.58000 10.580 11.148 10.580 10.85777 10.580 
1D 9.943 10.30248 9.846 9.551 10.303 - 10.164 
2D 10.306 - - - - - - 
1F 10.209 - - - - - - 

Table 3. Mass spectra of bottom-charm ( )bc  in (GeV) ( bm = 4.823 GeV, 1.209 cm GeV , 1 0.202 GeV  , 2 1.213 GeV  ,
0.371 GeV  ) 

State Present work AEIM[28] LTM[18] AIM[37] Experiment[50] 
1S 6.274 6.2774 6.2770 6.277 6.275 
2S 6.845 7.0376 7.0372 6.814 6.842 
3S 7.125 7.7978 7.7973 7.351 - 
4S 7.283 7.0386 - 7.889 - 
1P 6.519 7.7987 7.0381 6.340 - 
2P 6.959 - 7.7983 6.851 - 
1D 6.813 - - 6.452 - 

Table 4. Mass spectra of charm-strange (cs)  meson in (GeV) ( 0.419 sm GeV , 1.209 cm GeV , 1 0.202 GeV  , 2 2.046 GeV  ,
0.561 GeV  ) 

State Present work AEIM [18] AIM [37] Experiment [48, 51] 
1S 1.969 1.968 2.512 1.968[48] 
2S 2.709 2.709 2.709 2.709[51] 
3S 2.913 2.932 2.906 -
4S 2.998 - 3.102 -
1P 2.601 2.565 2.649 -
2P 2.877 - 2.860 -
1D 2.863 2.857 2.859 2.859[51] 

 
5. CONCLUSION 

In this study, we used the EQR technique to derive the approximate Schrödinger equation solutions for energy 
eigenvalues with extended Cornell potential. Consideration was given to two particular instances that lead to Cornell and 
Coulomb potentials. We use the current findings to determine the masses of heavy mesons like charmonium and 
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bottomonium as well as the heavy-light mesons such as bottom-charm and charm-strange for various quantum states. We 
noticed that the mass spectra of the meson systems reported in this current work are also consistent with those of other 
researchers and are enhanced. This research could be expanded to study the thermodynamic properties of the mesons. 

 
Appendix A: Some Useful Standard Integrals 
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ТЕОРЕТИЧНЕ ДОСЛІДЖЕННЯ СПЕКТРУ МЕЗОНІВ ЗА МЕТОДИКОЮ ПРАВИЛА ТОЧНОГО КВАНТУВАННЯ 

Етідо П. Іньянгa, Фіна О. Фейтпрайзc, Джозеф Амаджамаc, Едді С. Вільямb, Еффіонг О. Обісунгc, Джозеф Е. Нтібіb 
aФізичний факультет, Національний відкритий університет Нігерії, Джабі, Абуджа, Нігерія 

bГрупа теоретичної фізики, фізичний факультет, Університет Калабара, P.M.B 1115, Калабар, Нігерія 
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Шляхом аналітичного розв’язання радіального рівняння Шредінгера за допомогою техніки точного правила квантування були 
отримані власні значення енергії з розширеним потенціалом Корнелла. Потім його використовували для обчислення мас-
спектрів важких мезонів, таких як чармоній ( cc ) і боттоній ( bb ), а також важких і легких мезонів, таких як bottom-charm 
( )bc  і charm-strange ( )cs  для різних квантових станів. Були взяті до уваги, два виняткових випадки, такі як потенціали 
Кулона та Корнелла, коли деякі з параметрів потенціалу були встановлені на нуль. Поточний потенціал забезпечує хороші 
результати в порівнянні з експериментальними даними та роботою інших дослідників з максимальною похибкою у
0.0065 GeV . 
Ключові слова: потенціал Корнела; рівняння Шредінгера; Правило точного квантування; Мезони 


