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In this work, we obtain solutions of the deformed Schrodinger equation (DSE) with improved internal energy potential at a finite
temperature model in a 3-dimensional nonrelativistic noncommutative phase-space (3D-NRNCPS) symmetries framework, using the
generalized Bopp’s shift method in the case of perturbed nonrelativistic quantum chromodynamics (pNRQCD). The modified bound
state energy spectra are obtained for the heavy quarkonium system such as charmonium cc and bottomonium bb at finite temperature.
It is found that the perturbative solutions of the discrete spectrum are sensible to the discreet atomic quantum numbers (j, [, s, m) of
the QQ (Q = c, b) state, the parameters of internal energy potential (T, as(T), mp(T), B, c), which are the Debye screening mass
mp(T), the running coupling constant ag(T), the critical temperature 8, the free parameter ¢ in addition to noncommutativity
parameters (@,5). The new Hamiltonian operator in 3D-NRNCPS symmetries is composed of the corresponding operator in
commutative phase-space and three additive parts for spin-orbit interaction, the new magnetic interaction, and the rotational Fermi-
term. The obtained energy eigenvalues are applied to obtain the mass spectra of heavy quarkonium systems (cc and bb). The total
complete degeneracy of the new energy levels of the improved internal energy potential changed to become equal to the new value
3n? in 3D-NRNCPS symmetries instead of the value n? in the symmetries of 3D-NRQM. Our non-relativistic results obtained from
DSE will possibly be compared with the Dirac equation in high-energy physics.
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1. INTRODUCTION

It is well known that the ordinary Schrodinger equation (SE) describes the dynamics of quantum systems at low
energy without considering the temperature effect. Recently, the finite temperature SE allows us to study quantum systems
such as superconductivity mechanisms and Bose-Einstein condensates at an arbitrary temperature, and when the
temperature is equal to zero, it becomes identical to the SE [1]. Very recently, many authors have studied the finite-
temperature SE for hot quark-gluon plasma, heavy quarkonia in quark-gluon plasma, (electron and proton systems), and
so on [2-5]. The problem of calculating the energy spectra of the SE with various types of potentials such as the internal
energy potential and the Cornell potential at finite temperature has been attracting interest in recent years [2-8]. Abu-
Shady has studied heavy-quarkonium mesons (HLM) using an internal energy potential and obtained wave function and
energy spectra by solving SE using AEIM when the finite temperature is included [7]. The main objective is to develop
the research article [7] and expand it to the large symmetry known by nonrelativistic noncommutative phase-space
(NRNCPS) to achieve a more accurate physical vision so that this study becomes valid in the field of nanotechnology.
Noncommutative quantum mechanics is an old idea that has been extensively discussed in the literature. It should be
noted that noncommutativity (NC) was first introduced by Heisenberg in 1930 [9] and then by Snyder in 1947 [10]. It has
appeared since the beginning of ordinary quantum mechanics. There has been a growing interest in this field since the
discovery of string theory and the modified uncertainty principle. In addition, the NC idea is suggested as a result of the
production of quantum gravity. It would provide a natural background for finding a suitable solution for a possible
regularization of QFT [11-23]. During the past three decades, the NC theory has been the focus of extensive investigation
and has produced a very interesting new class of quantum field theories with intriguing and occasionally unexpected
properties [24]. Thus, the topographical properties of the NC space-space and phase-phase have a clear effect on the
various physical properties of quantum systems and this has been a very interesting field in many fields of physics. The
idea of noncommutativity has been studied in many articles, such as [24-36]. On the other hand, we explore the possibility
of creating new applications and more profound interpretations in the sub-atomics and nanoscales using a new version of
the improved internal energy potential, which has the following form:
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We refer to this term L@ and the parameters (Al, A,A,A, D3, my, (T)) in the materials and methods section. The
new structure of 3D-NRNCPS is based on new canonical commutation relations in both Schrodinger SP and Heisenberg
HP, respectively, as follows (Throughout this paper, the natural units ¢ = # = 1 will be used) [36-46]:

P o A . o A effOuv
[xupy] = i6h > [£,55,] =[O Py (D)] = i8herr = |AR,4P,| = hf%, Q.1
and
] =0 [2,%] = [2,0:2,0)] =6, = [42,4%,] = 2|, (2.2)
and
] =0 [pip] = [0.0:5, (0] = B = |4p4p,] = [P, 23)

the indices u,v = 1.3, hesy equal (1 + %) denote the effective Planck constant. This means that the principle of
uncertainty of Heisenberg is generalized to include another two new uncertainties related to the positions ()?M, fv) and the
momenta (ﬁ#, ﬁv), in addition to the ordinary uncertainty (J?#,ﬁv). The non-commutativity of the phase-space is based
on the deformed Heisenberg-Weyl algebra, which is represented by the above commutation relations. here 6,,,, and EHV
are invertible antisymmetric real constant (3 % 3) matrices which satisfied 8,,, = &, 0 and Euv = ewg, with £, = —¢g,
and g,,, = 0, here (6,5) are interpreted as being new constants in the quantum theory. The very small two parameters

(6*Y and EW) (compared to the energy) are elements of two antisymmetric real matrixes, parameters of non-
commutativity, and (*) denote the Weyl Moyal star product, which is generalized between two arbitrary functions
(f,9) (x,p) to the new form f(%,9)G(X,p) = (f * g)(x, p) in the 3D-NRNCPS symmetries as follows [47-55]:

(f9) .p) = (f * p) = (fg — 560335 g — 50" 0L folg) Cxp). 3)

The second and third terms in the above equation are the present effects of (space-space) and (phase-phase)
noncommutativity properties. However, the new operators ¢(t) = (J?# vﬁ#)(t) in HP are depending on the
corresponding new operators & = X, V P, in SP from the following projection relations:

x(©) = exp (At = ) xexp (3 Ayt — 1)) = x(t)—exp< lAG to)>*;2*exp <_$Ari£(t—to)>, )

ax(e

Here y = x, V p, andy(t) = (x# V p,)(t). The dynamics of the new systems = = " ) are described by the following motion

equations in 3D-NRNCPS symmetries:

d)((t) [ (t) lp]+af(t) d){(t) [E(t) ]+0)((t)' (5)

The two operators (H,2and ﬁip) are present as the quantum Hamiltonian operators for the internal energy potential and
the improved internal energy potential in the 3D-NRNCPS symmetries and their extension. This paper consists of five
sections and the organization scheme is given as follows: In the next section, the theory part, we briefly review the SE
with internal energy potential at finite temperature based on refs. [7-8]. Section 3 is devoted to studying the DSE by
applying the generalized Bopp's shift method and obtaining the improved internal energy potential and the modified spin-
orbit operator at finite temperature. Then, we applied the standard perturbation theory to find the quantum spectrum of
the ground state, the first excited state, and the (n, [, m)"excited state produced by the effects of modified spin-orbit and
newly modified Zeeman interactions. In the fourth section, a discussion of the main results is presented in addition to
determining the new formula for determining the mass spectra of the quarkonium system in the 3D-NRNCPS symmetries
framework. Finally, in the last section, a summary and conclusions are presented.

2. THEORY
2.1. Overview of the eigenfunctions and energy eigenvalues for the internal energy potential at finite temperature
in the 3D-NRNCPS symmetries framework
As already mentioned, our objective was to obtain the spectrum of the improved internal energy potential at finite
temperatures. To achieve this goal, it is useful to summarize the time-independent Schrédinger equation for the internal
energy potential at a finite temperature [7-8]:

Vip(r) = Fy(r,T) - T 222D, (6)

where F, (r, T) is determined from:

Fi(r,T) = (er = 3250) exp(—mp (T)7),
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and my, (T) is the Debye screening mass, ¢ is a free parameter, the running coupling constant

—_ a0
Ag (T) = 11-2/3ng In(T/BTc)’

Here ng, T, and f are the number of quark flavors, the critical temperature, and (0,104 % 0.009), respectively, the

relative spatial coordinate between the two quarks is r. By substituting F; (r, T) into Eq. (6), we obtain the internal
energy potential that satisfies the following equation at a finite temperature [7-8]:

Vip(r) = (Dz + % + D,r + Dsrz) exp(—mp(T)7r), @)
where
d; = _Z#Dz = BuT as(T) de(T),
16#“(11 2/3nf)
= —2uD
ds HYs = aS( ) 3[11-2/3n; In(1/BTO]>
d,=—-2uD, = —2,uc R
and
ds = —2uDs = 2ucT 20,
If we insert this potential into the Schrédinger equation, the radial part functlon Uy () = M is given as:
d?Up(r) | 2dUp(r) D l(l+1)

Sol) 4 28000 4 2 {E = (D; + 2+ Dyr + Dgr?) exp(—=mp (1) = =2} U, (r) = 0, ®)

and

a? Rn D 1(1+1
l(r) +2u [E (D2 +24Dyr+ Dsrz) exp(—mp(T)r) — %] Ru(r)=0. (9

The reduced mass p for the quarkomum particle for example (ccandbb) equal mmq:nmﬁ

Wi (1,6, @) = 2 ¥™(9, ¢) is given by [7]:

—. The complete wave function
q

Prim (1,6, $) = Ny ITZ; (r — a) r®~ exp(=1/2ar® — r) " (6, ). (10)
Also, the energy E,,; of the potential in Eq. (7) is determined from the following equation:
En = 5-[a(1+2(8 +n) = B2 = dy + mp(T)d3)], (1

where N,; is a normalizing constant, n is a natural number accounting for the radial excitation, while [ is a non-negative
integer number that represents the orbital angular momentum,

d
az\]d4mD_d5_72mD2

d,mp —d, — dym?
B= 21D 4 3d D >
2\/d4mD_d5_72mD2

1
B =§(1iJ1 Y4l +1/2)2 — 1/4)

3. MATERIALS AND METHODS
3.1. DSE solution for an improved new internal energy potential at finite temperature in pNRQCD
In this subsection, we shall give an overview of a brief preliminary investigation of the improved internal energy
potential in 3D-NRNCPS symmetries. To perform this task, the physical form of DSE, it is necessary to replace the

-~ Ed
ordinary three-dimensional Hamiltonian operators H, (xw pﬂ), the complex wave function ¥ (r), and energy E,; with

. - .
the new three Hamiltonian operatorsH,”. (J?W ﬁﬂ), the new complex wave function¥? (f”), and new valuesE,", respectively.

In addition to replacing the ordinary product with the Weyl-Moyal star product, which allows us to construct the DSE in
the 3D-NRNCPS symmetries framework as [55-60]:

a2 Rnl(r) L(1+1)

D
+2u [Enl (Dz + 73 + D,r + Dsrz) exp(—mp(T)r) — e

]*Rnl(r) =0. (12)

Bopp’s shift method [70-72] has been successfully applied to relativistic and nonrelativistic noncommutative
quantum mechanical problems using the modified Dirac equation (MDE) [73-81], the modified Klein-Gordon equation
(MKGE) [36-38, 48-61] and DSE [46, 64-69]. This method has produced very promising results for several situations of
physical and chemical interest. The method reduces MDE, MKGE, and DSE to the Dirac equation, Klein-Gordon
equation, and Schrédinger equation, respectively, under two simultaneous translations in space and phase. It is based on
the following new commutators [46, 64-72]:
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[f#(t), ﬁv(t)] = ia;wheff
[2,%,] = [£,(0), %,(®)] = i6,, . (13)
[ﬁ;u ﬁv] = [ﬁu(t)’ ﬁv(t)] = lg;w

The new generalized positions and momentum coordinates (3?#,;31,) in 3D-NRNCPS are defined in terms of the
commutative counterparts (xw pv) in ordinary quantum mechanics via, respectively [46, 55-60]:

(x,w pv) = (k\w ﬁv) = < pv: Put __xv) (14

The above equation allows us to obtain the two operators (#2,p2) in the 3D-NRNCPS symmetries framework [28-31]:
(r%,p?) = (7%4,p%) = <r2 - LO,p? +16 ) (15)

The two couplings L® and L@ are (Lx012 +L,0,3 + L2913) and (L,ﬁlz + Ly§23 + L2513), respectively, and (L,,
Ly andL,) are the three components of the angular momentum operatorz while 6, equal 8,,/2. Thus, the reduced
Schrédinger equation (without star product) can be written as:

d?Rp (1) A
et 2 (E -V () Ru(r) = 0. (16)

The new operator of HamiltonianH,if; (x#, pv) can be expressed as:

. 52
Ho (%, B) = 5+ Vip (), (17

6 gura . . . . N
here # equal \/ (x” - %pv) (x/‘ - Tp“)' The effectively improved internal energy potential Vi;f f () can be
expressed in 3D-NRNCPS symmetries:

1(1+1)
2uf2’

v () = (D2 +22 4 D, + Dsfz) exp(—mp(T)7) + (18)

Again, apply Eq. (15) to find the three terms (%,DJ’, Ds#?andexp(—mp(T)#)), which will be used to determine the

effective improved internal energy potential Vi;f f (), as follows:

%a%=—+—L@+0(02) (19.1)
Dyr = Dy = Dyr — —L('r) +0(0?), (19.2)
DST‘Z - D5f‘2 = DST‘Z - D5L@ + 0(92), (19.3)
1 1 1 1
(D) 1D 1 L 11 g 1 0(62), (19.4)
and
R ™72
exp(=mp(T)7) = exp(=mp(1)F) = exp(=my (1)) = "2 L6 exp(~mp (T)1). (19.5)
Thus, we have the following.
D D X D Dy 72 7
fexp(—mb (Tr) - fexp(—mD (MH#) = (73 + 2—33L@) (1 - mg—rLO) exp(—mp(T)7T), (20.1)

D,rexp(—mp(T)r) - D,7 exp(—mp(T)F) = (D4r -= L@) (1 - mg—ing)) exp(—mp(T)r), (20.2)

D12 exp(—mp(T)r) — Ds#? exp(—mp (T)F) = (Dsrz - DSLQ) (1 - mg—iT)L(r)) exp(—mp(T)1), (20.3)
and

D, exp(—my(T)r) = Dy exp(—mp(T)?) = D, exp(—mp(T)r) — D, 22D exz(r_mD(T)r) LO. (20.4)

which gives immediately at the first order of the infinitesimal vector parameter @ as follows:

%exp(—mD(T)f) = %exp(—mD(T)r) (mD(T)D3 exp(—mp(T)r) + w) LO +0(6?%), (1.1

D exp(=my (T)F) = Dyr exp(=mp(T)r) — (P22 exp(—my (T)r) - 222D [+ 0(67), (21.2)
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D,# exp(—my(T)?) = Dyr exp(—mp(T)r) — (w exp(—mp(T)r) — M) L@ +0(6%), (213)

and

Dy exp(—mp(T)7) = Dy exp(—mp(T)r) — D, "2DEEERD 1 4 0(62), 21.4)

Substituting, Eq. (21) in Eq. (18), gives the new improved internal energy potential, we obtain the effective improved
internal energy potential V;;f T (#) in 3D-NRNCPS symmetries as follows:

¢ 10
Vil () = V() + 2 + (B2 - 22+ 22— 27 = 22 exp(=my (D)) + 5 “UlLe +0(0?).  (22)
with
Ay = mp(T)Ds — Dymp(T) — Dy,
A, = mp(T)Ds,
A3 = mD(T)DALﬁ
A4_ = mD(T)DS )

By making the above substitution equation in Eq. (17), we find the global our working new modified Hamiltonian
operator H,” (#) in 3D-NRNCPS symmetries:

HE () = Hyy (%, 1) + Hpo (1,0, 6), (23)

hereH;, (x,u Pv) is just the ordinary Hamiltonian operator with internal energy potential in 3D-NR quantum mechanics
symmetries:

_r Ds 2
Hip(x,,py) = t (Dz +—+ Dyr + D7 ) exp(—mp(T)r), (24)

while the rest part H, ert(r 0,0), which we called the perturbative Hamiltonian operator, is proportional to two

-
-

infinitesimals couplings LO and L(-)

-

’““)] Lo + 25)

pert(r 9 9) - [f(T' AL'D3) +
here f(r, A;, D) is determined by:

Ay | D3 A

f(r,A;,D;) = (ﬂ -2 =S /42—3) exp(—mp (T)r).

2r  2rz = 2r3 2

Thus, we can consider Hp’:m () it as a perturbation term compared with the principal Hamiltonian operator H;, (xu, P u)

in 3D-NRPS symmetries.

3.2. The exact modified spin-orbit operator for heavy-quarkonium systems with improved
internal energy potential in the pNRQCD system:
In this subsection, we apply the same strategy that we have seen exclusively in some of our published scientific

4o

works [46, 55-60, 73-76]. Under such a partlcular choice, one can easily reproduce both couplings (LO and LB) to the
new physical forms (gS@LS and gSHLS) respectively. Thus, the perturbative Hamiltonian operator H., ert(r 0,0) for

the heavy quarkonium systems will be transformed into a modified spin-orbit operator HSO (r,0,0), under the improved
internal energy potential at a finite temperature as follows:

1(1+1)

HE (r,0,0) = g, {f(r,Ai,Dg)@ + 0+ %} LS, (26)

— -2 — 2 = 2
here @ and 6 are equals \/9122 + 0,3% + 0,3% and \/912 + 60,3 + 0,3 , respectively, andg; is a new constant, which

plays the role of strong coupling in quantum chromodynamics or QCD theory, we have chosen two vectors (E) and 6)

parallel to the spin-s of the heavy quarkonium system. Furthermore, the above perturbative terms H,, ert(r) can be

rewritten to the following new form:

1(1+1)
4

HX(r,0,0) = % [f(r,Ai,D3)0 + 0+ %] G2, @7

where G2 = J% — L2 — §? while J and S are the defined operators of the total angular momentum and spin of quarkonium

systems. The operator H'%(r, @, §) traduces the coupling between spin-orbit interaction LS. The set (H(r, 0, 8), J2, L2,
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S%and J,) forms a complete set of conserved physics quantities. For spin-1, the eigenvalues of the spin-orbit coupling
operator are

k(l)E%(j(/’+1)—l(l+1)—2)

corresponding j = [ + 1 (spin great), j = | (spin middle), and j = | — 1 (spin little), respectively, then, one can form a
diagonal (3 x 3) matrix for the improved internal energy potential in 3D-NRNCPS symmetries, with diagonal
elements(Hj lp)ll (HE ,, and (HE 5 are given by:

i 1(1+1) 0) ...
(H2),, = gekr (D {f(r,Al-, D)0 + g +Z} it =141, (28.1)
i 1(1+1) 0] ...
(Hsp),, = gsk2 (D) {f (r, A, D3)0 + =226 +Z} ifj =1, (28.2)
and ~
(Hgp),, = gsks() {f (r, 4, D)0 + g 4 %} ifj=1-1. (28.3)

Here (kl D), k, (D), ks (l)) are equals %(l —2,—21 — 2), respectively, and j is the total quantum number. The non-null

diagonal elements ((H S"f,’)n, (Hsig)zzand (H m)33) for the modified Hamiltonian operator H - (7) will change the energy
values E,,;by creating three new values:

EP = (#(r,0,¢) |(HD), | ¥(.0.9)). (29.1)

EP = (W (r,0,0)|(HD),,| ¥(r.6,0)). (29.2)
and _ _

EP = W(r,0,9) |(HD),,|¥(.0,4)). (29.3)

We will see them in detail in the next subsection. After profound calculation, one can show that the new radial
functionR,,; (r)satisfies the following differential equation for the improved internal energy potential:

d?Ry,
oDt 2| By = Vi (r) —

dr?2

z(z+1)

_ (+1) 72 Le
_[f(r, Ay, Dy) + 1L+ 1)r4]LO — D L6 — 22| R () = 0.30)

Through our observation of the expression of H i (r,8,0), which appears in equation (25), we see it as

pert
proportionate to the two infinitesimals parameters (@ andd), thus, in what follows, we proceed to solve the modified
radial part of the DSE that is, equation (30) by applying standard perturbation theory to find an acceptable solution at the
first order of two parameters @ and 8. The proposed solutions for DSE under improved internal energy potential include
energy corrections, which are produced automatically from two principal physical phonemes’, the first one is the effect
of modified spin-orbit interaction and the second is the modified Zeeman effect while the stark effect can appear in the
linear part of improved internal energy potential at finite temperature model.

3.3. The exact modified spin-orbit spectrum for a heavy-quarkonium system under improved internal energy
potential in pNRQCD
The purpose here is to give a complete prescription for determining the energy levels of the ground state, the first excited
state, and (n, [, m)™* the excited state, of heavy quarkonium systems. We first find the corrections (EZ? (k (1), ], 1, n),
mm (k,(D),j,l,n) and Eslf,p(k3 (D), j,1,n)) for heavy quarkonium systems such as (charmonium and bottomonium)
mesons that have the quark and antiquark flavor under a new improved internal energy potential at finite temperature,
which have three polarities up and down j = [ + 1 (spin great), j = [ (spin middle) and j = [ — 1 (spin little), respectively,
at the first order of two parameters (@ and 8). Moreover, by applying the perturbative theory, in the case of perturbed
non-relativistic quantum chromodynamics pNRQCD framework, we obtained the following results:

ESP = goNZky (D [T — a) 1) exp(—ar? — 287) (£ (r, 4, D5)0 + 2

0+ )Zdr, (1.1

1(1+1)

EM™P = g N2k, (1) fM{]_[ L (r—a)ré 1} exp(—ar? — 2pr) (f(r A;,D3)0 + 0+ ) 2dr, (31.2)

l(l+1)

E = giN2ks () fy {TTy(r — @) v5-1Y exp(—ar? — 257) (£ (r, A, D)6 +

We have used the standard identity:

0 + )zdr. (31.3)

f Y0, p)Y (8, $) sin(8) dOdd = 8y Cpmm
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Now, we can rewrite the above equations to a simplified new form:

B Ueryjom 1) = goNzks (D) (0 iy T +10), (32.1)
By (ko jim, ) = gsNZko () (0 B, T + 572, (322)
and
le k 2 n oy o
P (ks jyn D = 9Nk ) (0S8, T + 2 (323)
Moreover, the expressions of the 6-factorsT~"(l = 1,6) are given by:
Th =4 f+w(l'[ L, (r—a) s 1) exp(—ar? — (28 + mp(T))r) rdr, (33.1)
™ = Az f+°o(]_[ L, (r—a)ré 1) exp(—ar? — (28 + mp(T))r) dr, (33.2)
Th =2 f+°°(]_[ L, r—a) 1) exp(—ar? — (28 + mp(T))r) r~dr, (33.3)
] = A4 fﬂo(]—[ L, (r—a)rd" 1) exp(—ar? — (28 + mp(T))r) ridr, (33.4)
Th=-22 +OO(]_[ L, (r—a)rd- 1) exp(—ar? — (28 + mp(T))r) ridr, (33.5)
and
T2 = J (T (= a) 1) exp(—ar? — 2pr) Elr2ar. (33.6)
For the ground state n = 0, the expressions of the 6—fact0rsTl-0(i = E) will be simplified to the following form:
T = %f;wrzs‘l exp(—ar? —er) dr, (34.1)
T = —%Zfomrz‘s‘l‘l exp(—ar? —er) dr, (34.2)
T = %f;mrw‘z‘l exp(—ar? — er) dr, (34.3)
T = — “2—4f0+°°r25+2‘1 exp(—ar? — er) rdr, (34.4)
T = —Az—3f0+°0r25+1‘1 exp(—ar? — er) dr, (34.5)
TO =1(1+1) f0+°0r25‘3‘1 exp(—ar? — 2pr) dr, (34.6)
wheree = 28 + mp(T). It is convenient to apply the following special integral [82]:
0 v 2
v-l. ) 2 _ dx = 21’5 7_ D _7 s 35
.[)xl exp( x )/x)x (22) 2T (v)exp 1) 2\ I 35)
where D_, (\/%_/1) and I'(v)denote the parabolic cylinder functions and the Gamma function. After straightforward
calculations, we can obtain the explicit results:
=4 (Za) 2r2s) exp( )D 25 (v—) (36.1)
—(Za T (26 — 1) exp( )D 251 (= r) (36.2)
r(zs 2) exp( )D 252 (= «—) (36.3)
(Za) z r(zs +2)exp (5) D-csvar (752 (36.4)
T;J =-2 (26 + 1) exp (5) D_zs4e1) (ﬁ) (36.5)
and
— 10+ D)) T (26 — 3) exp( )D (25-3) ( jﬁ) (36.6)

Let us second to obtain the exact modifications (EZ™(ky(1),j,L,n =0), E™P(k,(),j,l,n=0) and
EXP(ky(1),j,1,n = 0)) of the ground state as:
28+1

gip . _ _ 2a) 2z exp(-p?/2a) A
ELP U (D, Ln = 0) = g 2Pl b (1) (070 + 57). (37.1)
28+1

mlp _ _ (2a) z exp(—B?/2a) A
Uea,j,ln = 0) = go =P Jz/_a)kz(l)(QT00+2#), (37.2)

and
26+1

llp _ (2a) 2 exp(-p?/2a) A
$ (D)), Ln = 0) = go o CE A ke (0 (6700 + 57). (37.3)
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with Tyo = X8, TP, For the first excited state n =1, we replace ([T, (r —a;) r5_1)2 by (%% —a,?r?%-2 —

20,7297, with a; = %M the expressions of the 6-factorsT}* (i = R) will be simplified to the following form:

Tl = %f;w(r””‘l — a, 2?7t — 2,121 exp(—ar? — er) dr, (38.1)
T} = =22 [¥7p2641-1 _ g 2p28-1-1 _ 0 4261 oxp(—qr? — er) dr, (38.2)
T = %f;w(rz‘s‘l — a,2r?87271 = 20,7271V exp(—ar? — er) dr, (38.3)
Tl = _%f0+0°(r25+4—1 — a, 2?8+t _ 2q 243 exp(—ar? — er) dr, (38.4)
T = —ﬁf+°°(r25+3‘1 — o, 2?8t — 2q, 72842 ) exp(—ar? — er) dr, (38.5)
and
T¢=11+1) f0+°o(r25_1_1 — a,?r?87371 — 20,7272 V) exp(—ar? — 2Br) dr. (38.6)

Evaluating the integral in Eq. (38) and applying the special integration, which is given by Eq. (33), we obtain the
following results:

T} = {(Za)‘Tr(m +1) exp( )D (25+1) (r) + a2 Q)T T(26 — 1)

exp (%)D_m » (=) 20, 20)" 2r2s) exp (S )D o) (f_)} (39.1)
T} = {(Za)‘Tr(m +1) exp( )D (25+1) (r) + a2 Q)T T (26 — 1)

exp (%) D5 (=) —2a,(2a)"2T(25) exp (S )D o5 (= j_)} (39.2)

T} {(Za)‘Tr(w ~1) exp( )D @5-1) (F) +a2Qa) " Tr(26 - 2)

exp( )D 25-2) (r) —2a,(20)" (26 — 1) exp( )D 25- 1)( )} (39.3)

T} = {(Za)‘Tr(w +4) exp( )D @5+4) ( ) + e, 22a) T (26 +2)
exp (5) D-sen) (1) - T+ e (£)D s (= )}, (39.4)

T = {(Za)‘Tr(w +3) exp( )D @5+3) (é_a) 0 2(2a) "3 726 + 1)
exp (£) Doy (7) ~201 (2a)™ 2 @26 + 2) exp () D_zsea) (%_a)} (39.5)

and
T: = I+ DQa) "2 T(26 — 1) exp (%) Doy (2£) — 10 + Daty T —3)

exp( )D (26-3) (\/_) F(26 2) exp( )D (26-2) (ji) (39.6)

Allow us to obtain the exact modifications (EZ” (k, (1), j, I, n = 1), E™™ (ky (1), j,,n = 1) and EXP (k5 (1), j, l,n =
1)) of the first excited state as follows.

i , ka(l 0
EgP(ey(D,j,bn=1) = %(QTH + 5)’ (40.1)
sk2(D) 6
Egy” (e (D), L = 1) = 2t G Z)’ (40.2)
and
“P _ gsks(l) ﬂ
s, ln=1) = =20 (0T, + 1), (40.3)

with
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_ T(26+3)D_(z543)(By/2/a)
L7 @a)®+3/2) exp(-p2/2a)
I = r(26+1)D_(z541)(By/2/a)
27 @a) 1D exp(-p2/2a) (°

I = r(26+3)D_(z543)(By/2/a)
37 26+3
(2a) 2 exp(-B2/2a)

and Ty, = _, TL. In addition, in the same way, we find the exact modifications (ES® (ky (1), j, 1, n),EM? (k4 (1), j, 1, n)

and EXP (ks (l), j,1,n)) for the excited states (n, [, m)*" of the heavy quarkonium system under the new improved
internal energy potential in the global quantum group symmetry 3D-NRQM:

&Y U (D) Ln = 1) = gsks (DN (0T 1 + 17), (41.1)
ERP (D) Ln = 1) = yk2(ONZ (6T, +5-), (412)

and
ESP Ues (D), Ln = 1) = yks (DNG (0T +12), (41.3)

with Ty, = X8, Tk

3.4. The exact modified magnetic spectrum for heavy quarkonium systems under improved internal energy
potential in pNRQCD
In addition to the important results obtained previously, now we consider another important physically meaningful
phenomenon produced by the effect of the improved internal energy potential at finite temperature on the perturbative

NRQCD related to the influence of an external uniform magnetic field B. To avoid repetition in the theoretical
calculations, it is sufficient to apply the following replacements:

®—- oBand 6 > GB. (42)

Allows us to replace the physical quantities f(r,4;, D;)L0O, 1 and %with corresponding new physical

-

(+1) 72
4

. S —LB . — . Lo .
quantities of (r)LB, o LBando B respectively, here(cando) are two infinitesimal real proportional constants, and

we choose the arbitrary uniform external magnetic field B parallel to the (Oz) axis, which allows us to introduce the new
modified magnetic Hamiltonian H,l,’: (r,0,0) in 3D-NRNCPS symmetries as:

i — 1 z+1) g
Hy (r,28) = = (f(r, Ay D)x + =52 = Z){BY = &, }, (43)
here X, = —SB denote to Zeeman effect in commutative quantum mechanics, while (8%, = BJ — X,) is the new
Zeeman effect. To obtain the exact NC magnetic modiﬁcations of energy for the ground state, the first excited state, and
(n [, m)t" excited states of the heavy quarkonium system E g(m =0,l=0,n=0), Emag(m =—-L+Ll,n= 1) and

mag (m =—1+11, n) we just replace k, () and @(6) in the Egs. (37), (40), and (41) with the following parameters m
and 0 (o), respectively:

28+1
(2a)" 2z exp(—B?/2a) g
9s T zs+1p_ s+ (By2/@) B (GTOO + zu) m, (44.1)

Epag(m ==L ¥LLn = 1) = 22— (oT;, + Z)m, (44.2)

I1=2aq1+a,213

mag(m—Ol—On—O)

and

EP (m="T+Ln) = g,N4B (JTM + i) m. (44.3)
We have—l < m < +I, which allows us to fix (2] 4+ 1) values for discreet numbers m. It should be noted that the
results obtained in Eq. (44) we could find by direct calculation:

By = (P, 0,0)|HE (r,0,D|¥(r,0,0)
that takes the following explicit relation:

oo 1
Emag = N%mB f+ (M, r—a)ré- 1) exp(—ar? — 2pr) {f(r A;,D3)o + (+1)

o+ i} ridr.
2u

(45)
Eq. (45) can be rewritten as follows:
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Emag = 9sN4B (UZ T/ i) m. (46)

The 6-factors Ti“(i = R) are given by Eq. (33). Then we find the magnetic specters of energy produced by the
operator H,” (r, x, @) for the ground state and first excited states repeating the same calculations in the previous subsection.
Having completed the first and second-induced perturbed both spin-orbit interaction and self-magnetic phenomena,
now, for our purposes, we are interested in finding a new third automatically important symmetry for improved internal
energy potential at zero temperature in RNCQM symmetries. This physical phenomenon is induced automatically by the
influence of the perturbative Hamiltonian operator Hpir: °‘(r, x, %), which we can obtain from the initial perturbed

Hamiltonian operator in Eq. (25). We discover these important physical phenomena when our studied system the

quarkonium particle such as (cc andbE) undergoing rotation with angular velocity (2 if we make the following two
transformations to ensure that previous calculations are not repeated:

0 - xQ and 6 - XQ. 47)
Here (y,x) are just two infinitesimal real proportional constants. We can express the perturbative Hamiltonian operator
HY ! °t(r, x, %) which induced the rotational movements of the quarkonium particle as follows:

l(l+1)

Iz’;;rtmt(r 0X) =[f(r,A,D3) x + x+ %] LQ. (48)

To simplify the calculations without compromising physical content, we choose the rotational velocity 2 = f2e,.
Then we transform the spin-orbit coupling to the new physical phenomena as follows:

£ A D)y +

To obtain the exact NC modifications of energy for the ground state, the first excited state, and (n, [, m)*™" excited
states of the heavy quarkonium system Eb,(m=0,l=0,n=0), EX,(m=~+,Ln=1), and EX,(m=

rot
=1, +l, l,n) we just replacek, (1) and @(5) in Egs. (37), (40), and (41) with the following parameters m andy (),
respectively:

l(l+1) l(l+1)

X+ ] LO - £, 4, Dy + 55y + 21] aL,. (49)

26+1
_ _ (2a)" 2 exp(-p?/2a) X
EP,(m=0,1=0,n=0) =g, oS (MH)(MZ/_a)n( *Too + 2#) m, (50.1)
_ gsi2 z
EP (m="l+LLn=1)= ey (;(Tn + 2#) m, (50.2)

and
mt(m =—1,+11, n) gsN40 ()(Tln #) m. (50.3)

It is important to note that in Ref. [83], rotating isotropic and anisotropic harmonically confined ultra-cold Fermi
gases were studied in two and three dimensions at absolute zero, but in that study, the rotational term had to be manually
added to the Hamiltonian operator. In contrast, in our study, the rotation operator appears automatically because of the
phase-space deformation caused by the improved internal energy potential models in the 3D-NRNCPS symmetries. It is

—2
crucial to note that perturbation theory cannot be utilized to find corrections of the second order (©%and 6 ) because we
have only employed corrections of the first order of infinitesimal noncommutative parameters (6 and 8).

4. MAIN RESULTS
In the previous subsections, we obtained the solution of the modified Schrodinger equation for new improved
internal energy potential, which is given in Eq. (25) by using the generalized Bopp’s shift method and standard

perturbation theory in pNRQCD by the feature of 3D-NRNCPS symmetries. The modified eigenenergies (Eg" E" E" )

(T,c,n=0,m=0,1l), (Ef(’_”,E;c"f”, n’f_’)(T, cjn=1(m= —l,+l),l) and (E;fclp, E,’:le,E“p) (T,c,j,n, (m=—l, +l) 1)

with spin-1 for heavy quarkonium systems QQ (Q = c, b) with improved internal energy potential at finite temperature are
obtained in this paper based on our original results presented in Egs. (37), (40), (41), (44), and (50) in addition to the
ordinary energy E,; for the improved internal energy potential at a finite temperature which is presented in Eq. (11):

»  For the ground state:

2641 @k, (1) + Bom + Qym)T,
ESP(T,con = 0,m = 0,1) = Egy + go 20 2 ep(CB/20) (27007 0 00 T 00 L s
S r(286+1)D_(z541)(BY2/a) | + ” (k. (DO + Bom + Qym)
2641 (@k,(1) + Bom + Qym)T,
EM™MP(T,con = 0,m = 0,1) = Eg + go 22 2 ep(CB/2a) |P7 287 F 250 7 A0 L (51.)
S r(26+1)D_(541)(BV2/a) |+ ” (k,()B + Bom + Qym)
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Ex2(T, 0,m =0,0) = Eq + 0+ exp(cpryze) (O D)+ Bom + 2ym)Tag 51.3
cn=0ms= 0 95 T @500 (B2 |+ o (ks (DO + BTm + OFm) | (1.3)
» For the first excited state:
(@k,(l) + Bom + Qx)Ty,
glp —
(Toejm=1,(m=-1 +l) D) =By + I1— 2a112+a1213 {+—(k1(l)9 + Bom + Q)(m)} (2.1)
(@k2 () + Bom + Qx)Ty,
mlp _ gsB
(T ¢jn=1, (m L +l) l) By + 11—2a112+a1213{ —(kz(l)ﬁ + Bom + .Q)(m)} (52.2)
(0k3 () + Bom + Qym)Ty,
le _ 9gsB _
End(Tocjim =1, (m = =L +1),1) = By + 2o {+$(k3(l)6 + Bom + nym)}’ (523)

> Forany (n,[,m)"" excited state:
ESP(T,c,j,n, (m = =1, +1),1) = Ey, + gsN2, {(le(l) + Bom + Qym)Ty, + i(kl(l)é + Bom + Qym)},

(53.1)
E™P(T,c,j,n, (m = =1, +1),1) = E, + gsN3 {(ka(l) + Bom + Qym)T,, + i(kz(l)é + Bom + Qym)},
(53.2)

EX(T,c,jn,(m = =, +1),1) = Eyy + g;N% {(Gkg(l) + Bom + Qx)mTy, + i(kg(l)é +Bom + nzm)},
(53.3)

where Ej; and E;; are the energy of the ground state and the first excited state of heavy quarkonium systems in the
symmetries of quantum mechanics under internal energy potential at finite temperature:
Ey = a(1+26—ﬁ2;i2+mD(T)d3)’ (54.1)

and
5+1)-B2-
Ey, = a(1+2(6+1) ﬁzﬂ d2+mD(T)d3). (54.2)
This is one of the main objectives of our research and by noting that the obtained eigenvalues of energy are real’s
and then the NC diagonal Hamiltonian H,? (xwpu) is Hermitian. Furthermore, it’s possible to write the three elements

(H )11 (H ,, and (H,E i , as follows:

lp(xl,up[,t) - an(x#’p#) dlatg ((H )11 (H )22 ( ) (55)
where
Hut),, = + HEY
HE),, = = S H
HY). . = —A— + HpY
n

cJ33 2# int

. o A
In the symmetries of 3D-NRNCPS, the new kinetic term ZL#C can be expressed as:

o

Anc _A- LO Lo — LY
2u 2u
The three modified interaction elements (H gllf ,H :Zép, H ll;f;) are given by the following expressions:
HEP = (D, + 2+ Dyr + Dsr? ) exp(—=mp(T)r) (ks (DO +0K2,) (r, Ay, Dy) ), (56.1)
Hi",z;p = (D2 + % + Dyr + D1 )exp( mp(T)r) s(k, (DO +0o¥Z N (1, Ay, D3)), (56.2)
and
' D
H® = (Dz +=2+ Dy + Dsr )exp( mp(T)r) (kz3(DO +aR;Z N (1, A;, D3)). (56.3)

Thus, the ordinary kinetic term for the internal energy potential (— 2—) and ordinary interaction
D,

(Dz +—=+D,r +D5r2] exp(—myp (T)r) are replaced by a new modified form of the kinetic term ( ) and new modified
r

interactions modified to the new form (Hgllf , H:Z;p, Hllfﬁ) in 3D-NRNCPS symmetries. On the other hand, it is evident
consider the quantum number m takes (21 + 1) values and we have also three values for(j = [ + 1, 1), thus every state in

the usually three-dimensional space of energy for a heavy quarkonium system under improved internal energy potential
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will be 3(21 + 1)sub-states. To obtain the complete total degeneracy of the energy level of the improved internal energy
potential in 3D-NRNCPS symmetries, we need to sum all allowed values . Total degeneracy is thus,

Yl +1) =n? - 3T+ 1)) = 3n2. (57)
3D-NRQM 3D-NRNCPS

Note that the obtained new energy eigenvalues (E;‘Zcip, E,ﬁip,E,llif)(T, c,j,n, (m = -l +l), l) now depend on new
discrete atomic quantum numbers (n, j, [, s) andm in addition to the parameters of the internal energy potential. It is
pertinent to note that when the atoms have spin-0, the total operator can be obtained from the interval |l —s| <j <

[l +s], which allows us to obtain the eigenvalues of the operator G?as k(j,1,s) = 0 and then the nonrelativistic energy
spectrum (EZ.7, Ene?, E,lff)(T,j, n, (m = —1,+1),1) reads [68, 69]:

o

(ESe? Ene® EnT)(T, c.jom, (m = LHD), 1) = Ent + 9N {0Tin + £

}Bm. (58)

It is important to apply the present results (53) and (58) to quarkonium mesons. One of the most important
applications in the extended model of pNRQCD is to calculate the modified mass spectra of the heavy quarkonium
systems (the mass of the quarkonium bound state), such as charmonium and bottomonium mesons, which have the quark
and antiquark flavor in the symmetries of NCQM under improved internal energy potential at finite temperature. To
achieve this goal, we generalize the traditional formula [84-91],

M =2m, + Ey,

which defines the total mass of the different quarkonium states (resonance masses), to the new form:
M = 2mg + Eny > Myl = 2mg + (B2 + Ene? + Egl)(T,c.jon, (m = =L +1),1). (59)
Here my is the bare mass of quarkonium or twice the reduced mass of the system. Moreover, %(Efj” +E" +E )

(T, ¢ jn, (m = -], +l), l) is the non-polarized energies, which can determine from Eqgs. (49) and (54). Thus, at finite
temperature, the modified mass of the quarkonium system M,?. obtain:

8(1+4)

1+4 m — —
{(aBm +xim ———06 +) Tin + Z(Ba + 0x) Ty

i ) } for spin-1
My =M — gsNp (60)

{(O'B + x)T,,m+ % (Ba + .Q)_()m} for spin-0

HereMis the heavy quarkonium system at a finite temperature with improved internal energy potential in
commutative quantum mechanics, which is defined in ref. [7]. If we consider(0, g, y) — (0,0,0), we recover the results
of the commutative space of ref. [7] for the improved internal energy potential, which means that our calculations are
correct. The novelty in this work is that the generalized Bopp shift method is successfully applied to find the solution of
the 3-radial DSE at finite temperature in the symmetries of the 3D-NRNCPS framework. The automatic appearance of
the spin in the term of improved energy as a quantum number clearly shows that the deformed Schrédinger equation
under the influence of the improved energy potential model at finite temperature rises to the descriptor of the Dirac
equation, meaning that this system can be valid in the field of high energies.

5. CONCLUSION
In the present work, the 3-dimensional deformed Schrodinger equation is analytically solved using the generalized
Bopp’s shift method and standard perturbation theory by the feature of 3D-NRNCPS symmetries. The improved internal
energy potential at finite temperature is extended to include the effect of the non-commutativity space phase based on
ref. [7]; we resume the main results:
> The ordinary Hamiltonian operator at finite temperature Hy, (xu, p#) in 3D-NRNCPSsymmetries was replaced

by a new modified operator H,%(x,, p, ) which equals diag ((H,if;)ll, (H,il’é)zz, (H® 33) in the 3D-NRNCPS symmetries

framework for the heavy quarkonium system such as Q0 (Q =c¢,b),

> The ordinary kinetic term —2‘;” in 3D-NRNCPSsymmetries is modified to the new form Az_u which is

52 5o 5o

A-LO-Lo-Lx
2u
finite-temperature model.

> We have obtained the perturbative corrections ((Egi” E™ E" )(T, c.j,m (m= —l,+l),l),(Eg’” E™ E" )

equal ( ) to a heavy quarkonium system under the influence of the improved internal energy potential at the

nc > ~nc >nc nc > “nc °nc

(T, ¢jn=1, (m = -], +l), l) and (Eg',"’ E™ E’"’,’) (T, c,j,mn, (m = -], +l), l) for the ground state, the first excited state,

nc >"“nc > nc
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and the (n, [, m)™ excited state with (spin-1 and spin-0) for the heavy quarkonium system under the influence of the
improved internal energy potential model at finite temperature are obtained.

>  We have obtained, at finite temperature, the modified mass of the quarkonium system M,% which equals the
sum of the corresponding values M in the 3D-NRNCPSsymmetries, and two perturbative terms proportional with two
parameters (0 and 6).

> Since the main quantum number, spin, appears clearly and automatically in the expression of the global
Hamiltonian and its eigenvalues, this is an indication that our results are valid in the field of high energies where the Dirac
equation is applied.

Through high-value results, which we have achieved in the present work, we hope to extend our recent work for

further investigations of particle physics and other characteristics of quarkonium at finite temperatures.
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BILTUB TE®OPMAII ®A30BOI'0 MIPOCTOPY HA CHEKTPH BAYKKOT'O KBAPKOHIIO B TIOKPAIIEHOMY
EHEPTETAYHOMY IMOTEHIIIAJII 3A CKIHUEHHOI TEMITIEPATYPHOI MOJIEJII PIBHSHHS IIPEJTHTEPA
YEPE3 METO/ Y3ATI'AJIBHEHOI'O 3CYBY BOIIIIA TA CTAHJAPTHY TEOPIIO 35YPEHb
Abpensmamxua Maiipeme
Daxynemem izuxu, Yuisepcumem Mcina, Jlabopamopis PMC, Yuisepcumem Mcina, Ansicup
V wiit poboTi Mu oTpuMy€eMO po3B’s3aHHs nedopmoBanoro piBusHHs Llpexninrepa (DSE) 3 nokpaiieHnM BHYTPILIHIM €HEPreTHIHUM
MIOTEHI[IaJIOM TIpH KiHIEBill TeMrepaTypHii Mozeli B 3-BUMIpHil HepesTUBICTCHKIN HEKOMYTaIiHHINH cucTeMi cuMeTpii (azoBoro
npoctopy (3D-NRNCPS), BUKOPHCTOBYIOUH y3araibHEHHH MeTo[ 3CyBy borma y Bumanky 30ypeHOi HepessTHBICTCHKOI KBAHTOBOT
xpomozauHamiku (pPNRQCD). Orpumano MoaudikoBaHi eHEpreTHdHi CIIEKTPH 3B S3aHOT0 CTAHy JUIS Ba)KKOI KBapPKOHIEBOI CHCTEMH,
TaKoi sIK YapMOHiii cC i GOTTOHOHI bb IIpH KiHIEBiH TeMnepaTypi. BcranosieHo, 1o nepTypOaTuBHI pO3B’I3KH IUCKPETHOTO CIICKTPY
9yTIHBI 1O AMCKPETHHX aTOMHHX KBaHTOBHX umcen (j,ls,m) crany QQ (Q = c,b), mapaMerpis moTeHIaTy BHYTPIMIHEOI eHEprii
(T, as(T), mp(T), B, c), ki € ekpanyiodoro Macoro Jlebast my (T), MOTOIHOIO KOHCTAHTOO 3B 513Ky s (T), KPUTHIHOO TEMIIEPATYPOIO
f, BUIBHHM mapaMeTpoM ¢ Ha I0JAaTOK IO mapaMmerpiB mekoMyrarueaocti (6,0). Hosuii omeparop [aminsrona B cumerpisx 3D-
NRNCPS cxiramaerses 3 BIAIOBITHOTO OIepaTopa B KOMYyTaTHBHOMY (a30BOMY IIPOCTOpI Ta TPHOX aJUTUBHHUX YACTHUH JUIS CIIiH-
opOiTaipHOi B3aemopii, HOBOi MarHiTHOI B3aemoaii Ta oOepraipHoro tepma ®epmi. OTpumaHi BiacHi SHEPreTHYHI 3HAYCHHS
BHUKOPHUCTOBYIOTCS JJIsI OTPUMAaHHSI Mac-CIIEKTPIB BXXKHUX KBapKOHieBUX cucteM (cc and bE). 3aranbHa IOBHA BUPOKEHICTH HOBHX
EHEpreTHYHHX PiBHIB MOKPAIIEHOTO TIOTEHITiaTy BHYTPIIIHEOI eHeprii 3MiHMIACA i CTalla PiBHOIO HOBOMY 3HAYEHHIO 312 y CHMeTpifx
3D-NRNCPS 3amicts 3Hauenns n? y cumerpisx 3D-NRQM. Hami mepensaTuBicTchKi pesynsTatu, oTpumaHi i3 DSE, , 6yayTs 3a

MOXJIMBOCTI 3icTaBieHi 3 piBHsHHAM [lipaka y (i3uili BUCOKHX €Hepriii.
KunrouoBi cioBa: pisuanna Illpedincepa; nexomymamusnuii azoeuii npocmip; nomenyian Hympiwneoi enepeii npu Kinyesii
memnepamypi; memoo 3cygy bonna, 6axicki K6apKoHiegi cucmemu



