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In this work, we obtain solutions of the deformed Schrödinger equation (DSE) with improved internal energy potential at a finite 
temperature model in a 3-dimensional nonrelativistic noncommutative phase-space (3D-NRNCPS) symmetries framework, using the 
generalized Bopp’s shift method in the case of perturbed nonrelativistic quantum chromodynamics (pNRQCD). The modified bound 
state energy spectra are obtained for the heavy quarkonium system such as charmonium 𝑐𝑐 and bottomonium 𝑏𝑏 at finite temperature. 
It is found that the perturbative solutions of the discrete spectrum are sensible to the discreet atomic quantum numbers (𝑗, 𝑙, 𝑠, 𝑚) of 
the 𝑄𝑄 (𝑄 = 𝑐, 𝑏) state, the parameters of internal energy potential (𝑇, 𝛼 (𝑇), 𝑚 (𝑇), 𝛽, 𝑐), which are the Debye screening mass 𝑚 (𝑇), the running coupling constant 𝛼 (𝑇), the critical temperature 𝛽, the free parameter 𝑐 in addition to noncommutativity 
parameters (𝛩,𝜃). The new Hamiltonian operator in 3D-NRNCPS symmetries is composed of the corresponding operator in 
commutative phase-space and three additive parts for spin-orbit interaction, the new magnetic interaction, and the rotational Fermi-
term. The obtained energy eigenvalues are applied to obtain the mass spectra of heavy quarkonium systems (𝑐𝑐  and  𝑏𝑏). The total 
complete degeneracy of the new energy levels of the improved internal energy potential changed to become equal to the new value 3𝑛  in 3D-NRNCPS symmetries instead of the value 𝑛  in the symmetries of 3D-NRQM. Our non-relativistic results obtained from 
DSE will possibly be compared with the Dirac equation in high-energy physics. 
Keywords: Schrödinger equation; noncommutative phase-space; internal energy potential at finite temperature; Bopp shift method; 
heavy quarkonium systems 
PACS: 03.65.−w; 03.65. Ge; 03.65. Ca; 12.39. Jh 
 

1. INTRODUCTION 
It is well known that the ordinary Schrödinger equation (SE) describes the dynamics of quantum systems at low 

energy without considering the temperature effect. Recently, the finite temperature SE allows us to study quantum systems 
such as superconductivity mechanisms and Bose-Einstein condensates at an arbitrary temperature, and when the 
temperature is equal to zero, it becomes identical to the SE [1]. Very recently, many authors have studied the finite-
temperature SE for hot quark-gluon plasma, heavy quarkonia in quark-gluon plasma, (electron and proton systems), and 
so on [2-5]. The problem of calculating the energy spectra of the SE with various types of potentials such as the internal 
energy potential and the Cornell potential at finite temperature has been attracting interest in recent years [2-8]. Abu-
Shady has studied heavy-quarkonium mesons (HLM) using an internal energy potential and obtained wave function and 
energy spectra by solving SE using AEIM when the finite temperature is included [7]. The main objective is to develop 
the research article [7] and expand it to the large symmetry known by nonrelativistic noncommutative phase-space 
(NRNCPS) to achieve a more accurate physical vision so that this study becomes valid in the field of nanotechnology. 
Noncommutative quantum mechanics is an old idea that has been extensively discussed in the literature. It should be 
noted that noncommutativity (NC) was first introduced by Heisenberg in 1930 [9] and then by Snyder in 1947 [10]. It has 
appeared since the beginning of ordinary quantum mechanics. There has been a growing interest in this field since the 
discovery of string theory and the modified uncertainty principle. In addition, the NC idea is suggested as a result of the 
production of quantum gravity. It would provide a natural background for finding a suitable solution for a possible 
regularization of QFT [11-23]. During the past three decades, the NC theory has been the focus of extensive investigation 
and has produced a very interesting new class of quantum field theories with intriguing and occasionally unexpected 
properties [24]. Thus, the topographical properties of the NC space-space and phase-phase have a clear effect on the 
various physical properties of quantum systems and this has been a very interesting field in many fields of physics. The 
idea of noncommutativity has been studied in many articles, such as [24-36]. On the other hand, we explore the possibility 
of creating new applications and more profound interpretations in the sub-atomics and nanoscales using a new version of 
the improved internal energy potential, which has the following form: 

 𝑉 (𝑟) = 𝐹 (𝑟, 𝑇) − 𝑇 ( , ) →   𝑉 (�̂�) = 𝑉 (𝑟) + − + − 𝑟 − 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) 𝐋→𝚯→ (1) 
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We refer to this term 𝑳→𝜣→  and the parameters 𝑨𝟏, 𝑨𝟏, 𝑨𝟏, 𝑨𝟏, 𝑫𝟑, 𝒎𝑫(𝑻)  in the materials and methods section. The 
new structure of 3D-NRNCPS is based on new canonical commutation relations in both Schrödinger SP and Heisenberg 
HP, respectively, as follows (Throughout this paper, the natural units 𝒄 = ℏ = 𝟏 will be used) [36-46]: 

 [𝑥 , 𝑝 ] = 𝑖𝛿 ℏ →    𝑥 ,∗ �̂� = 𝑥 (𝑡),∗ �̂� (𝑡) = 𝑖𝛿 ℏ ⇒    𝛥𝑥 𝛥�̂� ≥ ℏ
, (2.1) 

and 
 [𝑥 , 𝑥 ] = 0 →    𝑥 ,∗ 𝑥 = 𝑥 (𝑡),∗ 𝑥 (𝑡) = 𝑖𝜃 ⇒    𝛥𝑥 𝛥𝑥 ≥ , (2.2) 
and 

  [𝑝 , 𝑝 ] = 0 →    �̂� ,∗ �̂� =  �̂� (𝑡),∗ �̂� (𝑡) = 𝑖𝜃  ⇒    𝛥�̂� 𝛥�̂� ≥ , (2.3) 

the indices 𝜇, 𝜈 ≡ 1,3, ℏ  equal ℏ 1 +  denote the effective Planck constant. This means that the principle of 
uncertainty of Heisenberg is generalized to include another two new uncertainties related to the positions 𝑥 , 𝑥  and the 
momenta �̂� , �̂� , in addition to the ordinary uncertainty 𝑥 , �̂� . The non-commutativity of the phase-space is based 
on the deformed Heisenberg–Weyl algebra, which is represented by the above commutation relations. here 𝜃  and 𝜃  
are invertible antisymmetric real constant (3 × 3) matrices which satisfied 𝜃 = 𝜀 𝜃 and 𝜃 = 𝜀 𝜃, with 𝜀 = −𝜀  
and 𝜀 = 0, here 𝜃, 𝜃  are interpreted as being new constants in the quantum theory. The very small two parameters 
(𝜃  and 𝜃 ) (compared to the energy) are elements of two antisymmetric real matrixes, parameters of non-
commutativity, and (∗) denote the Weyl Moyal star product, which is generalized between two arbitrary functions (𝑓, 𝑔) (𝑥, 𝑝) to the new form 𝑓(𝑥, �̂�)𝑔(𝑥, �̂�) ≡ (𝑓 ∗ 𝑔)(𝑥, 𝑝) in the 3D-NRNCPS symmetries as follows [47-55]: 

  (𝑓𝑔) (𝑥, 𝑝) → (𝑓 ∗ 𝑔)(𝑥, 𝑝) = 𝑓𝑔 − 𝜃 𝜕 𝑓𝜕 𝑔 − 𝜃 𝜕 𝑓𝜕 𝑔 (𝑥, 𝑝). (3) 

The second and third terms in the above equation are the present effects of (space-space) and (phase-phase) 
noncommutativity properties. However, the new operators 𝜉(𝑡) = 𝑥 ∨ �̂� (𝑡) in HP are depending on the 
corresponding new operators 𝜉 = 𝑥 ∨ �̂�  in SP from the following projection relations:  

 𝜒(𝑡) = 𝑒𝑥𝑝
ℏ

𝐻 (𝑡 − 𝑡 ) 𝜒 𝑒𝑥𝑝 −
ℏ

𝐻 (𝑡 − 𝑡 ) ⇒   �̂�(𝑡) = 𝑒𝑥𝑝
ℏ

𝐻 (𝑡 − 𝑡 ) ∗ �̂� ∗ 𝑒𝑥𝑝 −
ℏ

𝐻 (𝑡 − 𝑡 ) , (4) 

Here 𝜒 = 𝑥 ∨ 𝑝  and𝜒(𝑡) = 𝑥 ∨ 𝑝 (𝑡). The dynamics of the new systems ( )dt  are described by the following motion 
equations in 3D-NRNCPS symmetries: 

 ( )dt =
ℏ

𝜒(𝑡), 𝐻 + ( ) ⇒   ( )dt =
ℏ

𝜉(𝑡),∗ 𝐻 + ( ). (5) 

The two operators (𝐻 and 𝐻 ) are present as the quantum Hamiltonian operators for the internal energy potential and 
the improved internal energy potential in the 3D-NRNCPS symmetries and their extension. This paper consists of five 
sections and the organization scheme is given as follows: In the next section, the theory part, we briefly review the SE 
with internal energy potential at finite temperature based on refs. [7-8]. Section 3 is devoted to studying the DSE by 
applying the generalized Bopp's shift method and obtaining the improved internal energy potential and the modified spin-
orbit operator at finite temperature. Then, we applied the standard perturbation theory to find the quantum spectrum of 
the ground state, the first excited state, and the (𝑛, 𝑙, 𝑚) ℎexcited state produced by the effects of modified spin-orbit and 
newly modified Zeeman interactions. In the fourth section, a discussion of the main results is presented in addition to 
determining the new formula for determining the mass spectra of the quarkonium system in the 3D-NRNCPS symmetries 
framework. Finally, in the last section, a summary and conclusions are presented. 
 

2. THEORY 
2.1. Overview of the eigenfunctions and energy eigenvalues for the internal energy potential at finite temperature 

in the 3D-NRNCPS symmetries framework 
As already mentioned, our objective was to obtain the spectrum of the improved internal energy potential at finite 
temperatures. To achieve this goal, it is useful to summarize the time-independent Schrödinger equation for the internal 
energy potential at a finite temperature [7-8]: 

 𝑉 (𝑟) = 𝐹 (𝑟, 𝑇) − 𝑇 ( , ), (6) 
where 𝐹 (𝑟, 𝑇) is determined from: 𝐹 (𝑟, 𝑇) = 𝑐𝑟 − ( ) 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟), 
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and 𝑚 (𝑇) is the Debye screening mass, 𝑐 is a free parameter, the running coupling constant  𝛼 (𝑇) = ∏/ ( / ), 
Here 𝑛 , 𝑇  and 𝛽 are the number of quark flavors, the critical temperature, and (0,104 ± 0.009), respectively, the 
relative spatial coordinate between the two quarks is 𝑟. By substituting 𝐹 (𝑟, 𝑇) into Eq. (6), we obtain the internal 
energy potential that satisfies the following equation at a finite temperature [7-8]: 

 𝑉 (𝑟) = 𝐷 + + 𝐷 𝑟 + 𝐷 𝑟 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟), (7) 
where  𝑑 = −2𝜇𝐷 = 𝛼 (𝑇) ( ), 𝑑 = −2𝜇𝐷 = 𝛼 (𝑇) + ∏ // ( / ) , 𝑑 = −2𝜇𝐷 = −2𝜇𝑐 , 
and  𝑑 = −2𝜇𝐷 = 2𝜇𝑐𝑇 ( ). 
If we insert this potential into the Schrödinger equation, the radial part function 𝑈 (𝑟) = ( ) is given as: 

 ( ) + ( ) + 2𝜇 𝐸 − 𝐷 + + 𝐷 𝑟 + 𝐷 𝑟 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) − ( ) 𝑈 (𝑟) = 0, (8) 
and 
 ( ) + 2𝜇 𝐸 − 𝐷 + + 𝐷 𝑟 + 𝐷 𝑟 𝑒 𝑥𝑝(−𝑚 (𝑇)𝑟) − ( ) 𝑅 (𝑟) = 0. (9) 

The reduced mass 𝜇 for the quarkonium particle for example (𝑐𝑐and𝑏𝑏) equal . The complete wave function 𝛹 (𝑟, 𝜃, 𝜙) = ( ) 𝑌 (𝜃, 𝜙) is given by [7]: 
 𝛹 (𝑟, 𝜃, 𝜙) = 𝑁 ∏   (𝑟 − 𝛼 ) 𝑟 𝑒𝑥𝑝(−1/2𝛼𝑟 − 𝛽𝑟) 𝑌 (𝜃, 𝜙). (10) 
Also, the energy 𝐸  of the potential in Eq. (7) is determined from the following equation: 

 𝐸 = [𝛼(1 + 2(𝛿 + 𝑛) − 𝛽 − 𝑑 + 𝑚 (𝑇)𝑑 )], (11) 
where 𝑁  is a normalizing constant, 𝑛 is a natural number accounting for the radial excitation, while 𝑙 is a non-negative 
integer number that represents the orbital angular momentum,  

𝛼 = 𝑑 𝑚 − 𝑑 − 𝑑2 𝑚
𝛽 = 𝑑 𝑚 − 𝑑 − 𝑑 𝑚2 𝑑4𝑚 − 𝑑 − 𝑑2 𝑚𝛿 = 12 1 ± 1 + 4(𝑙 + 1/2) − 1/4 ⎭⎪⎪⎪

⎬⎪
⎪⎪⎫

 

 
3. MATERIALS AND METHODS 

3.1. DSE solution for an improved new internal energy potential at finite temperature in pNRQCD 
In this subsection, we shall give an overview of a brief preliminary investigation of the improved internal energy 

potential in 3D-NRNCPS symmetries. To perform this task, the physical form of DSE, it is necessary to replace the 
ordinary three-dimensional Hamiltonian operators 𝐻 𝑥 , 𝑝 , the complex wave function 𝛹 𝑟→ , and energy 𝐸  with 

the new three Hamiltonian operators𝐻 𝑥 , �̂� , the new complex wave function𝛹 �̂�→ , and new values𝐸 , respectively. 
In addition to replacing the ordinary product with the Weyl-Moyal star product, which allows us to construct the DSE in 
the 3D-NRNCPS symmetries framework as [55-60]:  

 ( ) + 2𝜇 𝐸 − 𝐷 + + 𝐷 𝑟 + 𝐷 𝑟 𝑒 𝑥𝑝(−𝑚 (𝑇)𝑟) − ( ) ∗ 𝑅 (𝑟) = 0. (12) 

Bopp’s shift method [70-72] has been successfully applied to relativistic and nonrelativistic noncommutative 
quantum mechanical problems using the modified Dirac equation (MDE) [73-81], the modified Klein-Gordon equation 
(MKGE) [36-38, 48-61] and DSE [46, 64-69]. This method has produced very promising results for several situations of 
physical and chemical interest. The method reduces MDE, MKGE, and DSE to the Dirac equation, Klein-Gordon 
equation, and Schrödinger equation, respectively, under two simultaneous translations in space and phase. It is based on 
the following new commutators [46, 64-72]: 
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𝑥 (𝑡), �̂� (𝑡) = 𝑖𝛿 ℏ𝑥 , 𝑥 = 𝑥 (𝑡), 𝑥 (𝑡) = 𝑖𝜃 �̂� , �̂� = �̂� (𝑡), �̂� (𝑡) = 𝑖𝜃 . (13) 

The new generalized positions and momentum coordinates 𝑥 , �̂�  in 3D-NRNCPS are defined in terms of the 
commutative counterparts 𝑥 , 𝑝  in ordinary quantum mechanics via, respectively [46, 55-60]: 

 𝑥 , 𝑝 ⇒ 𝑥 , �̂� = 𝑥 − 𝑝 , 𝑝 + 𝑥 . (14) 

The above equation allows us to obtain the two operators (�̂� , �̂� ) in the 3D-NRNCPS symmetries framework [28-31]: 

 (𝑟 , 𝑝 ) ⇒ (�̂� , �̂� ) = 𝑟 − 𝐋→𝚯→ , 𝑝  + 𝐋→𝛉→  . (15) 

The two couplings 𝐋→𝚯→ and 𝐋→𝛉→ are 𝐿 𝛩 + 𝐿 𝛩 + 𝐿 𝛩  and 𝐿 𝜃 + 𝐿 𝜃 + 𝐿 𝜃 , respectively, and (𝐿 , 𝐿  and𝐿 ) are the three components of the angular momentum operator�⃗� while 𝛩  equal 𝜃 /2. Thus, the reduced 
Schrödinger equation (without star product) can be written as: 

 ( ) + 2𝜇 𝐸 − 𝑉 (�̂�) 𝑅 (𝑟) = 0. (16) 

The new operator of Hamiltonian𝐻 𝑥 , �̂�  can be expressed as: 

 𝐻 𝑥 , �̂� = + 𝑉 (�̂�), (17) 

here �̂� equal 𝑥 − 𝑝 𝑥 − 𝑝 . The effectively improved internal energy potential 𝑉 (�̂�) can be 

expressed in 3D-NRNCPS symmetries: 

 𝑉 (�̂�) = 𝐷 + ̂ + 𝐷 �̂� + 𝐷 �̂� 𝑒𝑥𝑝(−𝑚 (𝑇)�̂�) + ( )̂ . (18) 

Again, apply Eq. (15) to find the three terms ( ̂ ,𝐷 �̂�, 𝐷 �̂� and𝑒𝑥𝑝(−𝑚 (𝑇)�̂�)), which will be used to determine the 
effective improved internal energy potential 𝑉 (�̂�), as follows: 

 → ̂ = + 𝐋→𝚯→ + 𝑂(𝛩 ), (19.1) 

 𝐷 𝑟 → 𝐷 �̂� = 𝐷 𝑟 − 𝐋→𝚯→ + 𝑂(𝛩 ), (19.2) 

 𝐷 𝑟 → 𝐷 �̂� = 𝐷 𝑟 − 𝐷 𝐋→𝚯→ + 𝑂(𝛩 ), (19.3) 

 ( ) → ( )̂ = ( ) + ( ) 𝐋→𝚯→ + 𝑂(𝛩 ), (19.4) 

and 
 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) → 𝑒𝑥𝑝(−𝑚 (𝑇)�̂�) = 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) − ( ) 𝐋→𝚯→ 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟). (19.5) 

Thus, we have the following. 

 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) → ̂ 𝑒𝑥𝑝(−𝑚 (𝑇)�̂�) = + 𝐿→𝛩→ 1 − ( ) 𝐋→𝚯→ 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟), (20.1) 

 𝐷 𝑟 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) → 𝐷 �̂� 𝑒𝑥𝑝(−𝑚 (𝑇)�̂�) = 𝐷 𝑟 − 𝐿→𝛩→ 1 − ( ) 𝐋→𝚯→ 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟), (20.2) 

 𝐷 𝑟 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) → 𝐷 �̂� 𝑒𝑥𝑝(−𝑚 (𝑇)�̂�) = 𝐷 𝑟 − 𝐷 𝐿→𝛩→ 1 − ( ) 𝐋→𝚯→ 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟), (20.3) 

and 

 𝐷 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) → 𝐷 𝑒𝑥𝑝(−𝑚 (𝑇)�̂�) = 𝐷 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) − 𝐷 ( ) ( ( ) ) 𝐋→𝚯→. (20.4) 

which gives immediately at the first order of the infinitesimal vector parameter 𝚯→ as follows: 

 ̂ 𝑒𝑥𝑝(−𝑚 (𝑇)�̂�) = 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) − ( ) 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) + ( ( ) ) 𝐋→𝚯→ + 𝑂(𝛩 ), (21.1) 

 𝐷 �̂� 𝑒𝑥𝑝(−𝑚 (𝑇)�̂�) = 𝐷 𝑟 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) − ( ) 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) − ( ( ) ) 𝐋→𝚯→ + 𝑂(𝛩 ), (21.2) 
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 𝐷 �̂� 𝑒𝑥𝑝(−𝑚 (𝑇)�̂�) = 𝐷 𝑟 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) − ( ) 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) − ( ( ) ) 𝐋→𝚯→ + 𝑂(𝛩 ), (213) 

and 

 𝐷 𝑒𝑥𝑝(−𝑚 (𝑇)�̂�) = 𝐷 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) − 𝐷 ( ) ( ( ) ) 𝐋→𝚯→ + 𝑂(𝛩 ). (21.4) 

Substituting, Eq. (21) in Eq. (18), gives the new improved internal energy potential, we obtain the effective improved 
internal energy potential 𝑉 (�̂�) in 3D-NRNCPS symmetries as follows: 

   𝑉 (�̂�) = 𝑉 (𝑟) + ( ) + − + − 𝑟 − 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) + ( ) 𝐋→𝚯→ + 𝑂(𝛩 ), (22) 

with 𝐴 = 𝑚 (𝑇)𝐷 − 𝐷 𝑚 (𝑇) − 𝐷 ,𝐴 = 𝑚 (𝑇)𝐷 ,𝐴 = 𝑚 (𝑇)𝐷 ,𝐴 = 𝑚 (𝑇)𝐷 . ⎭⎬
⎫

. 

By making the above substitution equation in Eq. (17), we find the global our working new modified Hamiltonian 
operator 𝐻 (�̂�) in 3D-NRNCPS symmetries: 
 𝐻 (�̂�) = 𝐻 𝑥 , 𝑝 + 𝐻 (𝑟, 𝛩, 𝜃), (23) 

here𝐻 𝑥 , 𝑝  is just the ordinary Hamiltonian operator with internal energy potential in 3D-NR quantum mechanics 
symmetries: 

 𝐻 𝑥 , 𝑝 = + 𝐷 + + 𝐷 𝑟 + 𝐷 𝑟 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟), (24) 

while the rest part 𝐻 (𝑟, 𝛩, 𝜃), which we called the perturbative Hamiltonian operator, is proportional to two 

infinitesimals couplings 𝐋→𝚯→ and 𝐋→𝛉→: 

 𝐻 (𝑟, 𝛩, 𝜃) = 𝑓(𝑟, 𝐴 , 𝐷 ) + ( ) 𝐋→𝚯→ + 𝐋→𝛉→, (25) 
here 𝑓(𝑟, 𝐴 , 𝐷 ) is determined by: 𝑓(𝑟, 𝐴 , 𝐷 ) = − + − 𝑟 − 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟). 

Thus, we can consider 𝑯𝒑𝒆𝒓𝒕𝒊𝒑 (𝒓) it as a perturbation term compared with the principal Hamiltonian operator  𝑯𝒊𝒑 𝒙𝝁, 𝒑𝝁  
in 3D-NRPS symmetries. 
 

3.2. The exact modified spin-orbit operator for heavy-quarkonium systems with improved 
internal energy potential in the pNRQCD system: 

In this subsection, we apply the same strategy that we have seen exclusively in some of our published scientific 

works [46, 55-60, 73-76]. Under such a particular choice, one can easily reproduce both couplings (𝐋→𝚯→  and  𝐋→𝛉→) to the 
new physical forms (𝑔 𝛩𝐋→𝐒 →

 and  𝑔 𝜃𝐋→𝐒→), respectively. Thus, the perturbative Hamiltonian operator 𝐻 (𝑟, 𝛩, 𝜃) for 
the heavy quarkonium systems will be transformed into a modified spin-orbit operator 𝐻 (𝑟, 𝛩, 𝜃), under the improved 
internal energy potential at a finite temperature as follows:  

 𝐻 (𝑟, 𝛩, 𝜃) ≡ 𝑔 𝑓(𝑟, 𝐴 , 𝐷 )𝛩 + ( ) 𝛩 + 𝐋→𝐒→, (26) 

here 𝛩 and 𝜃 are equals 𝛩 + 𝛩 + 𝛩  and 𝜃 + 𝜃 + 𝜃 , respectively, and𝑔  is a new constant, which 

plays the role of strong coupling in quantum chromodynamics or QCD theory, we have chosen two vectors (𝚯→ and 𝛉→) 
parallel to the spin-s of the heavy quarkonium system. Furthermore, the above perturbative terms 𝐻 (𝑟) can be 
rewritten to the following new form: 

 𝐻 (𝑟, 𝛩, 𝜃) =  𝑓(𝑟, 𝐴 , 𝐷 )𝛩 + ( ) 𝛩 + 𝐺 , (27) 

where 𝐺 ≡ 𝐉→𝟐 − 𝐋→𝟐 − 𝐒→𝟐 while 𝐉→ and 𝐒→ are the defined operators of the total angular momentum and spin of quarkonium 
systems. The operator 𝐻 (𝑟, 𝛩, 𝜃) traduces the coupling between spin-orbit interaction 𝐋→𝐒→. The set (𝐻 (𝑟, 𝛩, 𝜃), 𝐽 , 𝐿 , 
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𝑆 and 𝐽 ) forms a complete set of conserved physics quantities. For spin-1, the eigenvalues of the spin-orbit coupling 
operator are 𝑘(𝑙) ≡ 12 (𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 2) 

corresponding 𝑗 = 𝑙 + 1 (spin great), 𝑗 = 𝑙 (spin middle), and 𝑗 = 𝑙 − 1 (spin little), respectively, then, one can form a 
diagonal (3 × 3) matrix for the improved internal energy potential in 3D-NRNCPS symmetries, with diagonal 
elements 𝐻 , 𝐻  and 𝐻  are given by:  

 𝐻 = 𝑔 𝑘 (𝑙) 𝑓(𝑟, 𝐴 , 𝐷 )𝛩 + ( ) 𝛩 +  if 𝑗 = 𝑙 + 1, (28.1) 

 𝐻 = 𝑔 𝑘 (𝑙) 𝑓(𝑟, 𝐴 , 𝐷 )𝛩 + ( ) 𝛩 +   if 𝑗 = 𝑙, (28.2) 
and 
 𝐻 = 𝑔 𝑘 (𝑙) 𝑓(𝑟, 𝐴 , 𝐷 )𝛩 + ( ) 𝛩 +  if 𝑗 = 𝑙 − 1. (28.3) 

Here 𝑘 (𝑙), 𝑘 (𝑙), 𝑘 (𝑙)  are equals (𝑙, −2, −2𝑙 − 2), respectively, and 𝑗 is the total quantum number. The non-null 
diagonal elements ( 𝐻 , 𝐻 and 𝐻 ) for the modified Hamiltonian operator 𝐻 (�̂�) will change the energy 
values 𝐸 by creating three new values: 

 𝐸 = ⟨𝛹(𝑟, 𝜃, 𝜙) 𝐻 𝛹(𝑟, 𝜃, 𝜙)⟩, (29.1) 

 𝐸 = ⟨𝛹(𝑟, 𝜃, 𝜙) 𝐻 𝛹(𝑟, 𝜃, 𝜙)⟩, (29.2) 
and 
 𝐸 = ⟨𝛹(𝑟, 𝜃, 𝜙) 𝐻 𝛹(𝑟, 𝜃, 𝜙)⟩. (29.3) 

We will see them in detail in the next subsection. After profound calculation, one can show that the new radial 
function𝑅 (𝑟)satisfies the following differential equation for the improved internal energy potential: 

 ( ) + 2𝜇 𝐸 − 𝑉 (𝑟) − ( ) − [𝑓(𝑟, 𝐴 , 𝐷 ) + 𝑙(𝑙 + 1)𝑟 ]𝐋→𝚯→ − ( ) 𝐋→𝚯→ − �⃗�𝛉→ 𝑅 (𝑟) = 0. (30) 

Through our observation of the expression of 𝐻 (𝑟, 𝛩, 𝜃), which appears in equation (25), we see it as 
proportionate to the two infinitesimals parameters (𝛩 and𝜃), thus, in what follows, we proceed to solve the modified 
radial part of the DSE that is, equation (30) by applying standard perturbation theory to find an acceptable solution at the 
first order of two parameters 𝛩 and 𝜃. The proposed solutions for DSE under improved internal energy potential include 
energy corrections, which are produced automatically from two principal physical phonemes’, the first one is the effect 
of modified spin-orbit interaction and the second is the modified Zeeman effect while the stark effect can appear in the 
linear part of improved internal energy potential at finite temperature model. 
 

3.3. The exact modified spin-orbit spectrum for a heavy-quarkonium system under improved internal energy 
potential in pNRQCD 

The purpose here is to give a complete prescription for determining the energy levels of the ground state, the first excited 
state, and (𝑛, 𝑙, 𝑚)  the excited state, of heavy quarkonium systems. We first find the corrections (𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛), 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛) and 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛)) for heavy quarkonium systems such as (charmonium and bottomonium) 
mesons that have the quark and antiquark flavor under a new improved internal energy potential at finite temperature, 
which have three polarities up and down 𝑗 = 𝑙 + 1 (spin great), 𝑗 = 𝑙 (spin middle) and 𝑗 = 𝑙 − 1 (spin little), respectively, 
at the first order of two parameters (𝛩 and 𝜃). Moreover, by applying the perturbative theory, in the case of perturbed 
non-relativistic quantum chromodynamics pNRQCD framework, we obtained the following results: 

 𝐸 = 𝑔 𝑁 𝑘 (𝑙) ∏ (𝑟 − 𝛼 ) 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 2𝛽𝑟)∞ 𝑓(𝑟, 𝐴 , 𝐷 )𝛩 + ( ) 𝛩 + 𝑟 𝑑𝑟, (31.1) 

 𝐸 = 𝑔 𝑁 𝑘 (𝑙) ∏ (𝑟 − 𝛼 ) 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 2𝛽𝑟)∞ 𝑓(𝑟, 𝐴 , 𝐷 )𝛩 + ( ) 𝛩 + 𝑟 𝑑𝑟, (31.2) 

 𝐸 = 𝑔 𝑁 𝑘 (𝑙) ∏ (𝑟 − 𝛼 ) 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 2𝛽𝑟)∞ 𝑓(𝑟, 𝐴 , 𝐷 )𝛩 + ( ) 𝛩 + 𝑟 𝑑𝑟. (31.3) 

We have used the standard identity: 𝑌 (𝜃, 𝜙)𝑌 ′
′(𝜃, 𝜙) 𝑠𝑖𝑛(𝜃) 𝑑𝜃𝑑𝜙 = 𝛿 ′𝛿 ′ 
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Now, we can rewrite the above equations to a simplified new form:  

 𝐸 (𝑘 , 𝑗, 𝑛, 𝑙) = 𝑔 𝑁 𝑘 (𝑙) 𝛩 ∑ 𝑇 + , (32.1) 

 𝐸 (𝑘 , 𝑗, 𝑛, 𝑙) = 𝑔 𝑁 𝑘 (𝑙) 𝛩 ∑ 𝑇 + , (32.2) 
and 
 𝐸 (𝑘 , 𝑗, 𝑛, 𝑙) = 𝑔 𝑁 𝑘 (𝑙) 𝛩 ∑ 𝑇 + . (32.3) 

Moreover, the expressions of the 6-factors𝑇 𝑖 = 1,6  are given by: 

 𝑇 = ∏   (𝑟 − 𝛼 ) 𝑟 𝑒𝑥𝑝 −𝛼𝑟 − 2𝛽 + 𝑚 (𝑇) 𝑟 𝑟𝑑𝑟∞ , (33.1) 

 𝑇 = − ∏   (𝑟 − 𝛼 ) 𝑟 𝑒𝑥𝑝 −𝛼𝑟 − 2𝛽 + 𝑚 (𝑇) 𝑟 𝑑𝑟∞ , (33.2) 

 𝑇 = ∏   (𝑟 − 𝛼 ) 𝑟 𝑒𝑥𝑝 −𝛼𝑟 − 2𝛽 + 𝑚 (𝑇) 𝑟 𝑟 𝑑𝑟∞ , (33.3) 

 𝑇 = − ∏   (𝑟 − 𝛼 ) 𝑟 𝑒𝑥𝑝 −𝛼𝑟 − 2𝛽 + 𝑚 (𝑇) 𝑟 𝑟 𝑑𝑟∞ , (33.4) 

 𝑇 = − ∏   (𝑟 − 𝛼 ) 𝑟 𝑒𝑥𝑝 −𝛼𝑟 − 2𝛽 + 𝑚 (𝑇) 𝑟 𝑟 𝑑𝑟∞ , (33.5) 
and 
 𝑇 = ∏   (𝑟 − 𝛼 ) 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 2𝛽𝑟) ( ) 𝑟 𝑑𝑟∞ . (33.6) 

For the ground state 𝑛 = 0, the expressions of the 6-factors𝑇 𝑖 = 1,6  will be simplified to the following form: 

 𝑇 = 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 𝜀𝑟) 𝑑𝑟∞ , (34.1) 
 𝑇 = − 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 𝜀𝑟) 𝑑𝑟∞ , (34.2) 
 𝑇 = 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 𝜀𝑟) 𝑑𝑟∞ , (34.3) 
 𝑇 = − 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 𝜀𝑟) 𝑟 𝑑𝑟∞ , (34.4) 
 𝑇 = − 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 𝜀𝑟) 𝑑𝑟∞ , (34.5) 
 𝑇 = 𝑙(𝑙 + 1) 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 2𝛽𝑟) 𝑑𝑟∞ , (34.6) 
where𝜀 = 2𝛽 + 𝑚 (𝑇). It is convenient to apply the following special integral [82]: 
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 , (35) 

where 𝐷 √  and 𝛤(𝜈)denote the parabolic cylinder functions and the Gamma function. After straightforward 
calculations, we can obtain the explicit results: 

 𝑇 = (2𝛼) 𝛤(2𝛿) 𝑒𝑥𝑝 𝐷 √ , (36.1) 

 𝑇 = − (2𝛼) 𝛤(2𝛿 − 1) 𝑒𝑥𝑝 𝐷 ( ) √ , (36.2) 

 𝑇 = (2𝛼) 𝛤(2𝛿 − 2) 𝑒𝑥𝑝 𝐷 ( ) √ , (36.3) 

 𝑇 = − (2𝛼) 𝛤(2𝛿 + 2) 𝑒𝑥𝑝 𝐷 ( ) √ , (36.4)  

 𝑇 = − (2𝛼) 𝛤(2𝛿 + 1) 𝑒𝑥𝑝 𝐷 ( ) √ , (36.5) 
and 
 𝑇 = 𝑙(𝑙 + 1)(2𝛼) 𝛤(2𝛿 − 3) 𝑒𝑥𝑝 𝟒 𝐷 ( ) √ . (36.6) 

Let us second to obtain the exact modifications (𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 0), 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 0) and 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 0)) of the ground state as: 

 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 0) = 𝑔 ( ) /( ) ( ) / 𝑘 (𝑙) 𝛩𝑇 + , (37.1) 

 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 0) = 𝑔 ( ) /( ) ( ) / 𝑘 (𝑙) 𝛩𝑇 + , (37.2) 

and 

 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 0) = 𝑔 ( ) /( ) ( ) / 𝑘 (𝑙) 𝛩𝑇 + . (37.3) 
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with 𝑇 = ∑ 𝑇 . For the first excited state 𝑛 = 1, we replace ∏   (𝑟 − 𝛼 ) 𝑟  by (𝑟 − 𝛼 𝑟 −2𝛼 𝑟 ), with 𝛼 = ( ), the expressions of the 6-factors𝑇 𝑖 = 1,6  will be simplified to the following form: 

 𝑇 = 𝑟 − 𝛼 𝑟 − 2𝛼 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 𝜀𝑟) 𝑑𝑟∞ , (38.1) 

 𝑇 = − 𝑟 − 𝛼 𝑟 − 2𝛼 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 𝜀𝑟) 𝑑𝑟∞ , (38.2) 

 𝑇 = 𝑟 − 𝛼 𝑟 − 2𝛼 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 𝜀𝑟) 𝑑𝑟∞ , (38.3) 

 𝑇 = − 𝑟 − 𝛼 𝑟 − 2𝛼 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 𝜀𝑟) 𝑑𝑟∞ , (38.4) 

 𝑇 = − 𝑟 − 𝛼 𝑟 − 2𝛼 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 𝜀𝑟) 𝑑𝑟∞ , (38.5) 
and 
 𝑇 = 𝑙(𝑙 + 1) 𝑟 − 𝛼 𝑟 − 2𝛼 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 2𝛽𝑟) 𝑑𝑟∞ . (38.6) 

Evaluating the integral in Eq. (38) and applying the special integration, which is given by Eq. (33), we obtain the 
following results: 

 𝑇 = − (2𝛼) 𝛤(2𝛿 + 1) 𝑒𝑥𝑝 𝐷 ( ) √ + 𝛼 (2𝛼) 𝛤(2𝛿 − 1)                    𝑒𝑥𝑝 𝐷 ( ) √ −2𝛼 (2𝛼) 𝛤(2𝛿) 𝑒𝑥𝑝 𝐷 ( ) √ , (39.1) 

 𝑇 = − (2𝛼) 𝛤(2𝛿 + 1) 𝑒𝑥𝑝 𝐷 ( ) √ + 𝛼 (2𝛼) 𝛤(2𝛿 − 1)                    𝑒𝑥𝑝 𝐷 ( ) √ −2𝛼 (2𝛼) 𝛤(2𝛿) 𝑒𝑥𝑝 𝐷 ( ) √ , (39.2) 

 𝑇 = (2𝛼) 𝛤(2𝛿 − 1) 𝑒𝑥𝑝 𝐷 ( ) √ + 𝛼 (2𝛼) 𝛤(2𝛿 − 2)                  𝑒𝑥𝑝 𝐷 ( ) √ −2𝛼 (2𝛼) 𝛤(2𝛿 − 1) 𝑒𝑥𝑝 𝐷 ( ) √ , (39.3) 

 𝑇 = − (2𝛼) 𝛤(2𝛿 + 4) 𝑒𝑥𝑝 𝐷 ( ) √ + 𝛼 (2𝛼) 𝛤(2𝛿 + 2)                   𝑒𝑥𝑝 𝐷 ( ) √ −2𝛼 (2𝛼) 𝛤(2𝛿 + 3) 𝑒𝑥𝑝 𝐷 ( ) √ , (39.4) 

 𝑇 = − (2𝛼) 𝛤(2𝛿 + 3) 𝑒𝑥𝑝 𝐷 ( ) √ − 𝛼 (2𝛼) 𝛤(2𝛿 + 1)                   𝑒𝑥𝑝 𝐷 ( ) √ −2𝛼 (2𝛼) 𝛤(2𝛿 + 2) 𝑒𝑥𝑝 𝐷 ( ) √ , (39.5) 

and 

 𝑇 = 𝑙(𝑙 + 1)(2𝛼) 𝛤(2𝛿 − 1) 𝑒𝑥𝑝 𝟒 𝐷 ( ) √ − 𝑙(𝑙 + 1)𝛼 (2𝛼) 𝛤(2𝛿 − 3)  

            𝑒𝑥𝑝 𝟒 𝐷 ( ) √ − 2𝑙(𝑙 + 1)𝛼 (2𝛼) 𝛤(2𝛿 − 2) 𝑒𝑥𝑝 𝟒 𝐷 ( ) √ . (39.6) 

Allow us to obtain the exact modifications (𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 1), 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 1) and 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 =1)) of the first excited state as follows. 

 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 1) = ( ) 𝛩𝑇 + , (40.1) 

 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 1) = ( ) 𝛩𝑇 + , (40.2) 

and 

 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 1) = ( ) 𝛩𝑇 + , (40.3) 
with 
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𝐼 = ( ) ( ) /( )( / ) ( / )𝐼 = ( ) ( ) /( )( / ) ( / )𝐼 = ( ) ( ) /( ) ( / ) ⎭⎪⎬
⎪⎫

, 

and 𝑇 = ∑ 𝑇 . In addition, in the same way, we find the exact modifications (𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛),𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛) 
and 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛)) for the excited states (𝑛, 𝑙, 𝑚) ℎ of the heavy quarkonium system under the new improved 
internal energy potential in the global quantum group symmetry 3D-NRQM: 

 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 1) = 𝑔 𝑘 (𝑙)𝑁 𝛩𝑇 + , (41.1) 

 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 1) = 𝛾𝑘2(𝑙)𝑁 𝛩𝑇 + , (41.2) 
and 
 𝐸 (𝑘 (𝑙), 𝑗, 𝑙, 𝑛 = 1) = 𝛾𝑘 (𝑙)𝑁 𝛩𝑇 + , (41.3) 
with 𝑇 = ∑ 𝑇 . 
 

3.4. The exact modified magnetic spectrum for heavy quarkonium systems under improved internal energy 
potential in pNRQCD 

In addition to the important results obtained previously, now we consider another important physically meaningful 
phenomenon produced by the effect of the improved internal energy potential at finite temperature on the perturbative 
NRQCD related to the influence of an external uniform magnetic field 𝐁→. To avoid repetition in the theoretical 
calculations, it is sufficient to apply the following replacements: 

 𝚯→ →    𝛔𝐁→  and  𝛉→ →    𝛔𝐁→. (42) 

Allows us to replace the physical quantities 𝑓(𝑟, 𝐴 , 𝐷 )𝐋→𝚯→, ( ) 𝐋→𝚯→ and 𝐋→𝛉→ with corresponding new physical 

quantities 𝜎𝑓(𝑟)𝐋→𝐁→, 𝜎 ( ) 𝐋→𝐁→ and 𝜎 𝐋→𝐁→, respectively, here(𝜎and𝜎) are two infinitesimal real proportional constants, and 

we choose the arbitrary uniform external magnetic field 𝐁→ parallel to the (Oz) axis, which allows us to introduce the new 
modified magnetic Hamiltonian 𝐻 (𝑟, 𝜎, 𝜎) in 3D-NRNCPS symmetries as:  

 𝐻 (𝑟, 𝜒, 𝜎) = − 𝑓(𝑟, 𝐴 , 𝐷 )𝜒 + ( ) 𝜒 − 𝐁→ 𝐉→ − ℵ , (43) 

here ℵ ≡ −𝐒→𝐁→ denote to Zeeman effect in commutative quantum mechanics, while (ℵ = 𝐁→ 𝐉→ − ℵ ) is the new 
Zeeman effect. To obtain the exact NC magnetic modifications of energy for the ground state, the first excited state, and (𝑛, 𝑙, 𝑚)  excited states of the heavy quarkonium system 𝐸 (𝑚 = 0, 𝑙 = 0, 𝑛 = 0), 𝐸 𝑚 = −𝑙, +𝑙, 𝑙, 𝑛 = 1  and 𝐸 𝑚 = −𝑙, +𝑙, 𝑙, 𝑛  we just replace 𝑘 (𝑙) and 𝛩 𝜃  in the Eqs. (37), (40), and (41) with the following parameters 𝑚 
and 𝜎(𝜎), respectively: 

 𝐸 (𝑚 = 0, 𝑙 = 0, 𝑛 = 0) = 𝑔 ( ) /( ) ( ) / 𝐵 𝜎𝑇 + 𝑚, (44.1) 

 𝐸 𝑚 = −𝑙, +𝑙, 𝑙, 𝑛 = 1 = 𝜎𝑇 + 𝑚, (44.2) 
and 
 𝐸 𝑚 = −𝑙, +𝑙, 𝑙, 𝑛 = 𝑔 𝑁 𝑩 𝜎𝑇 + 𝑚. (44.3) 

We have−𝑙 ≤ 𝑚 ≤ +𝑙, which allows us to fix (2𝑙 + 1) values for discreet numbers 𝑚. It should be noted that the 
results obtained in Eq. (44) we could find by direct calculation: 𝐸 = ⟨𝛹(𝑟, 𝜃, 𝜙) 𝐻 (𝑟, 𝜎, 𝜎) 𝛹(𝑟, 𝜃, 𝜙)⟩ 
that takes the following explicit relation: 

 𝐸 = 𝑁 𝑚𝐵 ∏   (𝑟 − 𝛼 ) 𝑟 𝑒𝑥𝑝(−𝛼𝑟 − 2𝛽𝑟)∞ 𝑓(𝑟, 𝐴 , 𝐷 )𝜎 + ( ) 𝜎 + 𝑟 𝑑𝑟.
 (45) 

Eq. (45) can be rewritten as follows: 
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 𝐸 = 𝑔 𝑁 𝐵 𝜎 ∑ 𝑇 + 𝑚. (46) 

The 6-factors 𝑇 𝑖 = 1,6  are given by Eq. (33). Then we find the magnetic specters of energy produced by the 
operator 𝐻 (𝑟, 𝜒, 𝜎) for the ground state and first excited states repeating the same calculations in the previous subsection. 

Having completed the first and second-induced perturbed both spin-orbit interaction and self-magnetic phenomena, 
now, for our purposes, we are interested in finding a new third automatically important symmetry for improved internal 
energy potential at zero temperature in RNCQM symmetries. This physical phenomenon is induced automatically by the 
influence of the perturbative Hamiltonian operator 𝐻 (𝑟, 𝜒, 𝜒), which we can obtain from the initial perturbed 
Hamiltonian operator in Eq. (25). We discover these important physical phenomena when our studied system the 
quarkonium particle such as (𝑐𝑐 and𝑏𝑏) undergoing rotation with angular velocity 𝛺→ if we make the following two 
transformations to ensure that previous calculations are not repeated: 

 𝚯→ → 𝛘𝛀→   and   𝛉→ → 𝛘𝛀→. (47) 
Here (𝜒,𝜒) are just two infinitesimal real proportional constants. We can express the perturbative Hamiltonian operator 𝐻 (𝑟, 𝜒, 𝜒) which induced the rotational movements of the quarkonium particle as follows: 

 𝐻 (𝑟, 𝜒, 𝜒) = [𝑓(𝑟, 𝐴 , 𝐷 ) 𝜒 + ( ) 𝜒 + 𝐋→𝛀→ . (48) 

To simplify the calculations without compromising physical content, we choose the rotational velocity 𝛺→ = 𝛺𝑒 . 
Then we transform the spin-orbit coupling to the new physical phenomena as follows: 

 𝑓(𝑟, 𝐴 , 𝐷 )𝜒 + ( ) 𝜒 + 𝐋→𝛀→ →   𝑓(𝑟, 𝐴 , 𝐷 )𝜒 + ( ) 𝜒 + Ω𝐋𝐳. (49) 

To obtain the exact NC modifications of energy for the ground state, the first excited state, and (𝑛, 𝑙, 𝑚)  excited 
states of the heavy quarkonium system 𝐸 (𝑚 = 0, 𝑙 = 0, 𝑛 = 0), 𝐸 𝑚 = −𝑙, +𝑙, 𝑙, 𝑛 = 1 , and 𝐸 𝑚 =−𝑙, +𝑙, 𝑙, 𝑛  we just replace𝑘 (𝑙) and 𝛩 𝜃  in Eqs. (37), (40), and (41) with the following parameters 𝑚 and𝜒(𝜒), 
respectively: 

 𝐸 (𝑚 = 0, 𝑙 = 0, 𝑛 = 0) = 𝑔 ( ) /( ) ( ) / 𝛺 𝜒𝑇 + 𝑚, (50.1) 

 𝐸 𝑚 = −𝑙, +𝑙, 𝑙, 𝑛 = 1 = 𝜒𝑇 + 𝑚, (50.2) 

and 
 𝐸 𝑚 = −𝑙, +𝑙, 𝑙, 𝑛 = 𝑔 𝑁 𝛺 𝜒𝑇 + 𝑚. (50.3) 

It is important to note that in Ref. [83], rotating isotropic and anisotropic harmonically confined ultra-cold Fermi 
gases were studied in two and three dimensions at absolute zero, but in that study, the rotational term had to be manually 
added to the Hamiltonian operator. In contrast, in our study, the rotation operator appears automatically because of the 
phase-space deformation caused by the improved internal energy potential models in the 3D-NRNCPS symmetries. It is 
crucial to note that perturbation theory cannot be utilized to find corrections of the second order (𝛩 and 𝜃 ) because we 
have only employed corrections of the first order of infinitesimal noncommutative parameters (𝛩 and 𝜃). 
 

4. MAIN RESULTS 
In the previous subsections, we obtained the solution of the modified Schrödinger equation for new improved 

internal energy potential, which is given in Eq. (25) by using the generalized Bopp’s shift method and standard 
perturbation theory in pNRQCD by the feature of 3D-NRNCPS symmetries. The modified eigenenergies  , ,gip mip lip

nc nc ncE E E(𝑇, 𝑐, 𝑛 = 0, 𝑚 = 0, 𝑙),  , ,gip mip lip
nc nc ncE E E 𝑇, 𝑐, 𝑗, 𝑛 = 1, 𝑚 = −𝑙, +𝑙 , 𝑙  and 𝐸 , 𝐸 , 𝐸  𝑇, 𝑐, 𝑗, 𝑛, 𝑚 = −𝑙, +𝑙 , 𝑙  

with spin-1 for heavy quarkonium systems 𝑄𝑄 (𝑄 = 𝑐, 𝑏) with improved internal energy potential at finite temperature are 
obtained in this paper based on our original results presented in Eqs. (37), (40), (41), (44), and (50) in addition to the 
ordinary energy 𝐸  for the improved internal energy potential at a finite temperature which is presented in Eq. (11): 

 
 For the ground state: 

 𝐸 (𝑇, 𝑐, 𝑛 = 0, 𝑚 = 0, 𝑙) = 𝐸 + 𝑔 ( ) /( ) ( ) / (𝛩𝑘 (𝑙) + 𝐵𝜎𝑚 + 𝛺𝜒𝑚)𝑇+ (𝑘 (𝑙)𝜃 + 𝐵𝜎𝑚 + 𝛺𝜒𝑚) , (51.1) 

 𝐸 (𝑇, 𝑐, 𝑛 = 0, 𝑚 = 0, 𝑙) = 𝐸 + 𝑔 ( ) /( ) ( ) / (𝛩𝑘 (𝑙) + 𝐵𝜎𝑚 + 𝛺𝜒𝑚)𝑇+ (𝑘 (𝑙)𝜃 + 𝐵𝜎𝑚 + 𝛺𝜒𝑚) , (51.2) 
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 𝐸 (𝑇, 𝑐, 𝑛 = 0, 𝑚 = 0, 𝑙) = 𝐸 + 𝑔 ( ) /( ) ( ) / (𝛩𝑘 (𝑙) + 𝐵𝜎𝑚 + 𝛺𝜒𝑚)𝑇+ (𝑘 (𝑙)𝜃 + 𝐵𝜎𝑚 + 𝛺𝜒𝑚) , (51.3) 

 For the first excited state: 

 𝐸 𝑇, 𝑐, 𝑗, 𝑛 = 1, 𝑚 = −𝑙, +𝑙 , 𝑙 = 𝐸 + (𝛩𝑘 (𝑙) + 𝐵𝜎𝑚 + 𝛺𝜒)𝑇+ (𝑘 (𝑙)𝜃 + 𝐵𝜎𝑚 + 𝛺𝜒𝑚) , (52.1) 

 𝐸 𝑇, 𝑐, 𝑗, 𝑛 = 1, 𝑚 = −𝑙, +𝑙 , 𝑙 = 𝐸 + (𝛩𝑘 (𝑙) + 𝐵𝜎𝑚 + 𝛺𝜒)𝑇+ (𝑘 (𝑙)𝜃 + 𝐵𝜎𝑚 + 𝛺𝜒𝑚) , (52.2) 

 𝐸 𝑇, 𝑐, 𝑗, 𝑛 = 1, 𝑚 = −𝑙, +𝑙 , 𝑙 = 𝐸 + (𝛩𝑘 (𝑙) + 𝐵𝜎𝑚 + 𝛺𝜒𝑚)𝑇+ (𝑘 (𝑙)𝜃 + 𝐵𝜎𝑚 + 𝛺𝜒𝑚) , (52.3) 

 For any (𝑛, 𝑙, 𝑚) ℎ excited state: 
 𝐸 𝑇, 𝑐, 𝑗, 𝑛, 𝑚 = −𝑙, +𝑙 , 𝑙 = 𝐸 + 𝑔 𝑁 (𝛩𝑘 (𝑙) + 𝐵𝜎𝑚 + 𝛺𝜒𝑚)𝑇 + (𝑘 (𝑙)𝜃 + 𝐵𝜎𝑚 + 𝛺𝜒𝑚) ,

 (53.1) 
 𝐸 𝑇, 𝑐, 𝑗, 𝑛, 𝑚 = −𝑙, +𝑙 , 𝑙 = 𝐸 + 𝑔 𝑁 (𝛩𝑘 (𝑙) + 𝐵𝜎𝑚 + 𝛺𝜒𝑚)𝑇 + (𝑘 (𝑙)𝜃 + 𝐵𝜎𝑚 + 𝛺𝜒𝑚) ,

 (53.2) 
 𝐸 𝑇, 𝑐, 𝑗, 𝑛, 𝑚 = −𝑙, +𝑙 , 𝑙 = 𝐸 + 𝑔 𝑁 (𝛩𝑘 (𝑙) + 𝐵𝜎𝑚 + 𝛺𝜒)𝑚𝑇 + (𝑘 (𝑙)𝜃 + 𝐵𝜎𝑚 + 𝛺𝜒𝑚) ,

 (53.3) 

where 𝐸  and 𝐸  are the energy of the ground state and the first excited state of heavy quarkonium systems in the 
symmetries of quantum mechanics under internal energy potential at finite temperature: 
 𝐸 = ( ) , (54.1) 
and 
 𝐸 = ( ) ( ) . (54.2) 

This is one of the main objectives of our research and by noting that the obtained eigenvalues of energy are real’s 
and then the NC diagonal Hamiltonian 𝐻 𝑥 , 𝑝  is Hermitian. Furthermore, it’s possible to write the three elements 𝐻 , 𝐻  and 𝐻  as follows: 

 𝐻 𝑥 , 𝑝 → 𝐻 𝑥 , 𝑝 ≡ 𝑑𝑖𝑎𝑔 𝐻 , 𝐻 , 𝐻 , (55) 
where 𝐻 = − 𝛥2𝜇 + 𝐻𝐻 = − 𝛥2𝜇 + 𝐻𝐻 = − 𝛥2𝜇 + 𝐻 }⎭⎪⎪⎬

⎪⎪⎫
 

In the symmetries of 3D-NRNCPS, the new kinetic term    can be expressed as: 𝛥2𝜇 = 𝛥 − 𝐋→𝛉→ − 𝐋→𝛔→ − 𝐋→𝛘→2𝜇  

The three modified interaction elements 𝐻 , 𝐻 , 𝐻  are given by the following expressions: 

 𝐻 = 𝐷 + + 𝐷 𝑟 + 𝐷 𝑟 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟)  (𝑘 (𝑙)𝛩 +𝜎ℵ )(𝑟, 𝐴 , 𝐷 ) , (56.1) 

 𝐻 = 𝐷 + + 𝐷 𝑟 + 𝐷 𝑟 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟)  (𝑘 (𝑙)𝛩 +𝜎ℵ )(𝑟, 𝐴 , 𝐷 ) , (56.2) 
and 
 𝐻 = 𝐷 + + 𝐷 𝑟 + 𝐷 𝑟 𝑒𝑥𝑝(−𝑚 (𝑇)𝑟)  (𝑘 (𝑙)𝛩 +𝜎ℵ )(𝑟, 𝐴 , 𝐷 ) . (56.3) 

Thus, the ordinary kinetic term for the internal energy potential (− ) and ordinary interaction 
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𝑒𝑥𝑝(−𝑚 (𝑇)𝑟) are replaced by a new modified form of the kinetic term ( ) and new modified 

interactions modified to the new form 𝐻 , 𝐻 , 𝐻  in 3D-NRNCPS symmetries. On the other hand, it is evident 
consider the quantum number 𝑚 takes (2𝑙 + 1) values and we have also three values for(𝑗 = 𝑙 ± 1, 𝑙), thus every state in 
the usually three-dimensional space of energy for a heavy quarkonium system under improved internal energy potential 
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will be 3(2𝑙 + 1)sub-states. To obtain the complete total degeneracy of the energy level of the improved internal energy 
potential in 3D-NRNCPS symmetries, we need to sum all allowed values 𝑙. Total degeneracy is thus, 

 ∑ (2𝑙 + 1) = 𝑛3D-NRQM →   3(∑ (2𝑙 + 1)) ≡ 3𝑛3D-NRNCPS . (57) 

Note that the obtained new energy eigenvalues 𝐸 , 𝐸 , 𝐸 𝑇, 𝑐, 𝑗, 𝑛, 𝑚 = −𝑙, +𝑙 , 𝑙  now depend on new 
discrete atomic quantum numbers (𝑛, 𝑗, 𝑙, 𝑠) and𝑚 in addition to the parameters of the internal energy potential. It is 
pertinent to note that when the atoms have spin-0, the total operator can be obtained from the interval |𝑙 − 𝑠| ≤ 𝑗 ≤|𝑙 + 𝑠|, which allows us to obtain the eigenvalues of the operator 𝐺 as 𝑘(𝑗, 𝑙, 𝑠) ≡ 0 and then the nonrelativistic energy 
spectrum 𝐸 , 𝐸 , 𝐸 𝑇, 𝑗, 𝑛, 𝑚 = −𝑙, +𝑙 , 𝑙  reads [68, 69]: 

 𝐸 , 𝐸 , 𝐸 𝑇, 𝑐, 𝑗, 𝑛, 𝑚 = −𝑙, +𝑙 , 𝑙 = 𝐸 + 𝑔 𝑁 𝜎𝑇 + 𝐵𝑚. (58) 

It is important to apply the present results (53) and (58) to quarkonium mesons. One of the most important 
applications in the extended model of pNRQCD is to calculate the modified mass spectra of the heavy quarkonium 
systems (the mass of the quarkonium bound state), such as charmonium and bottomonium mesons, which have the quark 
and antiquark flavor in the symmetries of NCQM under improved internal energy potential at finite temperature. To 
achieve this goal, we generalize the traditional formula [84-91], 𝑀 = 2𝑚 + 𝐸  

which defines the total mass of the different quarkonium states (resonance masses), to the new form: 

 𝑀 = 2𝑚 + 𝐸 → 𝑀 = 2𝑚 + 𝐸 + 𝐸 + 𝐸 𝑇, 𝑐, 𝑗, 𝑛, 𝑚 = −𝑙, +𝑙 , 𝑙 . (59) 

Here 𝑚  is the bare mass of quarkonium or twice the reduced mass of the system. Moreover,  1
3

gip mip lip
nc nc ncE E E 𝑇, 𝑐, 𝑗, 𝑛, 𝑚 = −𝑙, +𝑙 , 𝑙  is the non-polarized energies, which can determine from Eqs. (49) and (54). Thus, at finite 

temperature, the modified mass of the quarkonium system 𝑀  obtain: 

 𝑀 = 𝑀 − 𝑔 𝑁 𝜎𝐵𝑚 + 𝜒𝛺𝑚 − 𝛩 + 𝑇 + (𝐵𝜎 + 𝛺𝜒) − ( ) for spin-1(𝜎𝐵 + 𝜒𝛺)𝑇 𝑚 + (𝐵𝜎 + 𝛺𝜒)𝑚          for spin-0 . (60) 

Here𝑀is the heavy quarkonium system at a finite temperature with improved internal energy potential in 
commutative quantum mechanics, which is defined in ref. [7]. If we consider(𝛩, 𝜎, 𝜒) → (0,0,0), we recover the results 
of the commutative space of ref. [7] for the improved internal energy potential, which means that our calculations are 
correct. The novelty in this work is that the generalized Bopp shift method is successfully applied to find the solution of 
the 3-radial DSE at finite temperature in the symmetries of the 3D-NRNCPS framework. The automatic appearance of 
the spin in the term of improved energy as a quantum number clearly shows that the deformed Schrödinger equation 
under the influence of the improved energy potential model at finite temperature rises to the descriptor of the Dirac 
equation, meaning that this system can be valid in the field of high energies. 
 

5. CONCLUSION 
In the present work, the 3-dimensional deformed Schrodinger equation is analytically solved using the generalized 

Bopp’s shift method and standard perturbation theory by the feature of 3D-NRNCPS symmetries. The improved internal 
energy potential at finite temperature is extended to include the effect of the non-commutativity space phase based on 
ref. [7]; we resume the main results: 
 The ordinary Hamiltonian operator at finite temperature 𝐻 𝑥 , 𝑝  in 3D-NRNCPSsymmetries was replaced 

by a new modified operator 𝐻 𝑥 , 𝑝  which equals 𝑑𝑖𝑎𝑔 𝐻 , 𝐻 , 𝐻  in the 3D-NRNCPS symmetries 
framework for the heavy quarkonium system such as 𝑄𝑄 (𝑄 = 𝑐, 𝑏), 
 The ordinary kinetic term −  in 3D-NRNCPSsymmetries is modified to the new form  which is 

equal ( 𝐋→𝛉→ 𝐋→𝛔→ 𝐋→𝛘→) to a heavy quarkonium system under the influence of the improved internal energy potential at the 
finite-temperature model. 
  We have obtained the perturbative corrections (  , ,gip mip lip

nc nc ncE E E 𝑇, 𝑐, 𝑗, 𝑛, 𝑚 = −𝑙, +𝑙 , 𝑙 ,  , ,gip mip lip
nc nc ncE E E𝑇, 𝑐, 𝑗, 𝑛 = 1, 𝑚 = −𝑙, +𝑙 , 𝑙  and  , ,gip mip lip

nc nc ncE E E 𝑇, 𝑐, 𝑗, 𝑛, 𝑚 = −𝑙, +𝑙 , 𝑙  for the ground state, the first excited state, 
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and the (𝑛, 𝑙, 𝑚) ℎ excited state with (spin-1 and spin-0) for the heavy quarkonium system under the influence of the 
improved internal energy potential model at finite temperature are obtained. 
 We have obtained, at finite temperature, the modified mass of the quarkonium system 𝑀  which equals the 

sum of the corresponding values 𝑀 in the 3D-NRNCPSsymmetries, and two perturbative terms proportional with two 
parameters (𝛩 and 𝜃).  
 Since the main quantum number, spin, appears clearly and automatically in the expression of the global 

Hamiltonian and its eigenvalues, this is an indication that our results are valid in the field of high energies where the Dirac 
equation is applied. 

Through high-value results, which we have achieved in the present work, we hope to extend our recent work for 
further investigations of particle physics and other characteristics of quarkonium at finite temperatures.  
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ВПЛИВ ДЕФОРМАЦІЇ ФАЗОВОГО ПРОСТОРУ НА СПЕКТРИ ВАЖКОГО КВАРКОНІЮ В ПОКРАЩЕНОМУ 
ЕНЕРГЕТИЧНОМУ ПОТЕНЦІАЛІ ЗА СКІНЧЕННОЇ ТЕМПЕРАТУРНОЇ МОДЕЛІ РІВНЯННЯ ШРЕДІНГЕРА 

ЧЕРЕЗ МЕТОД УЗАГАЛЬНЕНОГО ЗСУВУ БOППА ТА СТАНДАРТНУ ТЕОРІЮ ЗБУРЕНЬ 
Абдельмаджид Майреше 

Факультет фізики, Університет Мсіла, Лабораторія PMC, Університет Мсіла, Алжир 
У цій роботі ми отримуємо розв’язання деформованого рівняння Шредінгера (DSE) з покращеним внутрішнім енергетичним 
потенціалом при кінцевій температурній моделі в 3-вимірній нерелятивістській некомутаційній системі симетрії фазового 
простору (3D-NRNCPS), використовуючи узагальнений метод зсуву Боппа у випадку збуреної нерелятивістської квантової 
хромодинаміки (pNRQCD). Отримано модифіковані енергетичні спектри зв’язаного стану для важкої кварконієвої системи, 
такої як чармоній 𝑐𝑐 і боттононій 𝑏𝑏 при кінцевій температурі. Встановлено, що пертурбативні розв’язки дискретного спектру 
чутливі до дискретних атомних квантових чисел (j,l,s,m) стану 𝑄𝑄 (𝑄 = 𝑐, 𝑏), параметрів потенціалу внутрішньої енергії (𝑇, 𝛼 (𝑇),𝑚 (𝑇), 𝛽, 𝑐), які є екрануючою масою Дебая 𝑚 (𝑇), поточною константою зв’язку 𝛼 (𝑇), критичною температурою 
β, вільним параметром c на додаток до параметрів некомутативності (𝛩,𝜃). Новий оператор Гамільтона в симетріях 3D-
NRNCPS складається з відповідного оператора в комутативному фазовому просторі та трьох адитивних частин для спін-
орбітальної взаємодії, нової магнітної взаємодії та обертального терма Фермі. Отримані власні енергетичні значення 
використовуються для отримання мас-спектрів важких кварконієвих систем (𝑐𝑐 and 𝑏𝑏). Загальна повна виродженість нових 
енергетичних рівнів покращеного потенціалу внутрішньої енергії змінилася і стала рівною новому значенню 3𝑛  у симетріях 
3D-NRNCPS замість значення 𝑛  у симетріях 3D-NRQM. Наші нерелятивістські результати, отримані із DSE, , будуть за 
можливості зіставлені з рівнянням Дірака у фізиці високих енергій. 
Ключові слова: рівняння Шредінгера; некомутативний фазовий простір; потенціал внутрішньої енергії при кінцевій 
температурі; метод зсуву Боппа, важкі кварконієві системи 


