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The paper presents the description of a demonstration bench, which includes a mathematical model and analysis tools for understanding 
the features of phase transitions of the first and second kind. The advantage of this demonstration bench is the rejection of all 
phenomenology and the obvious limitation of the application of various approximations and hypotheses. The description is formed on the 
well-known equations of hydrodynamics, which are well-tested and are a reliable basis for the construction of realistic models. The Proctor-
Sivashinsky model, which was used to describe the process of convection development in a thin layer of liquid with poorly conductive 
heat boundaries, is the basis for the demonstration bench. Exactly this model allows to observe phase transitions of the first and second 
kind.  The feature of the model is that it allocates one spatial scale of interaction, leaving for the evolution of the system the possibility to 
choose the nature of symmetry.  All spatial disturbances of the same size but of different orientation interact with each other. This allows 
us not to distract from the main task of this work, which is to demonstrate the process of structure formation as a result of a cascade of 
phase transitions. The mechanism of phase transitions associated with the presence of minimums of the interaction coefficients of modes 
of the spectrum of the instability. There are a large number of structural defects, which appear as attributes of phase transition. The 
instability spectrum modes interference is the reason of the high rate of correlations in the propagation of a new phase. 
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INTRODUCTION 

The process of convection development in a thin fluid layer has been considered in [1,2]. In this case a system of 
toroidal convective structures is formed, providing a significantly stronger heat transfer in the system. The authors of [3] 
noticed instabilities in this system, which were described by the Proctor Sivashinsky equations obtained in [1,2]. The Swift 
- Hohenberg equation, which was a simplification of the Proctor - Sivashinsky equations (instead of vector nonlinearity, the 
scalar one was used [4]) discussed the first kind phase transition in this description model. In this work and in work [5] the 
process of phase transition was discussed when from amorphous state of disorderly convection, the structure of convective 
rolls was formed, which in turns turned out to be unstable with formation of hexagonal convective cells. 

By the way, the equations of the Proctor Sivashinsky model, after the instability of the primary structure - convective 
rolls, formed a system of square convective cells The question of the appearance of a phase transition of the first kind did 
not need to be discussed, but it remained unclear what the instability of the primary structure of convective shafts is and 
whether this process is a phase transition of the second kind. This is exactly what was found out later in [6-13], where the 
state function whose values determined the type of topology of emerging spatial structures was found and verified, the 
process of their formation was shown and thus it was proved that the that transition is nothing but a phase transition of 
the second kind (see also [14], which results in the formation of a more stable field of convective square cells [15-19]). 

The aim of the work is to create a mathematical model and means of describing the bench to demonstrate the features 
of phase transitions of the first and second kind The advantage of this bench is the rejection of all phenomenology and 
the obvious limitation of the application of various approximations and hypotheses. The description is formed on the well-
known equations of hydrodynamics, which are well-tested and are a reliable basis for the construction of realistic models. 

 
1. MATHEMATICAL MODEL OF CONVECTION DEVELOPMENT IN A THIN LAYER 

OF LIQUID OR GAS WITH POORLY CONDUCTIVE HEAT BOUNDARIES 
Below we consider the Proctor-Sivashinsky model [1-2], which was used to describe the process of convection 

development in a thin layer of liquid with poorly conductive heat boundaries. The feature of the model is that it allocates one 
spatial scale of interaction, leaving for the evolution of the system the possibility to choose the nature of symmetry. All 
spatial disturbances of the same size but of different orientation interact with each other. This allows us not to distract from 
the main task of this work, which is to study the process of structure formation as a result of a cascade of phase transitions 
Consider the simplest and most convenient representation of the Proctor-Sivashinsky model to describe this convection: 
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where the interaction coefficients are defined by the relations 

 1=jjV ,          2 2= (2 3) 1 2 (2 3) 1 2 cosij i j ijV k k   
 

, (2) 

and ij  – angle between the vectors ik


 and jk


. If we require zero values at the boundaries, the spatial dependence of each 
n - th mode will be 𝐴,  sin(2𝜋𝑛𝑥) sin(2𝜋𝑚𝑦) where n, m (they can be represented as 𝑛 = 𝑁 ∙ cos 𝜗௦, 𝑚 = 𝑁 ∙ sin 𝜗௦) – 
are integers, and 𝑁ଶ = 𝑛ଶ + 𝑚ଶ. 

Expressions (1) - (2) must be supplemented with the initial values of the spectrum amplitudes 𝐴. That is 𝐴│௧ୀ = 𝐴బ. 
The width of the instability interval in k-space represents a ring – whose average radius is equal to one, and whose width is 
of the order of the value of the relative overthreshold , i.e., much less than one. From the results of preliminary studies [3] 
it became clear that in the system, besides the initial amorphous state, the existence of at least two long-lived solutions in the 
form of a roller structure (rolls) (see Fig. 1a), and in the form of a field of square cells (see Fig. 1b) is possible. 

Figure 1. Convective structures: rolls (a) and square cells (b)
 

2. TOOLS TO DESCRIBE PHASE TRANSITIONS 
Numerical analysis of the model allowed us to confirm the presence of structural-phase transitions. The state 

function turned out to be the quadratic form of the spectrum 𝐼 =  ଵே ∑ 𝐴ଶ .  

 
Figure 2. Behavior of the derivative state function 𝜕𝐼 𝜕𝑡⁄   

After the first burst of the derivative 𝜕𝐼 𝜕𝑡⁄  an amorphous structure is formed - a system of convective rolls, and up to 
the second burst the value of 𝐼 ≈ 0.75 changes little. State function 𝐼 → 1 in the formation of a quasi-stable roller structure, 
later 𝐼 = 1.2 - corresponds to the formed field of square cells.  Characteristic transient times 𝜏ଵ = 1.6 – the time of 
occurrence of the “amorphous” state 𝜏ଶ = 4.4  – time of formation of pronounced roller-shaped structures 𝜏ଷ = 5.6 – the 
time of cell system formation for one of the realizations of the process of establishing convective motion. 

It can be seen that the formation times of the states 𝜏  is inversely proportional to the difference between the values 
of 𝐼 =  ∑ 𝐴ଶ  after the structural-phase transition 𝐼(ା) = (∑ 𝐴ଶ )(ା) and before this transition 𝐼(ି) = (∑ 𝐴ଶ )(ି) . That is, 
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It is easy to see that 𝜏ଷ 𝜏ଶ⁄  ≈  ∆𝐼ଶ ∆𝐼ଷ⁄ , faster phase transitions precede slower ones. By tracking the values of the 
state function, we can see at what stage of the process development the convective layer is. 



3. VISUALIZATION OF PHASE TRANSITIONS PROCESSES  
The demonstration model must form a physical intuition, so the role of visualization of the phase transition process 

is very important. Consider the view of large fragments of the field of convective structures, calculated [20] using the 
mathematical model outlined in Section 1. 

 
a) 

 
b)

 
c) 

 
d)

Figure 3. Temperature field distribution of convection on the layer surface 

Segment (a) shows what happens after the first-order phase transition with the formation of convective rolls. The 
next segment (b) shows the dynamics of transverse modulation of the rolls. This is already the initial stage of the phase 
transition of the second kind. Segment (c) shows the process of nucleation of a new phase - formation of domains - a 
metastable spatial structure, after destruction of the roll system, Segment (d) demonstrates formation of a stable 
convective structure - square convective cells. 
 

4. CONCLUSIONS 
Thus, there are three states in the Proctor-Sivashinsky model of description of convection. The times of phase transitions 

between metastable states are much shorter than the times of their existence. Characteristic size of convective structures in the 
regime of extended instability in accepted order units 2𝜋 𝑘⁄ ∝ 2𝜋 and the length of the wave vectors of the order of one. 
Interaction potential of spatial modes 𝑉 =  (2 3⁄ )൫1 + 2 cosଶ 𝜗൯ has a deep minimum for corners 𝜗 = 𝜗 − 𝜗 between 
the vectors ik


 and jk


 of two spatial modes 𝜗 = ± 𝜋 2⁄ . Exactly these minima generate the unstable structure of rolls. For the 

existence of a minimum 𝑉 allows modes with relatively small amplitudes to continue their growth, while suppressing the 
neighboring disturbances.  

When approaching a stable or metastable state, the spatial structure gets rid of many defects. 
Defects occur mostly on the boundaries of homogeneous areas - domains. There is a correlation between the relative 

proportion of visually observed (geometrically) structure defects and the defectiveness value, defined as the ratio of the squares 
of the amplitudes of the spectrum modes that do not correspond to the square cell system to the total sum of the squares of 
amplitudes (see [12, 13]). 

Thus, in the model of convection, Proctor-Sivashinsky it is possible to observe both the process of phase transition 
of the first kind and the process of phase transition of the second kind. This description of phase transitions did not use 
phenomenological approaches and various speculative considerations, which allows us to consider in detail the nature of 
the transition processes by the example of this model. 

It is important to note that the correlation speed of spatial perturbations in this case is extremely large. The process of 
phase transformations covers not separate local regions, but at once the entire convection zone, the spatial structure in 
different places of the convective layer being a consequence of interference of a set of eigenfunctions of the task. That is, the 
observed significant rate of these correlations is due to phase changes and is not related to the energy-momentum transfer. 
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ДЕМОНСТРАЦІЙНИЙ СТЕНД ДЛЯ ПРЕДСТАВЛЕННЯ ХАРАКТЕРУ ФАЗОВИХ ПЕРЕХОДІВ 
ПЕРШОГО І ДРУГОГО РОДУ 

І.В. Гущин 
Харківський національний університет імені В. Н. Каразіна, Харків, Україна 

пл. Свободи 4, м Харків, Україна, 61022 
В роботі представлено опис демонстраційного стенду, що включає математичну модель і засоби аналізу для розуміння 
особливостей фазових переходів першого і другого роду. Перевагою цього демонстраційного стенду є відмова від будь-якої 
феноменології та очевидна обмеженість застосування різних наближень та гіпотез. Опис будується на відомих рівняннях 
гідродинаміки, які добре апробовані та є надійною основою для побудови реалістичних моделей. В основу демонстраційного 
стенду покладено модель Проктора-Сивашинського, яка використовувалася для опису процесу розвитку конвекції в тонкому 
шарі рідини з межами, що погано проводять тепло. Саме ця модель дозволяє спостерігати фазові переходи першого та другого 
роду. Особливість моделі у цьому, що вона виділяє один просторовий масштаб взаємодії, залишаючи для еволюції системи 
можливість вибору характеру симетрії. Усі просторові обурення одного розміру, але різної орієнтації взаємодіють друг з 
одним. Це дозволяє не відволікатися від основного завдання даної роботи – демонстрації процесу структуроутворення 
внаслідок каскаду фазових переходів. Механізм фазових переходів пов'язаний із наявністю мінімумів коефіцієнтів взаємодії 
мод спектру нестійкості. Є велика кількість структурних дефектів, які виявляються ознаки фазового переходу. Інтерференція 
мод спектру нестабільності є причиною високої швидкості кореляцій поширення нової фази. 
Ключові слова: демонстрація, фазові переходи першого та другого роду, рівняння Проктора-Сивашинського 


