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The paper presents the description of a demonstration bench, which includes a mathematical model and analysis tools for understanding
the features of phase transitions of the first and second kind. The advantage of this demonstration bench is the rejection of all
phenomenology and the obvious limitation of the application of various approximations and hypotheses. The description is formed on the
well-known equations of hydrodynamics, which are well-tested and are a reliable basis for the construction of realistic models. The Proctor-
Sivashinsky model, which was used to describe the process of convection development in a thin layer of liquid with poorly conductive
heat boundaries, is the basis for the demonstration bench. Exactly this model allows to observe phase transitions of the first and second
kind. The feature of the model is that it allocates one spatial scale of interaction, leaving for the evolution of the system the possibility to
choose the nature of symmetry. All spatial disturbances of the same size but of different orientation interact with each other. This allows
us not to distract from the main task of this work, which is to demonstrate the process of structure formation as a result of a cascade of
phase transitions. The mechanism of phase transitions associated with the presence of minimums of the interaction coefficients of modes
of the spectrum of the instability. There are a large number of structural defects, which appear as attributes of phase transition. The
instability spectrum modes interference is the reason of the high rate of correlations in the propagation of a new phase.
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INTRODUCTION

The process of convection development in a thin fluid layer has been considered in [1,2]. In this case a system of
toroidal convective structures is formed, providing a significantly stronger heat transfer in the system. The authors of [3]
noticed instabilities in this system, which were described by the Proctor Sivashinsky equations obtained in [1,2]. The Swift
- Hohenberg equation, which was a simplification of the Proctor - Sivashinsky equations (instead of vector nonlinearity, the
scalar one was used [4]) discussed the first kind phase transition in this description model. In this work and in work [5] the
process of phase transition was discussed when from amorphous state of disorderly convection, the structure of convective
rolls was formed, which in turns turned out to be unstable with formation of hexagonal convective cells.

By the way, the equations of the Proctor Sivashinsky model, after the instability of the primary structure - convective
rolls, formed a system of square convective cells The question of the appearance of a phase transition of the first kind did
not need to be discussed, but it remained unclear what the instability of the primary structure of convective shafts is and
whether this process is a phase transition of the second kind. This is exactly what was found out later in [6-13], where the
state function whose values determined the type of topology of emerging spatial structures was found and verified, the
process of their formation was shown and thus it was proved that the that transition is nothing but a phase transition of
the second kind (see also [14], which results in the formation of a more stable field of convective square cells [15-19]).

The aim of the work is to create a mathematical model and means of describing the bench to demonstrate the features
of phase transitions of the first and second kind The advantage of this bench is the rejection of all phenomenology and
the obvious limitation of the application of various approximations and hypotheses. The description is formed on the well-
known equations of hydrodynamics, which are well-tested and are a reliable basis for the construction of realistic models.

1. MATHEMATICAL MODEL OF CONVECTION DEVELOPMENT IN A THIN LAYER
OF LIQUID OR GAS WITH POORLY CONDUCTIVE HEAT BOUNDARIES

Below we consider the Proctor-Sivashinsky model [1-2], which was used to describe the process of convection
development in a thin layer of liquid with poorly conductive heat boundaries. The feature of the model is that it allocates one
spatial scale of interaction, leaving for the evolution of the system the possibility to choose the nature of symmetry. All
spatial disturbances of the same size but of different orientation interact with each other. This allows us not to distract from
the main task of this work, which is to study the process of structure formation as a result of a cascade of phase transitions
Consider the simplest and most convenient representation of the Proctor-Sivashinsky model to describe this convection:
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where the interaction coefficients are defined by the relations
— - = \2
V=1, 14,:(2/3)(1—2(@1{,) ):(2/3)(1+2cos2 9,) )

and , — angle between the vectors lgl and IE ; - If we require zero values at the boundaries, the spatial dependence of each

n - th mode will be 4, ,, sin(2nnx) sin(2wrmy) where n, m (they can be represented as n = N - cos s, m = N - sin ;) —
are integers, and N2 = n? + m2.

Expressions (1) - (2) must be supplemented with the initial values of the spectrum amplitudes A;. That is A; | t=0 = 4j,.
The width of the instability interval in k-space represents a ring — whose average radius is equal to one, and whose width is
of the order of the value of the relative overthreshold /, i.e., much less than one. From the results of preliminary studies [3]
it became clear that in the system, besides the initial amorphous state, the existence of at least two long-lived solutions in the
form of a roller structure (rolls) (see Fig. 1a), and in the form of a field of square cells (see Fig. 1b) is possible.
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Figure 1. Convective structures: rolls (a) and square cells (b)

2. TOOLS TO DESCRIBE PHASE TRANSITIONS
Numerical analysis of the model allowed us to confirm the presence of structural-phase transitions. The state

function turned out to be the quadratic form of the spectrum I = %Z j Af.
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Figure 2. Behavior of the derivative state function 91 /dt

After the first burst of the derivative d1/dt an amorphous structure is formed - a system of convective rolls, and up to
the second burst the value of I = 0.75 changes little. State function I — 1 in the formation of a quasi-stable roller structure,
later I = 1.2 - corresponds to the formed field of square cells. Characteristic transient times 7; = 1.6 — the time of
occurrence of the “amorphous” state 7, = 4.4 — time of formation of pronounced roller-shaped structures 73 = 5.6 — the
time of cell system formation for one of the realizations of the process of establishing convective motion.

It can be seen that the formation times of the states 7,, is inversely proportional to the difference between the values

of I = ¥; A? after the structural-phase transition I\ = (¥; A2)") and before this transition I = (3; 49 . That is,

T, oc{(ZAfJ v —(ZA[ZJ ()} =Al, A3)

It is easy to see that 75/7, =~ Al,/Al;, faster phase transitions precede slower ones. By tracking the values of the
state function, we can see at what stage of the process development the convective layer is.



3. VISUALIZATION OF PHASE TRANSITIONS PROCESSES
The demonstration model must form a physical intuition, so the role of visualization of the phase transition process
is very important. Consider the view of large fragments of the field of convective structures, calculated [20] using the
mathematical model outlined in Section 1.

Figure 3. Temperature field distribution of convection on the layer surface

Segment (a) shows what happens after the first-order phase transition with the formation of convective rolls. The
next segment (b) shows the dynamics of transverse modulation of the rolls. This is already the initial stage of the phase
transition of the second kind. Segment (¢) shows the process of nucleation of a new phase - formation of domains - a
metastable spatial structure, after destruction of the roll system, Segment (d) demonstrates formation of a stable
convective structure - square convective cells.

4. CONCLUSIONS
Thus, there are three states in the Proctor-Sivashinsky model of description of convection. The times of phase transitions
between metastable states are much shorter than the times of their existence. Characteristic size of convective structures in the
regime of extended instability in accepted order units 27t /k o« 27 and the length of the wave vectors of the order of one.
Interaction potential of spatial modes V;; = (2/ 3)(1 + 2 cos? ¥, j) has a deep minimum for corners ¥;; = ¥; — ¥; between

the vectors El and k , of two spatial modes 9;; = + m/2. Exactly these minima generate the unstable structure of rolls. For the

existence of a minimum V;; allows modes with relatively small amplitudes to continue their growth, while suppressing the
neighboring disturbances.

‘When approaching a stable or metastable state, the spatial structure gets rid of many defects.

Defects occur mostly on the boundaries of homogeneous areas - domains. There is a correlation between the relative
proportion of visually observed (geometrically) structure defects and the defectiveness value, defined as the ratio of the squares
of the amplitudes of the spectrum modes that do not correspond to the square cell system to the total sum of the squares of
amplitudes (see [12, 13]).

Thus, in the model of convection, Proctor-Sivashinsky it is possible to observe both the process of phase transition
of the first kind and the process of phase transition of the second kind. This description of phase transitions did not use
phenomenological approaches and various speculative considerations, which allows us to consider in detail the nature of
the transition processes by the example of this model.

It is important to note that the correlation speed of spatial perturbations in this case is extremely large. The process of
phase transformations covers not separate local regions, but at once the entire convection zone, the spatial structure in
different places of the convective layer being a consequence of interference of a set of eigenfunctions of the task. That is, the
observed significant rate of these correlations is due to phase changes and is not related to the energy-momentum transfer.
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JEMOHCTPALIMHUN CTEH/ 1JI51 MPEJICTABJEHHSA XAPAKTEPY ®A30BUX IIEPEXO/IIB
MNEPIIOIO I APYTOI'O POAY
L.B. I'ymuun
Xaprxiecvkutl nayionanvHuti ynieepcumem imeni B. H. Kapasina, Xapxis, Yxpaina
nn. Ceoboou 4, m Xapxis, Ykpaina, 61022

B poGoTi npencraBieHO ONHMC JEMOHCTPALMHOTO CTEHIy, IIO0 BKIIOYAE MAaTeMaTHYHy MOJENb 1 3aco0M aHaji3y Uil PO3yMiHHS
0COOIMBOCTEH (ha30BUX MEPEXOIB MEPIIOTo i Apyroro poxay. [lepeBarorw mporo JeMOHCTPAIIMHOTO CTEHIY € BiMOBA BiJl Oy b-SIKOT
(eHoMeHOJIOTIT Ta 0YeBUIHA OOMEKEHICTh 3aCTOCYBaHHS PI3HMX HAOIMKeHb Ta rimore3. Onuc OyAyeThCsl HA BIIOMHX PIBHSHHSX
rigpoauHaMiky, siki 1oOpe anpoboBaHi Ta € HaAIHOI OCHOBOIO [UIsl OOYJOBH peaicTHYHUX Moaelell. B ocHoBy nemMoHcTpariitHoro
CTEHJy NOKJIaJeHO Mozenb IIpokropa-CHBaLIMHCHKOTO, SiKa BUKOPUCTOBYBAIACS ISl OLMCY MPOLIECY PO3BUTKY KOHBEKIIT B TOHKOMY
mIapi piguHU 3 MEXKaMHU, 110 TOTaHO MPOBOIATH Teru1o. CaMe I MOAEIb T03BOJISAE CIIOCTepiraTu (ha3oBi MepeXoar MEPUIOTO Ta APYTOro
pony. OcobnuBicTh MOZENTI Y I[LOMY, IO BOHA BHIUISE OJMH IIPOCTOPOBHI MaclITad B3aEMO/Ii1, 3aJTUIIAI0OYH ISl CBOJOLIT CHCTEMH
MOXJIMBICTE BUOOpY XapakTepy cHMeTpii. YCi mpocTopoBi o0ypeHHsI OZHOTO po3Mipy, ajie pi3HOi opieHTaIlii B3a€MOJIIOTH IPYT 3
onuuM. lle no3Bonsie He BigBOJIIKATHCS BiJl OCHOBHOIO 3aBJaHHS JaHOi poOOTH — JEeMOHCTpalii HPOIecy CTPYKTypOYTBOPEHHS
BHACJIJJOK Kackaay (a3oBUX mepexofiB. MexaHi3M (a30BHX MEPEeXO/iB IOB'I3aHHUH 13 HAsBHICTIO MiHIMyMiB Koe(illi€HTIB B3aeMoil
MOJI CIIEKTPY HecTilKocTi. € BennKa KilbKIiCTh CTPYKTYPHUX Je()EKTiB, sIKi BUSBISIOTHCS 03HAKH (a30Boro nepexoiy. Inrepdepeniis
MOJI CIIEKTPY HECTa0iIbHOCTI € IPUYUHOIO BUCOKOI IIBHUKOCTI KOPEIIALiN MOMIUPEHHs HOBOT (a3u.

KurouoBi ciioBa: 1eMoHcTparis, (pa3oBi mepexoan NepIoro Ta APyroro poay, piBHAHHs [IpokTopa-CHBaIIHHCHKOTO



