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In this study, the energy equation and normalized wave function were obtained by solving the Schrédinger equation analytically
utilizing the Eckart-Hellmann potential and the Nikiforov-Uvarov method. Fisher information and Shannon entropy were investigated.
Our results showed higher-order characteristic behavior for position and momentum space. Our numerical results showed an increase
in the accuracy of the location of the predicted particles occurring in the position space. Also, our results show that the sum of the
position and momentum entropies satisfies the lower-bound Berkner, Bialynicki-Birula, and Mycieslki inequality and Fisher
information was also satisfied for the different eigenstates. This study's findings have applications in quantum chemistry, atomic and
molecular physics, and quantum physics.
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1. Introduction

With various analytical techniques, such as the Nikiforov-Uvarov (NU) method [1-10], the asymptotic iterative
method (AIM) [11], the supersymmetric quantum mechanics method (SUSQM) [12], the Nikiforov-Uvarov functional
analysis (NUFA) method [13-16], the series expansion method [17-21], the WKB approximation [22-24], and so on [25],
the Schrodinger equation (SE) can be solved for a variety of potentials. Our knowledge of the underlying cause of a
quantum system is significantly influenced by the analytical solutions to this equation with a physical potential. This is
due to the fact that the eigenvalues and eigenfunctions convey essential information about the quantum system under
investigation [26, 27]. However, the exact bound state solutions of the SE are possible in some cases [28]. One can solve
the SE using appropriate approximation approaches, such as the Pekeris, Greene and Aldrich, and others [29-31], to
obtain the approximate solutions when the arbitrary angular momentum quantum number is not equal to zero. The
eigenvalues and eigenfunctions are of great importance in the study of mass spectra of heavy mesons [32], thermodynamic
properties of the system [33], and the quantum theoretic information entropies [34] among others. According to the
fundamental principle of information theory put forward by Claude Shannon, the global measures of Shannon entropy
and Fisher information are crucial to quantum information-theoretic measures [36]. As a result of its numerous
applications in physics and chemistry, scientists have actively investigated Shannon and Fisher entropies in various fields
in recent years. The theory of communication is one field in which Shannon and Fisher entropies are applied [37,38]. The
theoretical foundation of Fisher information was obtained much earlier [39], but the application was unknown until
Sear et al.,[40], found a link between Fisher information and the kinetic energy of a quantum system. The significance of
the global measure is to investigate the uncertainty associated with the probability distribution [41,42]. The position and
momentum spaces of the Shannon entropy have an entropic relation derived by Berkner, Bialynicki-Birula and
Mycieslki [43] and expressed as s, +5, 2 D(1+ Inz), where D is the spatial dimension. In view of this, many scholars

have studied the Shannon and Fisher entropies [44-46], for instance, Edet et al., [47] used a class of Yukawa potential to
study the global quantum information-theoretic measurements in the presence of magnetic and Aharanov-Bohm (AB)
fields. Also, Olendski [48] used the quadratic and inverse quadratic dependencies on the radius to study the Shannon
quantum information entropies, Fisher information, and Onicescu energies and complexities in the position and
momentum spaces for the azimuthally symmetric two-dimensional nano-ring that is placed into the combination of the
transverse uniform magnetic field and the AB flux. For time-dependent harmonic vector potential. Onate et al.[49] found
the exact solution to the Feinberg-Horodecki equation. Explicitly, the quantized momentum and its corresponding un-
normalized wave functions were obtained. Using the Hellman-Feynman theory, expectation values of time and
momentum were used to determine the Fisher information (for time and momentum) and variance (for time and
momentum). Also, Under the influence of an improved expression for the Wei potential energy function, Onate et al., [50]
obtained an approximate solution of the one-dimensional Klein-Gordon equation. By using specific mappings, it was
possible to derive the solution of the SE from that of the Klein-Gordon equation. The computation of expectation values
was used to study the Fisher information for position space and momentum space. Furthermore, Onate et al., [51] obtained
an approximate bound state solution of the three-dimensional SE for a potential family together with the corresponding
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wave function, after which the Fisher information for a potential family was explicitly obtained via the methodology of
expectation value and the radial expectation value. Also, some uncertainty relations that are closely related to Heisenberg-
like uncertainty were obtained and numerical results were generated to justify the relations and inequalities. Onate et al.,
[52], obtained the solutions of the SE with Tietz-Hua potential using the Parametric NU method. The Shannon entropy
and information energy were computed. Idiodi and Onate [53] studied the Shannon and Renyi information entropy for
both position and momentum space and the Fisher information for the position-dependent mass SE with the Frost-Musulin
potential. Onate et al [54], solved the approximate analytical solution of the SE in the framework of the parametric NU
method with a hyperbolical exponential-type potential. Using the integral method, the Shannon entropy, information
energy, Fisher information, and complexity measures were calculated. Edet et al., [55], investigated quantum information
by a theoretical measurement approach of an Aharanov-Bohm (AB) ring with Yukawa interaction in curved space with
disclination. They obtained the Shannon entropy through the eigenfunctions of the system. Ikot et al., [56] solved the SE
for the Mobius square potential using the NUFA method. The Shannon entropy, Fisher information, Fisher-Shannon
product and the expectation values for the Mobius square were investigated in position and momentum space.
Amadi et al. [S7] solved the SE with screened Kratzer potential to study the Shannon entropy and Fisher information.
Their results showed that the sum of the position and momentum entropies satisfies the lower-bound Berkner, Bialynicki-
Birula and Mycieslki inequality. Ikot et al., [58], solved the approximate solutions of the SE with the generalized Hulthen
and Yukawa potential within the framework of the functional method. The obtained wave function and the energy levels
are used to study the Shannon entropy, Renyl entropy, Fisher information, Shannon-Fisher complexity, Shannon power
and Fisher-Shannon product in both position and momentum spaces for the ground and first excited states. Ikot et al. [59],
studied the Shannon entropy and the Fisher Information entropies were investigated for a generalized hyperbolic potential
in position and momentum spaces through the solutions of SE using the NUFA method. The position and momentum
spaces for Shannon entropy and the Fisher Information entropies were calculated numerically.

Eckart potential [60], was proposed in 1930, and its application cut across molecular physics and other related areas.
Numerous authors in the references [61-63] took into consideration the bound state solutions for this potential. Numerous
scholars have extensively used the Hellmann potential [64] to obtain bound-state solutions in studying the condensed
matter, atomic, nuclear, and particle physics [65-69]. Recently, a lot of scholars have expressed interest in the pairing of
at least two potentials. The main goal of combining at least two physical potential models is to include additional physical
applications and comparative analysis with previous studies [58,70,71]. Inyang et al.,[70] proposed Eckart and Hellmann
potential (EHP) to study selected diatomic molecules. Furthermore, they adopted the potential to study the mass spectra
and thermal properties of heavy mesons [71]. In this research, we aim at obtaining the approximate bound state analytical
solutions to the SE with the Eckart plus Hellmann potential (EHP) using the NU method. The obtained energy eigenvalues
and eigenfunctions will be applied to study the Shannon entropy and Fisher information. The combined potential takes
the form [60,64].
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where A4, 4,,4,,and 4, are the strength of the potential, & is the screening parameter and 7 is inter-particle distance.

This paper is organized as follows: In Sect. 2 we solve the Schrodinger equation with the Eckart plus Hellmann
potential to obtain the energy equation and normalized wave function. In Sect. 3, the derived eigenfunctions will be used
to obtain the numerical computation of the Shannon entropy and Fisher information. In Sect. 3, we present the results and
discussion. Conclusions are given in Sect. 4.

2. Analytical solutions of the Schrodinger equation with Eckart plus Hellmann potential
In this study, we adopt the NU method [1] which is based on solving the second-order differential equation of the
hypergeometric type. The details can be found in Appendix A. The Schrédinger equation of a quantum physical system

is characterized by a given potential V(r) takes the form [72,73]
d’w(r) | 2u
+ —_

dr’ "

(&, 1) i =0 @
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E,, is the energy eigenvalues of the quantum system, / is the angular momentum quantum number, z is the reduced

mass of the system, 7 is the reduced Planck's constant and 7 is the radial distance from the origin.

Equation (2) cannot be exactly solved using the adopted potential. To deal with the centrifugal barrier, we thus
employ an approximation approach suggested by Greene-Aldrich [29]. This approximation is a good approximation to
the centrifugal term which is valid for & <<1, and it becomes

2
et ©)
r (1 —e )

Substituting Egs. (1) and (3) into Eq. (2), Eq. (4) is obtained as
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By using the change of variable from 7 t0 § , our new coordinate becomes
s=e . 5)
We substitute Eq. (5) into Eq. (4) and after some simplifications; Eq. (6) is gotten as
d*W(s) L 1o dw (s) L1
ds'  s(l=s) ds  §(1-s)
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Comparing Eq. (6) with Eq. (A1) we obtain the following parameters

#s)=1-s, o(s)=s(1-5), & (s)=1-2s

. ®)
6-(5) = _(8+ﬁ3)sz +(25_:Bo _:B| _ﬁz _ﬂs)s_(g_ﬂo _ﬁz +7)
Substituting Eq. (8) into Eq.(A9) we have
ﬂ(s)z—%i\/(PO—k)sz +(R,+k)s+0, » ©)
where
1
E):Z+g+ﬂ3’ROZ_(zg_ﬂO_ﬂl_ﬂz_ﬂ3) (10)

Oy =¢-B,-p+r

To find the constant k&, the discriminant of the expression under the square root of Eq. (9) must be equal to zero. As such

we have that
—(B- Py -yt By +27) -2 By - m/iwuﬂ (11)

Substituting Eqs. (10) and (11) in Eq. (9) we have

T (S)__ \‘(\/ bty + _+7+ﬂ1] ﬂz J . (12)
Differentiating Eq. (12) gives
' 1 1
”_(S):_E_{\/g_ﬂo_ﬂ2+7+ Z+7+ﬂ1J . (13)
Substituting Eqs. (11) and (13) into Eq.(A10) gives
fl 1 1
:/Bo_ﬂl+ﬂ2_ﬂ3_27_2\/5_ﬂ0_:82+7 Z+7+ﬂ1 _5_{\/5_:80_/32"'7/"' Z"'V"’ﬂlJ' (14)
With 7(s) being obtained from Eq.(A7) as
7(s)=1-2s-2\Je =B, — B, +ys—-2 %+7+ﬂls+2 e=py—p+7. (15)

Differentiating Eq. (15) yields

¢ (s)=—2—2[,/g—ﬁ0—/32+7+ %+7/+ﬂ1]. (16)
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And also taking the derivative of o'(s) with respect to § from Eq. (8), we have
o (s)=-2. (17)
Substituting Eqgs.(16) and (17) into Eq.(A11) and simplifying, yields

/1n:nz+n+2n,/5—ﬂ0—ﬂ2+y+2n,f%+7+ﬁl. (18)

Equating Egs. (14) and (18) and substituting Eq. (7) yields the energy eigenvalues equation of the Eckart plus Hellmann
potential as

2

2
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2.1. Special cases
1. Weset 4, =4 =0 and obtain the energy eigenvalues for Hellmann potential

2

2
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2. Weset 4, =4, =0 and obtain the energy eigenvalues for Eckart potential

P 2
2
PRI (R +2124‘él —2130'?+2124‘él+(l+12)
a2h2(1+lz) o 2 4 ah al® ah
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3. Weset 4, =4 =4, =a =0 and obtain the energy eigenvalues for Coulomb potential

AZ
E, =—— 2 22)
2h°(n+1+1)

4. Weset 4, =A4 = A4, =0 and obtain the energy eigenvalues for Yukawa potential

2
SNE (S +2A32ﬂ+(l+lz)
2\l 4

(23)

2.2. Wave function
To obtain the corresponding wavefunction, we consider Egs. (A4) and (A6) and upon substituting Egs. (8) and (15)
and integrating, we get

¢(S) _ Sqls—ﬁo—ﬂ2+}/ (1 _ S)%Jr %+7+ﬁ1 , 24)
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Equation 25 is known as the weight function.
By substituting Egs. (8) and (25) into Eq. (AS) we obtain the Rodrigue’s equation as

ot d" pia [
y, (S) _ Bnls—z e=Po-P+r (1—S) 2 4+7+ﬁ| F\‘ Sn+2 e—Bo—Paty (1—5‘) +2 4+;/+ﬂI ’ 26)
s
where B, is normalization constant.
Equation (26) is equivalent to
2\e=Po—Pr+7 2, l+7+ﬁ'l]
Pn[ to(1-2s), 27
where p “")is Jacobi Polynomial
The wave function is given by
L [2\/5‘/30‘/;2“,2\ l+7+51]
W, (s)=B,s" "7 (1-5)2 Jirh P o (1-2s). (28)

Using the normalization condition, we obtain the normalization constant as follows

f

0

v, (| dr=1. (29)

From our coordinate transformation of Eq. (5), we have that

1
=

v, ds=1. (30)

By letting, y =1-2s, we have

2
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é \'4 > 1 \4 s (32)
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Substituting Eq. (32) into Eq. (31) we have

B_,flr -y | [1+y]”
a i\ 2 2

According to Ebomwonyi et al. [74], integral of the form in Eq,(33) can be expresses as

[ })n(Zu,ﬂ—l)y:| 2 dy=1. (33)

— * Y 2
J* I-p|"[1+p |:Pn(2x,2y—l)p:| dp = AW +n+DI(y+n+l) (34)
a2 2 nIxl(x+y+n+1)
Hence, comparing Eq. (33) with the standard integral of Eq.(34), we obtain the normalization constant as
nlual’ (u+n+n+1)
= . (35)
2ZlM(u+n+DI(n+n+1)

2.3. Shannon Entropy for the Eckart plus Hellmann potential
Entropy is a thermodynamic quantity representing the unavailabity of a systems thermal energy for conversion into
mechanical work [53]. The Shannon entropy is defined in position and momentum spaces as [75]
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S, =] ptr)inp(rydr | (36)
and
s, = p(pinp(p)dp . (37)

where S, is the position space Shannon entropy, S » is the momentum space Shannon entropy,

2
)

p(r)=w(r) (38)

and

p(p)=lw(p)’, (39)

are the probability densities in the position and momentum spaces, respectively. w(p)is the wave function in the
momentum coordinate obtained by the Fourier transform of (7). The Shannon entropic uncertainty relation proposed
by Beckner,Bialynicki-Birula and Mycielski(BBM) takes the form [43]

S, =8, +8, > D(1+Inx), (40)

where D is the spatial dimension.

The probability density's logarithmic functional measure of randomness and uncertainty in a particle's spatial
localization is called Shannon entropy. The lower this entropy, the more concentrated is the wave function, the smaller
the uncertainty and the higher is the accuracy in predicting the localization of the particle [74].

Using Egs. (28) and (35) we obtained the total wavefunction as

v (s)= nlual (u+7n +n+1) N e (l—e‘“’ );+W P[zm,zm] (1 —Ze“”) )
" 20(u+n+)0(n+n+1) " .

The normalized wave function for two low lying states 7 = 0,1 is given as

"4 (S) = uar(u+ /s 1) e””m (1 —er )%+1’}I+7+ﬂ1 (42)
’ 20(u+ 1) +1) ’
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A (e )E*\]T”ﬂ (1-2¢)
where T'(x) is the gamma function given as I'(x) :F t e dx [76].
0

The corresponding normalized wave function in the momentum space for two low lying states » = 0,1 is obtained
as [77]

1 .
wo(p)=ﬁjj wo(r)e " dr, (44)

ip
) (p)\/mr[a+8—ﬁo_ﬁz+7JF(1+5_/30_/32+7) )
0 2w+ DC(n +1) \/gar‘{l-kip—f-g—ﬂo_ﬂz +7J >
a

v (p) =ﬁf V(e dr (46)
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2.4. Fisher Information theory for the Eckart plus Hellmann potential
We examine the Fisher information in position and momentum spaces. Fisher information is the sole component of
the local measure, and is mainly concerned with local changes that occur in probability density [57,78]. Density functional
is important for the investigation of Fisher information [79]. It is stated as:

2
o ) o
1=] ()_d”:“f v’ 0 dr =& p*) 2020+ 1)) (“48)
pr
' 2
‘p (p) N R 2
1= —dp=4f v ()] dp=4r) ~2(20 1) ) (49)
p(p)
Fisher information inequality becomes [80]
2
2/ +1
I1 >9| 2- >36. 50
r 1(1+1)|m| 0

We solve Egs. (48) and (49) numerically, which are complicated to solve analytically due to the form of the integral.

3. RESULTS AND DISCUSSION

In this section, we will discuss our numerical results. For both cases, the screening criterion was setto 0.1< « <0.9.
These parameters were selected in order to compare results [57].

Our results were obtained numerically. Fisher information and Shannon entropy give important details about the
precision and degree of uncertainty in particle localization predictions. Lower Shannon entropy denotes greater stability,
higher localization, and reduced uncertainty. The kinetic energy and Fisher information are related, and more Fisher
information indicates greater localization and energy fluctuation. For the various values of « , the numerical results for
Shannon entropy and Fisher information are shown in Tables 1 and 2, respectively.

Table 1. Numerical values of Shannon entropy for Eckart plus Hellmann potential

a Sr Sp ST
0.1 5.78107 0.692356 6.4734260
0.2 5.97095 0.498294 6.4692440
0.3 6.20766 0.267158 6.4748180
0.4 6.49426 -0.017446 6.4768131
0.5 6.85881 -0.378718 6.4800920
0.6 7.34806 -0.856921 6.4911890
0.7 8.03556 -1.529530 6.5060300
0.8 9.09978 -2.571370 6.5284100
0.9 11.0879 -4.524130 6.5637700
1 0.1 9.67144 -2.915280 6.7561600
0.2 11.7253 -5.091890 6.6334100
0.3 11.4772 -4.873510 6.6036900
0.4 8.71251 -2.048560 6.6639500
0.5 7.39803 -0.709438 6.6885920
0.6 6.50485 -0.198122 6.3067280
0.7 5.82308 0.887327 6.7104070
0.8 5.26825 1.445710 6.7139600
0.9 4.80376 1.914240 6.7180000

The Shannon entropy values show a deceasing order in the position space, which signifies a lower uncertainty and
higher accuracy in predicting localization and the stability. This is complimented in the momentum space by an increasing
Shannon entropy. Forn =1, it increased and decreased afterward. This similar behavior is also observed in the momentum
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spaces. Negative values mean that the Shannon entropy is highly localized [57]. The numerical analysis of Fisher
information for n=0and n =1 is shown in Table 2. Similar phenomena are seen in momentum spaces as well and
negative values indicate a strongly localized Shannon entropy. Table 2 displays the numerical analysis of Fisher
information for n=0and » =1 indicating ground and first excited states respectively. Here, there was a similar pattern
of behavior, and the alternative increase and decrease for n =1 are noticed. The increasing Fisher information observed
in these different states implies an increasing localization. In both cases, the Shannon entropy uncertainty relation
condition is satisfied as seen in Eq. (40) and Fisher uncertainty relation is satisfied as seen in Eq. (50).

Table 2. Numerical values of Fisher information for Eckart plus Hellmann potential

n a I I I,
0.1 1.195670 334215 39.96108
0.2 1.052470 38.0402 40.03616
0.3 0.903119 44.4792 40.17001
0.4 0.748496 54.0185 40.43263
0.5 0.590304 69.2190 40.86025
0.6 0.431695 96.4388 41.63214
0.7 0.278445 154.136 42.91839
0.8 0.141132 318.584 44.96239
0.9 0.038628 1212.07 46.81983
1 0.1 0.137107 465.101 63.76860
0.2 0.032212 1782.30 57.41144
0.3 0.037720 1516.76 57.21218
0.4 0.251035 241.175 60.54336
0.5 0.606999 100.787 61.17761
0.6 1.108780 55.6926 61.75084
0.7 1.753940 35.4030 62.09332
0.8 2.542350 24.5121 62.31833
0.9 3.473940 17.9847 62.47776
4. CONCLUSION

In this research, the Schrodinger equation is solved with the Eckart plus Hellmann potential to obtain the energy
equation and normalized wave function. We studied the charactertic properties of Shannon entropy and Fisher information
for the position and momentum spaces for ground state and first excited state. Our results was presented numerically. We
observed a similar behavior for Shannon entropy and Fisher information values. This behavior is related to the probability
density distribution’s concentration. Our findings showed that several eigenstates had negative values in the position
space. This implies a higher localization for the collective potential models. The potential models also show increasing
accuracy in predicting particle localization in the position space of Shannon entropy and Fisher information. This research
can be extended to other global measures, such as Renyi entropy, Tsallis entropy etc.
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APPENDIX A
Review of Nikiforov-Uvarov (NU) method
The NU method was proposed by Nikiforov and Uvarov [1] to transform Schrodinger-like equations into a second-
order differential equation via a coordinate transformation s = s(r) , of the form

1,//” (s)+ £(s) I,Z/’ (s)+ 5 (s) w(s)=0, (A1)
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where &(s), and o-(s) are polynomials, at most second degree and 7(s) is a first-degree polynomial. The exact solution

of Eq.(A1) can be obtained by using the transformation.
w(s)=¢(s)(s). (a2)

This transformation reduces Eq.(A1) into a hypergeometric-type equation of the form

rr

O'(S)y (s) +T(s)y' (S)+/1y(s) =0. (A3)

The function ¢(x) can be defined as the logarithm derivative

J(s)_7ls) "

With 7z(s) being at most a first-degree polynomial. The second part of l//(S) being y(s) in Eq. (A2) is the

hypergeometric function with its polynomial solution given by Rodrigues relation as

_ B, d"
y(S)_p(S) ds"

" ()(s)] (A5)
where By is the normalization constant and ,D(S) the weight function which satisfies the condition below;

(o(s)p(s) =7(s)p(s). (A6)
where also
z(s)=7(s)+27(s). (A7)
For bound solutions, it is required that
7 (s)<0. (A8)

The eigenfunctions and eigenvalues can be obtained using the definition of the following function ﬂ(S) and parameter

A, respectively:

2(s)= 2 ZE) o 276y ko(s) (A9)

and

/1=k,+7ri(s). (A10)

The value of & can be obtained by setting the discriminant in the square root in Eq. (A9) equal to zero. As such, the new
eigenvalues equation can be given as

z+nr'(s)+@a" (s)=0,(n=0,1,2,...) . (A1)

ORCID IDs
Funmilayo Ayedun, https://orcid.org/0000-0001-5421-9305; ©@Etido P. Inyang, https://orcid.org/0000-0002-5031-3297

REFERENCES

[11 S.K. Nikiforov, and V.B. Uvarov, Special functions of mathematical Physics, (Birkhauser, Basel, 1988)

[2] P.O. Okoi, C.O. Edet, T.O. Magu and E.P. Inyang, “Eigensolution and Expectation values of the Hulthén and Generalized Inverse
Quadratic Yukawa potential”, Jordan Journal of Physics, 15, 137 (2022). https://doi.org/10.47011/15.2.4

[3] LO. Akpan, E.P. Inyang, E.P. Inyang, and E.S. William, “Approximate solutions of the Schrodinger equation with Hulthen-
Hellmann Potentials for a Quarkonium system”, Rev. Mex. Fis. 67, 490 (2021). https://doi.org/10.31349/RevMexFis.67.482

[4] E.S. William, E.P. Inyang, and E.A. Thompson, “Arbitrary ¢ -solutions of the Schrédinger equation interacting with Hulthén-
Hellmann potential model”, Rev. Mex. Fis. 66, 730 (2020). https://doi.org/10.31349/RevMexFis.66.730



96

EEJP. 4 (2022) Funmilayo Ayedun, Etido P. Inyang, et al

[16]

[17]

(18]

(19]

(28]

E.P. Inyang , E.P. Inyang, J.E. Ntibi, E.E. Ibekwe, and E.S. William, “Approximate solutions of D-dimensional Klein-Gordon
equation with Yukawa potential via Nikiforov-Uvarov method”, Ind. J. Phys. 95, 2793 (2021). https://doi.org/10.1007/s12648-
020-01933-x

E. P. Inyang, E. S. William and J.A. Obu, “Eigensolutions of the N-dimensional Schrédinger equation’ interacting with Varshni-
Hulthen potential model”, Rev. Mex. Fis. 67 (2021), 193. https://doi.org/10.31349/RevMexFis.67.193

E.S. William, E.P. Inyang, 1.O. Akpan, J.A. Obu, A.N. Nwachukwu, and E.P. Inyang, “Ro-vibrational energies and expectation
values of selected diatomic molecules via Varshni plus modified Kratzer potential model”, Indian Journal of Physics, 96, 3461
(2022). https://doi.org/10.1007/s12648-0222-02308-0

E.P. Inyang, E.P. Inyang, E.S. William, and E.E. Ibekwe, “Study on the applicability of Varshni potential to predict the mass-
spectra of the Quark-Antiquark systems in a non-relativistic framework”, Jord. J. Phys. 14, 345 (2021).

E.P. Inyang, A.N. Ikot, E.P. Inyang, I.O. Akpan, J.E. Ntibi, E. Omugbe, and E.S. William, “Analytic study of thermal properties
and masses of heavy mesons with quarkonium potential’, Result in Physics, 39, 105754 (2022).
https://doi.org/10.1016/j.rinp.2022.105754

E.P. Inyang, and E.O. Obisung, “The study of electronic states of NI and Scl molecules with screened Kratzer Potential”, East
Eur. J. Phys. 3, 32 (2022). https://doi.org/10.26565/2312-4334-2022-3-04

C.O. Edet, S. Mahmoud, E.P. Inyang, N. Ali, S.A. Aljunid, R. Endut, A.N. Ikot, and M. Asjad, “Non-Relativistic Treatment of
the 2D Electron System Interacting via Varshni-Shukla Potential Using the Asymptoptic Iteration Method”, Mathematics, 10,
2824 (2022). https://doi.org/10.3390/math10152824

M. Abu-Shady, and A.N. Ikot, “Analytic solution of multi-dimensional Schrédinger equation in hot and dense QCD media using
the SUSYQM method”, The European Physical Journal Plus, 134, 321 (2019). https://doi.org/10.1140/epjp/i2019-12685-y

AN. Ikot, U.S. Okorie, P.O. Amadi, C.O. Edet, G.J. Rampho, and R. Sever, “The Nikiforov-Uvarov —Functional Analysis
(NUFA) Method: A new approach for solving exponential — Type potentials”, Few-Body System, 62, 9 (2021).
https://doi.org/10.1007/s00601-021-021-01593-5

E.P. Inyang, E.S. William, J.E. Ntibi, J.A. Obu, P.C. Iwuji, and E.P. Inyang, “Approximate solutions of the Schrédinger equation
with Hulthén plus screened Kratzer Potential using the Nikiforov—Uvarov — functional analysis (NUFA) method: an application
to diatomic molecules”, Can. J. Phys. 100(10), 473 (2022), https://doi.org/10.1139/cjp-2022-003

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E. Omugbe, E.A. Ibanga, and E.S. William, “Quark-antiquark study with inversely quadratic
Yukawa potential using Nikiforov-Uvarov-Functional analysis method”, East Eur. J. Phys. 2, 51 (2022).
https://doi.org/10.26565/2312-4334-2022-2-05

E.P. Inyang, E.S. William, E. Omugbe, E.P. Inyang, E.A. Ibanga, F. Ayedun, I.O. Akpan, and J.E. Ntibi, “Application of Eckart-
Hellmann potential to study selected diatomic molecules using Nikiforov-Uvarov-Functional analysis method”, Revista Mexicana
de Fisica,68, 1 (2022). https://doi.org/10.31349/RevMexFis.68.020401

E.P. Inyang, E.P. Inyang, 1.O. Akpan, J.E. Ntibi, and E.S. William, “Analytical solutions of the Schrodinger equation with class
of Yukawa potential for a quarkonium system via series expansion method”, European Journal of Applied Physics, 2, 26 (2020).
http://dx.doi.org/10.24018/ejphysics.2020.2.6.26

E.P. Inyang, P.C. Iwuji, J.E. Ntibi, E.S. William, and E.A. Ibanga, “Solutions of the Schrodinger equation with Hulthén—screened Kratzer
potential: Application to diatomic molecules”, East Eur. J. Phys. 1, 11 (2022). https://doi.org/10.26565/2312-4334-2022-2-02

E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang, and S.A. Ekong, “Mass spectrum of heavy quarkonium for screened Kratzer
potential(SKP)  using series expansion method”, European Physical Journal Plus, 87, 11  (2021).
https://doi.org/10.1140/epjp/s13360-021-01090-y

E.P. Inyang, J. E.Ntibi, O.0. Akintola, E.A. Ibanga, F. Ayedun, and E.S. William, “Analytical solutions to the Schrodinger
Equation with a Combined Potential using the Series Expansion Method to Study Selected Diatomic Molecules”, Communication
in Physical Science, 8(2),244(2022).

E.P. Inyang, E.P. Inyang, J.E. Ntibi, and E.S. William, Analytical solutions of Schrodinger equation with Kratzer-screened
Coulomb potential for a Quarkonium system”, Bulletin of Pure and Applied Sciences, 40, 24 (2021).
https://doi.org/10.5958/2320-3218.2021.0002.6

E. Omugbe, “Non-relativistic energy spectrum of the Deng-Fan Oscillator via the WKB Approximation method”, Asian Journal
of Physical and Chemical Sciences, 268, 26 (2020). https://doi.org/10.9734/ajopacs/2020/v81130107

E. Omugbe, O.E. Osafile, E.P. Inyang, and A. Jahanshir, “Bound state solutions of the hyper-radial Klein-Gordon equation under
the Deng-Fan potential by WKB and SWKB methods”, Physica Scripta, 96(12), 125408 (2021). https://doi.org/10.1088/1402-
4896/ac38d4

E. Omugbe, O.E. Osafile, I.B. Okon, E.P. Inyang, E.S. William, and A. Jahanshir, “Any L-state energy of the spinless Salpeter
equation under the Cornell potential by the WKB Approximation method: An Application to mass spectra of mesons”, Few-Body
Systems 63, 6 (2022). https://doi.org/10.1007/s00601-021-01705-1

S.H. Dong, and M. Cruz-Irisson, Energy spectrum for a modified Rosen-Morse potential solved by proper quantization rule and
its thermodynamic properties”, Journal of Mathematical Chemistry, 50, 881 (2012). https://doi.org/10.1007/s10910-011-9931-3

C.A. Onate, M.C. Onyeaju, E. Omugbe, I.B. Okon, and O.E. Osafile, “Bound-state solutions and thermal properties of the modifed
Tietz—Hua potential”, Sci. Rep. 11, 2129 (2021). https://doi.org/10.1038/s41598-021-81428-9

U.M. Ukewuihe, C.P. Onyenegecha, S.C. Udensi, C.O. Nwokocha, C.J. Okereke, I.J. Njoku, and A.C. Illoanya, “Approximate
solutions of Schrodinger equation in D Dimensions with the modified Mobius square plus Hulthen potential”, Mathematics and
computational science, 3, (2021). https://doi.org/10.30511/mcs.2021.527027.1020

R. Sahadevan, and P. Prakash, “Exact solution of certain time fractional nonlinear partial differential equations”, Nonlinear
Dynamics, 85, 659 (2016). https://doi.org/10.1007/s11071-016-2714-4

R.L. Greene, and C. Aldrich, “Variational wave functions for a screened Coulomb potential”, Phys. Rev. A, 14, 2363 (1976).
https://doi.org/10.1103/PhysRevA.14.2363

C.L. Pekeris, “The Rotation-Vibration Coupling in Diatomic Molecules”, Phys. Rev. 45, 98 (1934).
https://doi.org/10.1103/PhysRev.45.98



97

Analytical Solutions to The Schrudinger Equation with Collective Potential Models... EEJP. 4 (2022)

[31]
[32]
(33]

[34]

[61]

[62]

C.S. Jia, T. Chen, and L.G. Cui, “Approximate analytical solutions of the Dirac equation with the generalized Poschl-Teller
potential including the pseudo-centrifugal term”, Phys. Lett. A, 373, 1621 (2009). https://doi.org/10.1016/j.physleta.2009.03.006
E.P. Inyang, E.O. Obisung, P.C. Iwuji, J.E. Ntibi, J. Amajama, and E.S. William, “Masses and thermal properties of a charmonium
and Bottomonium mesons”, J. Nig. Soc. Phys. Sci. 4, 884 (2022). https://doi.org/10.46481/jnsps.2022.884

E.P. Inyang, E.P. Inyang, [.O. Akpan, J.E. Ntibi, and E.S. William, “Masses and thermodynamic properties of a Quarkonium
system”, Canadian J. Phys. 99(11), (2021). https://doi.org/10.1139/cjp-2020-0578

E. Omugbe, O.E. Osafile, [.B. Okon, E.S. Eyube, E.P. Inyang, U.S. Okorie, A. Jahanshir, and C.A. Onate, “Non- relativistic
bound state solutions with / -deformed Kratzer-type potential using the super-symmetric WKB method: application to theoretic-
information measures”, European Physical Journal D, 76, 72 (2022). https://doi.org/10.1140/epjd/s10053-022-00395-6

A. Nagy, and S. Liu, “Local wave-vector, Shannon and Fisher information”, Phys. Lett. A, 372, 1654 (2008).
https://doi.org/10.1016/j.physleta.2007.10.055

C.E. Shannon, “A Mathematical Theory of Communication”, Bell System Technical Journal, Bell Syst. Tech. J. 27, 623 (1948).
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

S. Kullberg, and R.A. Leibler, “On Information and Sufficiency”, Ann. Math. Stat. 22, 79 (1951). https://www.jstor.org/stable/2236703
S. Kullberg, Information Theory and Statistics, (Wiley, New York, 1959).

R.A. Fisher, “Theory of Statistical Estimation”, Mathematical Proceedings of the Cambridge Philosophical Society, 22(5), 700
(1925). https://doi.org/10.1017/s0305004100009580

S.B. Sears, R.G. Parr, and U. Dinur, “On the Quantum-Mechanical Kinetic Energy as a Measure of the Information in a
Distribution”, Isreal J. Chem. 19, 165 (1980). https://doi.org/10.1002/ijch.198000018

S. Majumdar, N. Mukherjee, and A K. Roy, “Information entropy and complexity measure in generalized Kratzer potential”,
Chem. Phys. Lett. 716, 257 (2019). https://doi.org/10.1016/j.cplett.2018.12.032

G.H. Sun, and S.H. Dong, “Quantum information entropies of the eigenstates for a symmetrically trigonometric Rosen—Morse
potential”, Phys. Scr. 87, 045003 (2013). https://doi.org/10.1088/0031-8949/87/04/045003

I. Bialynicki-Birula, and J. Mycielski, “Uncertainty relations for information entropy in wave mechanics”, Commun. Math. Phys.
44, 129 (1975). https://doi.org/10.1007/BF01608825

R. Santana-Carrilloria, J.S. Gonzalez-Flores, E. Magana-Espinal, L.F. Quezada, G.-H. Sun, and S.-H. Dong, “Quantum
Information Entropy of Hyperbolic potentials in Fractional Schrodinger equation”, Entropy, 24, 1516 (2022).
https://doi.org/10.3390/e24111516

A. Boumali, and M. Labidi, “The Solutions on One-Dimensional Dirac Oscillator with Energy-Dependent Potentials and Their
Effects on the Shannon and Fisher Quantities of Quantum Information Theory”, J. Low Temp. Phys. 204, 24 (2021).
https://doi.org/10.1007/s10909-021-02596-6

C. Martanez-Flores, “Shannon entropy and Fisher information for endohedral confined one- and two-electron atoms”, Physics
Letters A, 386, 126988 (2021). https://doi.org/10.1016/j.physleta.2020.126988

C.O. Edet, E.B. Ettah, S.A. Aljunid, R. Endut, N. Ali, A.N. Ikot, and M. Asjad, “Global Quantum information-Theoretic measures
in the Presence of magnetic and Aharanov-Bohm (AB) fields”, Symmetry, 14(5), 976 (2022).
https://doi.org/10.3390/sym 14050976

0. Olendski, “Quantum information measures of the Aharonov-Bohm ring in uniform magnetic fields”, Phys. Lett. A, 383, 1110
(2019). https://doi.org/10.1016/j.physleta.2018.12.040

C.A. Onate, M.C. Onyeaju, and 1.B. Okon, “Shannon entropy for Feiberg-Horodecki equation and thermal properties of improved
Wei potential model”, Open Physics, 19, 519 (2021). https://doi.org/10.1515/phys-2021-0038

C.A. Onate, M.C. Onyeaju, D.T. Bankole, and A.N. Ikot, “Eigensolution techniques,expectation values and Fisher information
of Wei potential function”, J. Mol. Modeling, 26, 311 (2020). https://doi.org/10.1007/s00894-020-04573-4

C.A. Onate, M.C. Onyeaju, A.N. Ikot, O. Ebomwonyi, and J.O.A. Idiodi, “Fisher information and uncertainty relations for
potential family”, Int. J. Quantum Chem. 119(19), €25991 (2019). https://doi.org/10.1002/qua.25991

C.A. Onate, M.C. Onyeaju, E.E. Ituen, A.N. Ikot, O. Ebomwonyi, J.O. Okoro, and K.O. Dopamu”, Eigensolutions, “Shannon
entropy and information energy for modified Tietz-Hua potential”, Indian J. Phys. 92, 487 (2018). https://doi.org/10.1007/s12648-
017-1124-x

J.0.A. Idiodi, and C.A. Onate, “Entropy, Fisher information and Variance with Frost-Musulin Potential”, Commun. Theor. Phys.
66, 269 (2016). https://doi.rg/10.1088/0253-6102/66/3/269

C.A. Onate, O. Adebimpe, B.O. Adebesin, and A.F. Lukman, “Information-theoretic measure of the hyperbolical exponential-
type potential”, Turk. J. Phys. 42(4), 402 (2018). https://doi.org/10.3906/fiz-1802-40

C.O. Edet, F.C.E. Lima, C.A.S. Almeida, N. Ali, and M. Asjad, “Quantum information of the Aharanov-Bohm ring with Yukawa
interaction in the Presence of Disclination”, Entropy, 24, 1059 (2022). https://doi.org/10.3390/¢24081059

AN. Ikot, G.J. Rampho, P.O. Amadi, M.J. Sithole, U.S. Okorie, and M.L. Lekala, “Shannon entropy and Fisher information-theoretic
measures for Mobius square potential”, Eur. Phys. J. Plus, 135, 503 (2020). https://doi.org/10.1140/epjp/s13360-020-00525-2

P.O. Amadi, A.N. Ikot, A.T. Ngiangia, U.S. Okorie, G.J. Rampho, and H.Y. Abdullah, “Shannon entropy and Fisher information
for screened Krattzer potential”, Intl. J. Quantum Chem. 120(14), 26246 (2020). https://doi.org/10.1002/qua.26246

AN. Ikot, G.J. Rampho, P.O. Amadi, U.S. Okorie, M.J. Sithole, and M.L. Lekala, “Quantum information-entropic measures for
exponential — type potential”, Results in Physics 18, 103150 (2020). https://doi.org/10.1016/j.rinp.2020.103150

AN. Ikot, G.J. Rampho, P.O. Amadi, U.S. Okorie, M.J. Sithole, and M.L. Lekala, “Theoretic quantum information entropies for
the generalized hyperbolic potential”, Intl. J. Quantum Chem. 120(24), ¢26410 (2020). https://doi.org/10.1002/qua.26410

C. Eckart, “The penetration of a potential barrier by electrons”, Phys. Rev. 35, 1303 (1930).
https://doi.org/10.1103/PhysRev.35.1303

B.J. Falaye, “Any l-state solutions of the Eckart potential via asymptotic iteration method”, Central Euro. J. Phys. 10, 960 (2012).
https://doi.org/10.2478/s11534-012-0047-6

E.P. Inyang, J.E. Ntibi, E.P. Inyang, E.S. William, and C.C. Ekechukwu, “Any L-state solutions of the Schrodinger equation
interacting with class of Yukawa-Eckart potentials”, Int. J. Innov. Res. Sci. Eng. Tech. 11(7), (2020).



98
EEJP. 4 (2022) Funmilayo Ayedun, Etido P. Inyang, et al

[63] S.H. Dong, W.C. Qiang, G.H. Sun, and V.B. Bezerra, J. Phys. A: Mathematical and Theoretical, 40, 10535 (2007).
https://doi.org/10.1088/1751-8113/40/34/010

[64] H. Hellmann, “A New Approximation Method in the Problem of Many Electrons”, J. Chem. Phys. 3, 61 (1935).
https://doi.org/10.1063/1.1749559

[65] C.A. Onate, J.O. Ojonubah, A. Adeoti, E.J. Eweh, and M. Ugboja, “Approximate Eigen Solutions of D.K.P. and Klein-Gordon
Equations with Hellmann Potential”, Afr. Rev. Phys, 9, 497 (2014). https://core.ac.uk/download/pdf/162156005.pdf

[66] S.M. Ikhdair, and R. Sever, “A perturbative treatment for the bound states of the Hellmann potential”, Journal of Molecular
Structure, THEOCHEM, 809(1-3), 103 (2007). https://doi.org/10.1016/j.theochem.2007.01.019

[67] Hamzavi, K.E. Thylwe, and A.A. Rajabi, “Approximate Bound States Solution of the Hellmann Potential”, Commun Theor Phys,
60, 8 (2013). https://doi.org/10.1088/0253-6102/60/1/01

[68] C.A. Onate, O. Ebomwonyi, K.O. Dopamu, J.O. Okoro, and M.O. Oluwayemi, “Eigen solutions of the D-dimensional
Schrodinger equation with inverse trigonometry scarf potential and Coulomb potential”, Chin. J. Phys, 56(5), 2538 (2018).
https://doi.org/10.1016/j.cjph.2018.03.013

[69] B.I. Ita, “Solutions of the Schrodinger equation with inversely quadratic Hellmann plus Mie-type potential using Nikiforov-
Uvarov method”, International Journal of  Recent  Advances in  Physics. 2(4), 25 (2013).
https://wireilla.com/physics/ijrap/papers/2413ijrap02.pdf

[70] E.P. Inyang, E.S. William, J.O. Obu, B.I. Ita, E.P. Inyang, and 1.O. Akpan, “Energy spectra and expectation values of selected
diatomic molecules through the solutions of Klein-Gordon equation with Eckart-Hellmann potential model”, Molecular Physics.
119(23), €1956615 (2021). https://doi.org/10.1080/00268976.2021.1956615

[71] E.P. Inyang, E.O. Obisung, E.S. William, and I.B. Okon, “Non-Relativistic study of mass spectra and thermal properties of a
quarkonium system with Eckart-Hellmann potential”, East Eur. J. Phys. 3, 114 (2022)114. https://doi.org/10.26565/2312-4334-
2022-3-14

[72] E.S. William, E.P. Inyang, J.E. Ntibi, J.A. Obu, and E.P. Inyang, “Solutions of the Non-relativistic Equation Interacting with the
Varshni-Hellmann potential model with some selected Diatomic molecules”, Jordan Journal of Physics, 15, 193 (2022).
https://doi.org/10.47011/15.2.8

[73] E.P. Inyang, F. Ayedun, E.A. Ibanga, K.M. Lawal, I.B. Okon, E.S. William, O. Ekwevugbe, C.A. Onate, A.D. Antia, and
E.O. Obisung, “Analytical Solutions of the N-Dimensional Schrodinger equation with modified screened Kratzer plus Inversely
Quadratic Yukawa potential and Thermodynamic Properties of selected Diatomic Molecules”, Results in Physics, 43, 106075
(2022). https://doi.org/10.1016/j.rinp.2022.106075

[74] O. Ebomwonyi, C.A. Onate, M.C. Onyeaju, and A.N. Ikot, “Any l-states solutions of the Schrodinger equation interacting with
Hellmann-generalized =~ Morse potential model”, Karbala Intl. J. Mod. Sc, 3, 59 (2017).
http://eprints.Imu.edu.ng/1613/2/ONATE%2038.pdf

[75] C.O. Edet, and A.N. Ikot, “Shannon information entropy in the Presence of magnetic and Aharanov-Bohm (AB) fields”, Eur.
Phys. J. Plus, 136, 432 (2021). https://doi.org/10.1140/epjp/s13360-021-01438-4

[76] W.A. Yahya, K.J. Oyewuni, and K.D. Sen, “Position and momentum information-theoretic measures of the pseudoharmonic
potential”, Int. J. Quantum Chem. 115, 1543 (2014). https://doi.org/10.1002/qua.24971

[77] S.H. Patil, K.D. Sen, N.A. Watson, and H.E. Montgomery Jr, “Characteristic features of net information measures for
constrained Coulomb potentials”, J. Phys. B: At. Mol. Opt. Phys. 40, 2147 (2007). https://doi.org/10.1088/0953-4075/40/11/016

[78] Y.J. Shi, G.H. Sun, J. Jing, and S.H. Dong, “Shannon and Fisher entropy measures for a parity-restricted harmonic oscillator”,
Laser Phys. 27, 125207 (2017).

[79] D. Chakraborty, P.W. Ayers, in: Statistical Complexity: Applications in Electronic Structure, edited by K.D. Sen, (Springer, 2012).

[80] E.Romera, P. Sanchez-Moreno, J.S. Dehesa, “The Fisher information of single-particle systems with a central potential”’, Chem.
Phys. Lett. 414, 468 (2005). https://doi.org/10.1016/j.cplett.2005.08.032

AHAJIITUYHI PIINEHHSA PIBHAHHS IIPEAIHTEPA 3 MOJEJIAAMU KOJIEKTUBHOT'O ITIOTEHHIAJTY:
3ACTOCYBAHHSI IO KBAHTOBOI TEOPII IH®@OPMAUIT
®dyuminaiio Aiienyn, Etino I1. Inssaur, Edionr A. I6anra, Konasosie M. JlaBan
@axynomem ¢hizuxu, Hayionanenuii 6ioxpumuii ynieepcumem Hieepii, /[ocabi, A6yooica

VY 1poMy TOCIIKEHHI NIIIXOM aHAJTITHIHOTO po3B’si3aHHs piBHSHHS [lpexinrepa 3 BukopuctanHsM noteHmianry Exapra-I'ensmana
ta Metony Hikidoposa-YBapoBa Oyim oTpumaHi piBHSHHS €Heprii Ta HopMaii3oBaHa XBHIbOBa (QyHKIs. JocmimpkeHo iHpopmaio
®imrepa ta enrpornito lllennona. Harri pe3ynpraTi okas3ain XxapakTepHy HOBEIIHKY BUIIOTO TOPSIKY JUIS TOJI0XKEHHS y IPOCTOPI Ta
iMmynbcy. Hamri uncenbHi pe3yapTaTy oKa3aiy MiBUILEHHS TOYHOCTI BU3HAUCHHS MICIIsI pO3TallyBaHHS Iepe10adyBaHUX YaCTHHOK,
10 3yCTPIYalOThCS y MOJIOKEHHI B mpocTopi. KpiM Toro, Hamii pe3ysnbTaTd MOKa3yloTh, IO CyMa EHTPOMiM Mo3ulii Ta iMIIyJbey
3aJJ0BOJIbHSIE HIDKHIO MEXY HepiBHOCTI bepkuepa, bsamuninpkoro-bipyni Ta Midecki, a iHpopmaris Dimepa Takoxk 3aJ0BOIBHIETHCS
JUIS PI3HUX BIIACHUX CTaHiB. BUCHOBKHM IBOTO JTOCITIHKEHHS 3HAHAYTh 3aCTOCYBaHHS B KBAaHTOBIM XiMii, aTOMHIN 1 MOJEKYIAPHIN
(izuni Ta KBAaHTOBIN (hi3UIIi.

Karwuosi caoBa: piusHas Illpeninrepa; norenmian Exapra-I'enbmana; [adopmarnis dimepa; entpomis Lllennona; Meton
Hikigoposa-YBaposa





