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The bound state solutions of the deformed Klien-Gordon equation have been determined in the three-dimensional extended relativistic 
quantum mechanics 3D-ERQM symmetries using position-dependent mass (PDM) with unequal scalar and vector potential for the 
improved Hulthén plus improved deformed type-hyperbolic potential (PDM-SVID(H-TP)) models. PDM with unequal scalar and vector 
potential for the Hulthén plus deformed type-hyperbolic potential (PDM-(SVH-DTP)) models, as well as a combination of radial terms, 
which are coupled with the coupling L , which explains the interaction of the physical features of the system with the topological 
deformations of space-space. The new relativistic energy eigenvalues have been derived using the parametric Bopp shift method and 
standard perturbation theory which is sensitive to the atomic quantum numbers ( , , ,j l s m ), mixed potential depths ( 0 0 1 1, , ,V S V S ), the rest, 

and perturbed mass  0, 1m m , the screening parameter's inverse , and noncommutativity parameters  , ,  . Within the framework of 
3D-ERQM symmetries, we have treated certain significant particular instances that we hope will be valuable to the specialized researcher. 
We have also treated the nonrelativistic limit and applied our obtained results to generate the mass spectra of heavy-light mesons (HLM) 
such as cc and bb  under PDM-SE with improved deformed Hulthén plus improved hyperbolic potential (PDM-ID(H-TP)) models. When 
the three simultaneous limits  , ,  were applied, we recovered the normal results of relativistic in the literature ( 0,0,0 ) for the 
PDM-ID(H-TP)) models. 
Keywords: Klien-Gordon equation, deformed Hulthén plus deformed type-hyperbolic potential, heavy-light mesons, Noncommutative 
quantum mechanics and Bopp's shift method, Canonical noncommutativity 
PACS: 03.65.−w;03.65.Ge;05.30.Jp 
 

1. INTRODUCTION 
One of the significant issues in quantum mechanics (QM) and noncommutative quantum mechanics (NCQM) or 

extended quantum mechanics (EQM) is the investigation of solutions to the nonrelativistic Schrödinger equation (SE) or 
relativistic Klien-Gordon (KG), Dirac and Duffin-Kemmer-Petiau equations for a particle with spin 0, 1/2 or (1,2...) under 
the real physical potentials. The hyperbolic and Hulthén potentials are considered to be one of the most important 
interactions that have received great attention. It has been the subject of an in-depth study by many researchers within the 
framework of fundamental equations [1-5] whether it is a single treatment or a combination of both. In their study of the 
bound and scattering states of the KGE with deformed Hulthén plus deformed hyperbolical potential for arbitrary states, 
Ikot et al. used supersymmetry quantum mechanics and factorization techniques [6]. The variable mass formalism 
provides relevant and practical theoretical predictions of a variety of experimental properties for many-body quantum 
systems for this goal [7,8]. The effective mass notion has been applied to numerous important issues in the literature, 
including nuclei, metallic clusters, 3He clusters, quantum liquids, and nuclei [9-13]. In the present work, we aim to 
investigate the solution of KG and SE with deformed Hulthén plus deformed-type hyperbolic potential in 3D-ERQM and 
3D-ENRQM symmetries to develop the physical concepts in ref. [6]. We aspire through this work to reveal more new 
applications within the framework of extended postulates that include more comprehensive axioms than we know about 
relativistic quantum mechanics (see below). These new postulates were connected to the deformation space-space and 
phase-phase. The divergence problem of the standard model, gravity quantization, the problem of unifying it with the rest 
of the fundamental interactions, and other significant physical problems have emerged despite the brilliant successes of 
quantum mechanics in treating physical and chemical systems in various research fields [14-21]. It should be mentioned 
that before the renormalization approach was created and gained popularity, Heisenberg proposed the idea of extended 
noncommutativity to the coordinates as a possible treatment for eliminating the limitless number of field theories in 1930. 
Snyder published the first work on QFT's history in 1947 [22], and Connes introduced its geometric analysis in 1991 and 
1994 [23,24] to standardize QFT. I believe that this research will contribute to further subatomic scale investigations and 
scientific knowledge of elementary particles. The position-dependent mass with unequal scalar and vector potential for 
the improved deformed Hulthén plus improved type-hyperbolic potential (PDM-SVID(H-TP)) models in the 3D-ERQM 
symmetries was motivated by the fact that it had not been reported in the literature for bosonic particles and antiparticles. 
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The following are the vector and scalar that will be used in this study  htF r  (  ht ncV r ,  ht ncS r  and  ht ncm r  which 
are unified in the following form: 

        21
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F r
F r F r O
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L , (1) 

where    ,ht htV r S r  and  htm r  are the (vector, scalar) potentials and PDM, in 3D-RQM known in the literature [6]: 
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, (2) 

where 0V / 1V  stand for the potential wells' depths, q  for deformation, and  is the screening parameter's inverse, 0m  is 
the integration constant (rest mass of the bosonic particles and antiparticles), 1m  is the perturbed mass,  and ncr r  are 
the distances in the EQM and usual QM symmetries, respectively. 

The coupling L  is the scalar product of the usual components of the angular momentum operator  , ,x y zL L LL

and the modified noncommutativity vector   12 23 13, , / 2    which present the noncommutativity elements parameter. 

In the case of NCG , the noncentral generators can be suitably realized as self-adjoint differential operators ( ncx , ncp ) in 
3D-EQM symmetries. NC canonical commutations in a variety of canonical structures satisfying a deformed algebra of 
the form (we have used the natural units 1c  ) [25-30]: 

 
,

,

nc nc
eff

nc nc

x p i
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. (3) 

The corresponding generalizing momentums ( x  and p ) in the usual QM symmetries, respectively. Here   is 

the Kronecker symbol,  , 1,2,3   ,   is antisymmetric real constant ( 3 3 ) matrices with the dimensionality 
(length)2 parameterizing the deformation of space-space,  is the Levi-Civita symbol ( 1      for    and 

0  ), and R   is the noncommutative parameter which measures the non-commutativity of coordinates, eff    
is the effective Planck constant. In the first order of the noncommutativity parameter   , the scalar product in 3D-
EQM symmetries is expressed in terms   h g x  as follows [31-34]: 

        / 2 x x
x x

h g x hg x i h g  


  


     . (4) 

The outline of the paper is as follows: Sect. 2 presents an overview of the 3D-KGE under the PDM-SVID(H-TP) 
model. Sect. 3 is devoted to investigating the 3D-DKGE using the well-known Bopp's shift method to obtain the effective 
potential of the PDM-SVID(H-TP) model. Furthermore, using standard perturbation theory, we find the expectation 
values of some radial terms to calculate the corrected relativistic energy generated by the effect of the perturbed effective 
potential  ht

pertW r , and we derive the global corrected energies for bosonic particles and bosonic antiparticles whose 
spin quantum number has an integer value ( 0,1, 2... ). Sect. 4 is reserved for the study of important relativistic particular 
cases in 3D-ERQM symmetries. The next section is reserved for the nonrelativistic limits for PDM-SVID(H-TP) models 
in 3D-ENRQM symmetries and we apply these results to generate mass spectra of HLM systems. Finally, we present our 
conclusion in Sec. 7. 
 

2. AN OVERVIEW OF KGE UNDER THE PDM-SVD(H-TP) MODEL IN RQM SYMMETRY 
The radial component  nlu r  of the wave function solution  , ,nl r    satisfies the differential equation 

below [6]: 

    
2

2 2
02 0nl nl

d E m W r u r
dr

       
 

. (5) 



202
EEJP. 4 (2022) Abdelmadjid Maireche

The effective potential  ht
effW r  is determined from: 
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The parameters 1 , 2  and 3  are determined in Ref. [6] as a function of ( 0 0 1 1 0, 1, , , ,V S V S m m ). The author of this 

Ref. used the SUSYQM and factorization methods to obtain the expression  nlu r  as a function of generalized Jacobi 

polynomial    ,u vP x  in RQM symmetries. We reformulate the relativistic wave function  , ,nl r    in terms of the 

hypergeometric polynomials 3 3
2 1  ( , 2 2 1;1 2 , )nl nl nlF n n z        as, 
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where z  equal  exp 2q r  while nlN  and ( 1
nl , 2

nl  and 3
nl ) are given by: 
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, (8) 

with nl  equal 31 2
1
4 nl nl nl     . We obtained the energy for bosonic particles nlE  and bosonic antiparticles nlE  , 

from the square root of the equation of energy [6]: 
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where  2
1 2 32 2 2

11 1q q q
q

   


          
 

 
3. SOLUTIONS OF PDM-SVID(H-TP) MODELS IN 3D-ERQM SYMMETRIES 

By applying the new principles which we have seen in the introduction, Eqs. (3) and (4), summarized in new 
relationships MASCCCRs and the notion of the Weyl-Moyal star product. These data allow us to rewrite the usual radial 
KG equations in Eq. (5) in 3D-ERQM symmetries as follows: 

    
2

2 2
02 0ht

nl eff nl
d E m W r u r
dr

        
 

. (10) 

There are two approaches to including non-commutativity in the quantum field theory: either through the Moyal 
product on the space of ordinary functions or by redefining the field theory on a coordinate operator space that is inherently 
noncommutative [35-37]. It is known to specialists that the star product can be translated into the ordinary product known 
in the literature using what is called Bopp's shift method. F. Bopp was the first to consider pseudo-differential operators 

obtained from a symbol by the quantization rules  ,x p     ˆ ˆ, 
2 2p x
i ix x p x

         
 

 instead of ordinary 

correspondence  ,x p      ˆ ˆ, 
2 x
ix x p x

       
 

, respectively. This procedure is known as Bopp's shifts (BS) method, 

and this quantization procedure is known as Bopp quantization [38-45]. It is worth motioning that the BS method permutes 
us to reduce Eq. (10) in the simplest form: 
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2 2
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. (11) 
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The Taylor expansion of  ncW r  can be expressed as in the 3D-ERQM symmetries, as [42-52]: 

        2

2

ht
effht ht

eff nc eff

W r
W r W r O

r r


    


L . (12) 

Substituting Eq. (12) into Eq. (11), we obtain the following, as in the Schrödinger equation: 
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, (13) 

with 
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L . (14) 

By comparing Eqs. (5) and (11), we observe an additive potential  pert
htW r  dependent on new radial terms, which 

are coupled with the coupling L  that explains the interaction of the physical features of the system with the topological 
deformations of space-space: 
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L  , (15) 

Eq. (13) cannot be solved analytically for any state l 0  because of the centrifugal term and the studied potential 
itself. The effective perturbative potential  pert

htW r  in Eq. (15) has a strong singularity   0r  , we need to use the 
suitable approximation of the centrifugal term proposed by Kurniawan et al. [46] and applied by Ikot et al. [47]. The 
radial part of the 3D-DKGE with the PDM-SVID(H-TP) models contains the centrifugal term 2( 1) /l l r  and 4( 1) /l l r  
since we assume l 0 . However, the PDM-SVID(H-TP) model is a kind of potential that cannot be solved exactly when 
the centrifugal term is taken into account unless 0l   is assumed. The conventional approximation used in this paper is 
as follows: 

    22 2 2 21 / / sinh 4 / 1qr r z     . (16) 

This gives the perturbative effective potential as follows: 
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 to become PDM-SVID(H-TP) models in 3D-ERQM symmetries. The new additive part  pert
htW r  is also 

proportional to the infinitesimal coupling L , this is logical from a physical point of view because it explains the 
interaction between the physical properties of the studied potential L and the topological properties resulting from the 
deformation of space-space  . This allows us to consider the additive effective potential as a perturbation potential 
compared with the main potential  htW r (parent potential operator) in the symmetries of 3D-ERQM symmetries, that is, 

the inequality  pert
htW r   htW r  has become achieved. That is all the physical justifications for applying the time-

independent perturbation theory become satisfied. This allows us to give a complete prescription for determining the 
energy level of the generalized  , , thn l m  excited states. 
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3.1. The expectation values  pert
htW r  in the 3D-ERQM symmetries 

In this subsection, we want to apply perturbative theory in the first order to find the expectation values  
1ht
nlmA ,  

2ht
nlmA , 

 
3ht
nlmA ,  

4ht
nlmA  and  

5ht
nlmA  for bosonic particles and bosonic antiparticles taking into account the unperturbed  , ,nl r    

which we have seen previously in Eq. (7): 
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with  

 3 3
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, 

and 
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 . 

We have used useful abbreviations  
iht

nlm
A  = , , , ,n l m A n l m  to avoid the extra burden of writing. Furthermore, 

we have introduced the change of variable  exp 2z q r  . This maps the region 0 r  to 0 z q   and allows 

us to obtain 1 / 2 dzdr
z

  . We can evaluate the above integrals either in a recurrence way through the physical values 

of the principal quantum number ( 0,1,...n  ) and then generalize the result to the general  , , thn l m  excited state or we 
use the method proposed by Dong et al. [48] and applied by Zhang [49], to obtain the general excited state directly. We 
calculate the integrals in Eqs. (20) with help of the special integral formula: 
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symbol while  0  denoting the usual Gamma function. For the case 1q   and by identifying Eqs. (18) with the 
integrals in Eq. (21), we obtain the following results: 
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with 
32 2nl nl nlB    , 

 3 3, 2 2 1, ;1 2nl nl nl nl nlY n n X        , 

 3 3' , 2 2 1 ;1 2nl nl nl nl nlY n n X  


      , 

and 
2 3nl nlX 



  . 
 

3.2. The corrected energy for the PDM-SVID(H-TP) models 
The crucial goal of this sub-section is to identify the contribution under the PDM-SVID(H-TP) models, in 3D-

ERQM symmetries, arising from deformation space-space using the method we have successfully applied in the past and 
are always working to develop. We can confirm that the PDM-SVD(H-TP) models are in place, which we provided 
through a summary of the bosonic particles and bosonic antiparticles in Eq. (9), produce a significant contribution to 
relativistic energy known in the literature under deformation KG theory, whereas the new contribution is generated from 
the topological properties under space-space deformation. The influence of the perturbed spin-orbit effective potential 

 pert
htW r  corresponding to the bosonic particles and bosonic antiparticles with spin-s produces the first contribution. 

We obtain the perturbed spin-orbit effective potential by replacing the coupling of the angular momentum operator L
and the NC vector   with the new equivalent coupling L LS   2 2 2

12 23 13      . This degree of freedom 

results from the arbitrary nature of the infinitesimal NC vector  . We have oriented the spin-s of the bosonic particles 
and bosonic antiparticles to become parallels to the vector   which interacted with the PDM-SVID(H-TP) models. 
Additionally, we use the following transformation which is well known in QM symmetries: 

  2/ 2 LS G ,  
with  

2 2 2 2  G J L S . 

It is well known in QM symmetries, that the operators ( ˆ ht
ncH , 2J , 2L , 2S and zJ ) form a complete set of conserved 

physics quantities, and the eigenvalues 2  , ,F j l s  of the operator 2G are equal to the values ( 1)j j  - ( 1)l l  - ( 1)s s  , 

l s  j  l s in 3D-ERQM symmetry. As a direct consequence, the square partially corrected energies 2so
htE  due 

to the perturbed effective potential  pert
htW r  produced for the  , , thn l m  excited state, as follows: 

    
2 , ,  htso

ht nlm
E F j l s K   . (21) 

The global expectation values  
ht

nlm
K  for the bosonic particles and bosonic antiparticles, which were created from 

the effect of the PDM-SVID(H-TP) models, are determined from the following expression: 

    

5

1

ht ht
nlmnlmK A





  . (22) 

The second principal physical contribution for the perturbed potential  pert
htW r  is proven when we substitute the 

coupling interaction L  with physical coupling L

  and we chose z e   for simplification with physical condition 

        (length)2, here ( and  ) present the intensity of the magnetic field induced by the effect of the deformation 
of space-space geometry and a new infinitesimal noncommutativity parameter. This choice that the magnetic field is directed 
according to the  Oz  axis serves to simplify quantitative calculations without affecting the nature of the physical point of 

view; we also need to apply the identity , , , ,zn l m L n l m    which is equal 
m m l l n n

m      ( l m l    ). All of 

these data allow for the discovery of the new square improved energy shift 2mg
htE  due to the perturbed Zeeman effect 
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created by the influence of the PDM-SVID(H-TP) models for the  , , thn l m excited state in 3D-ERQM symmetries as 
follows: 

  
2 htmg

ht nlm
E K m   . (23) 

After we have completed the first and second stages of the self-production of energy, we are going to discover 
another very important case under the PDM-SVID(H-TP) models in 3D-ERQM symmetries. This physical new 
phenomenon is produced automatically from the influence of perturbed effective potential  pert

htW r . We consider the 

bosonic particles and bosonic antiparticles undergoing rotation with angular velocity  . The features of this subjective 
phenomenon are determined through the substitute of the arbitrary vector   with the new physical quantity 𝜒𝛺 . 
Allowing us to replace the coupling L with  L ,   is just an infinitesimal real proportional constant. The effective 
potentials  ht rot

pertW z  which induced the rotational movements can be expressed as follows: 

    
htht rot

pert nlm
W r K  L . (24) 

We chose a rotational velocity   parallel to the ( Oz ) axis ( ze ) to simplify the calculations. The perturbed 
generated spin-orbit coupling is then transformed into new physical phenomena as follows: 

    ht rot ht rot
pert pert zW z W z L  L . (25) 

All of these data allow for the discovery of the new corrected square improved energy 2rot
htE  due to the perturbed 

effective potential  ht rot
pertW z  which is generated automatically by the influence of the PDM-SVID(H-TP) models for 

the  , , thn l m  excited state in 3D-ERQM symmetries as follows: 

  
2 htrot

ht nlm
E K m   . (26) 

It is worth noting that the authors of ref. [48] were studied rotating isotropic and anisotropic harmonically confined 
ultra-cold Fermi gases in two and 3D space at zero temperature, but in this case, the rotational term was manually added 
to the Hamiltonian operator, whereas, in our study, the rotation operator  ht rot

pertW z L  appears automatically due to the 
effect of the deformation of space-space under the PDM-SVID(H-TP) models. The eigenvalues of the operations 2G  for 
bosonic particles and antiparticles (negative energy) with spin  1,2..s   are equal to the following values  , ,F j l s . 
In the 3D-ERQM symmetries, the total relativistic improved energy ht

ncE  for the case of the bosonic particles and bosonic 
antiparticles with spin has an integer value ( 0,1, 2... ) and satisfies the Bose-Einstein statistics such as (   and 0 ) with 

PDM-SVID(H-TP) models, corresponding to the generalized  , , thn l m  excited states are expressed as: 

     1/2[ ( , )]htht
nc nl nlm

E E K m F     , (27) 

where 

 ,       . 

Here nlE  are usual relativistic energies under the PDM-SVID(H-TP) model obtained from equations of energy in 
Eq. (9). It should be noted that the positive and negative sign denotes the improved energy of the bosonic particles which 
corresponds to the positive and negative energy of the bosonic antiparticles which corresponds to the negative energy. 
We can now generalize our obtained energies /ht b ap

t ncE 
 , in a unified formula, under the PDM-SVID(H-TP) models that 

were produced with the global induced potential  pert
htW r : 

    /ht b ap ht ht ht s ht
t nc nc nc nc ncE E E E E  
    , (28) 
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by using the unit step function (also known as a viside step function  x  or simply the theta function). It is important 
to point out that because we have only used corrections of the first order of infinitesimal noncommutative parameters 
 , ,  , perturbation theory cannot be used to find corrections of the second order  2 2 2, ,  . 
 

4. STUDY OF IMPORTANT RELATIVISTIC PARTICULAR CASES IN 3D-ERQM SYMMETRIES 
We will look at some specific examples involving the new bound state energy eigenvalues in Eq. (27) in this section. 

By adjusting relevant parameters of the PDM-SVID(H-TP) models in the 3D-ERQM, we could derive some specific 
potentials useful for other physical systems for much concern the specialist reach. 

(1). If we choose, 1 0V  , 0 1 1 0S S m    and / 2   in Eq. (1), we obtain the improved generalized Hulthén 
potential (GHP) and the global relativistic energy for the bosonic particles hp p

ncE   (bosonic antiparticles hp ap
ncE  ) under 

the improved GHP in 3D-ERQM symmetries as: 
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Here  hV r presents the GHP in 3D-RQM symmetries [51], while    0, , ,hp
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K n V m  is determined from the limits: 
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 . 

The first two parts hp
nlE   describe the relativistic energies of bosonic particles and bosonic antiparticles. In 3D-RQM 

symmetries, the rest of the terms present the topological effect of the deformation space-space (TDSS) on the thesis’s 
main energies hp

nlE  . 

(2). If we choose, 1
R

  , expq
R
     

 
 and 0 0 V qV exp

R
     

 
 in Eq. (1), we obtain the improved Woods-Saxon 

potential (WSP), the global relativistic energy for the bosonic particles wp p
ncE   (or bosonic antiparticles wp ap

ncE  ) under 
the improved WSP in 3D-ERQM symmetries as: 

 
   

    

0

2

1/ 2
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2

1 exp

,

ws nc ws

wpwp wp
nc nl nlm

V r
R RV r V r

rr
R

E E K m F







                                     

L
, (30) 

where 0V ,   and R  are the potential depth, the width of the potential, and the surface thickness whose values 
correspond to the ionization energies, respectively,  wsV r  present the standard WSP [52] while the rest terms give the 

influences of TDSS on the standard WSP,  
wp

nlm
K obtained from  

hp

nlm
K with    1

0 0, , RV qV  . The first two parts 
wp
nlE  in RHS of Eqs. (30) describe the relativistic energy of bosonic particles and bosonic antiparticles within the 

framework of 3D-RQM while the rest terms are present in the TDSS on the thesis’s main energies wp
nlE   which are 

obtained from making these substitutes. 
 

5. SE WITH PDM-ID(H-TP) MODES IN 3D-ENRQM SYMMETRIES 
To realize a study of the nonrelativistic limit, in 3D extended nonrelativistic QM (3D-ENRQM) symmetries, for the 

PDM-ID(H-TP) models, two steps must be applied. The first corresponds to the NR limit, in 3D-NRQM symmetries. 
This is done by applying the following simultaneous replacements, ( 0nlE m  and 0nlE m ) by ( 02m and nr

nlE ), 
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respectively in addition to the setv 0 1 0S S  . After straightforward calculation, we can obtain the NR-energy equation 
for PDM-D(H-TP) models as: 
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3 1

2
0 1

2
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E V
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, (31) 

with nr and V are equal 2 21 1
2

nrq
q
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, respectively, while: 
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, (32) 

with 
2

3 1 2
nr nr nr nrq q      . 

Now, under the conditions of NR-limit, the new NR-expectation values  
1ht
nlmB ,  

2ht
nlmB ,  

3ht
nlmB ,  

4ht
nlmB  and  

5ht
nlmB  are 

obtained from the expectation values  
1ht
nlmA ,  

2ht
nlmA ,  

3ht
nlmA ,  

4ht
nlmA  and  

5ht
nlmA  , by setting 0 1 0S S  and   k l  in 

Eq. (20). As a direct consequence, the new NR improved energy nr ht
nc nlE 
  of the excited state  , , thn l m  in 3D-ENRQM 

symmetries under the PDM-ID(H-TP) models equals the NR-energy nr
nlE  in Eq. (31) under PDM-D(H-TP) models plus 

the NR corrections which are generated with the effect of deformation space-space, as: 

    
1/2

( ,nr htnr ht nr
nc nl nl nlm

E E K m F


        
, (33) 

where 

   
ht

nlm
nrhtnr

nlm
BK 





5

1

  . 

 
6. Spin-averaged mass spectra of HLM under PDM-ID(H-TP) modes 

The quark-antiquark interaction potentials, are spherically symmetrical and provide a good description of HLM such 
as cc  and bb  under PDM-ID(H-TP) modes. This would give us a strong incentive to dedicate this section to the purpose 
to determine the modified spin-averaged mass spectra of HLM under the PDM-ID(H-TP) modes interaction by using the 
following formula: 

 +
3

1
3 1

for pin-1

 for pin-0

ht
ht nr ht nc
nl q nl nc qq q

ht
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E sM m m E M m m
E s



 

       

. (34) 

The LHS of Eq. (34) describes spin-averaged mass spectra of HLM in usual QM symmetries [53-57], while the RHS 
is our self-generalization to this formula in 3D-ENRQM symmetries, qm  and qm  are the quark mass and the antiquark 

mass, ht
nlM  is the spin-averaged mass spectra of HLM under the mass-dependent SE with the vector quark-antiquark 

interaction in usual NRQM symmetries, nr
nlE  is the nonrelativistic energy under PDM-ID(H-TP) modes, which is 

determined by generalizing Eq. (33) while ( 1ht
ncE , 2ht

ncE  and 3ht
ncE ) are the modified energies of HLM which have spin-1 

while ht
ncE  is the modified energies of HLM that have spin-0. We need to replace the factor  , ,F j l s  with new 

generalized values as follows: 

 

 

 
   

 

         for 1, 1
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1         for  , 1
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. (35) 
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The modified energies ( 1ht
ncE , 2ht

ncE , 3ht
ncE  and ht

ncE ) correspond to Eq. (35) and can be expressed by the following formula: 
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. (36) 

By substituting Eqs. (36) and (35) into Eq. (34), the new mass spectrum of the HLM systems in 3D-ENRQM 
symmetries under the PDM-ID(H-TP) models for any arbitrary radial and angular momentum quantum numbers becomes: 

 
    

1/2 1/2

 For spin 1

)  For spin 0

ht
nc npht ht

nc nl nr ht

nlm

E
M M

K m 

         

, (37) 

with ht
nc np

E  mean physically the value of the nonpolarized energy  which takes into account different all spin values: 

   
 

1/2

, , , ,
3

nr ht

nlmht
nc np

K
E h m l 



  , (38) 

and  , , , ,h m l   is given by: 

             1/2 1/ 2 1/ 2
, , , , / 2 1h m l m l m m l       

                                
. (39) 

It is important to notice that the new function  , , , ,h m l   describe the topological defect de deformation space-
space because it disappears in the absence of the non-commutativity parameters ( , ,  ). The LHS of Eq. (37) is the 
spin-averaged mass spectra ht

nlM  of HLM under the PDM-D(H-TP) modes in 3D-NRQM symmetries and the RHS is 
produced with the effect of deformation space-space which is sensitive to the atomic quantum numbers  , , , ,n l j s m  and 
potential depths ( 0 0 1 1, , ,V S V S ). 
 

7. CONCLUSIONS 
This paper presents an approximate analytical solution of the 3D-ERQM and 3D-ENRQM symmetries with PDM-

SVID(H-TP) and PDM-ID(H-TP) models using the parametric Bopp shift method and standard perturbation theory. 
Under the deformed features of space-space, we found new bound-state energies that appear sensitive to quantum numbers 
( , , , , )n j l s m , the mixed potential depths  0 0 1 1, , ,V S V S , the rest and perturbed mass  0, 1m m , the screening parameter's 

inverse , and the noncommutativity parameter  , ,  . Moreover, the nonrelativistic limit of the studied potential in 
3D-ENRQM symmetries has been investigated. The modified spin-averaged mass spectra of HLM in both 3D-NRQM 
(commutative space CS) and 3D-ENRQM symmetries were determined by applying our results of the new nonrelativistic 
energies that represent the binding energy between the quark and antiquark. We have treated certain significant particular 
instances that we hope will be valuable to the specialized researcher such as the improved GHP and the improved WSP 
in the context of 3D-ERQM symmetries. It is shown that the PDM-SVID(H-TP) model in a 3D-ERQM has a behavior 
similar to the dynamics of bosonic particles and bosonic antiparticles under the PDM with PDM-SVD(H-TP) in a 3D-
RQM symmetry (CS) influenced by the effect of constant magnetic field and a self-rotational which can be similar to the 
behavior of coupling to spin-orbit. As a result, the dynamics of PDM-SVID(H-TP) models in a 3D-ERQM symmetry 
under the DKGE are similar to the dynamics of a particle in a 3D-RQM symmetry under the Duffin-Kemmer equation 
which describes bosonic particles with spin-1. 
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РЕЛЯТИВІСТСЬКІ СИМЕТРІЇ БОЗОННИХ ЧАСТИНОК І АНТИЧАСТИНОК НА ФОНІ ПОЗИЦІЙНО-
ЗАЛЕЖНОЇ МАСИ ДЛЯ ВДОСКОНАЛЕНОГО ДЕФОРМОВАНОГО ХЮЛЬТЕН ПЛЮС ПОКРАЩЕНОГО 

ПОТЕНЦІАЛУ ГІПЕРБОЛІЧНОГО ТИПУ У СИМЕТРІЯХ 3D-EQM 
Абдельмаджид Майреше 

Факультет фізики, Університет Мсіла, Лабораторія PMC, Університет Мсіла, Алжир 
Розвязання зв’язаного стану деформованого рівняння Клієна-Гордона були визначені в симетріях тривимірної розширеної 
релятивістської квантової механіки 3D-ERQM з використанням позиційно-залежної маси (PDM) з нерівним скалярним і 
векторним потенціалом для вдосконаленого деформованого Hulthén плюс покращеного потенціалу гіперболічного типу 
(PDM-SVID(H-TP)). PDM з нерівним скалярним і векторним потенціалом для моделей Hulthén плюс гіперболічний потенціал 
деформованого типу (PDM-(SVH-DTP)), а також комбінація радіальних членів, які пов’язані з L , що пояснює взаємодію 
фізичного особливості системи з топологічними деформаціями простір-простір. Нові релятивістські власні значення енергії 
були отримані за допомогою параметричного методу зсуву Боппа та стандартної теорії збурень, яка чутлива до атомних 
квантових чисел ( , , ,j l s m ), змішаних потенціальних глибин ( 0 0 1 1, , ,V S V S ), спокою та збуреної маси  0, 1m m , параметра 

екранування, зворотного параметру  , і параметрів некомутативності  , ,  . У рамках симетрій 3D-ERQM ми розглянули 
певні важливі окремі випадки, які, як ми сподіваємося, будуть цінними для дослідників-спеціалістів. Ми також розглянули 
нерелятивістську межу та застосували наші отримані результати для створення мас-спектрів важких і легких мезонів (HLM), 
таких як cc  та cc  у рамках PDM-SE з покращеними деформованими моделями Hulthén плюс покращеного гіперболічного 
потенціалу (PDM ID(H-TP)). Коли було застосовано три одночасні обмеження  , ,  , ми відновили нормальні 
релятивістські результати в літературі ( 0,0,0 ) для моделей PDM ID(H-TP). 
Ключові слова: рівняння Клієна-Гордона, деформований Хультен плюс деформований гіперболічний потенціал, важкі-легкі 
мезони, Некомутативна квантова механіка та метод зсуву Боппа, Канонічна некомутативность 


