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The bound state solutions of the deformed Klien-Gordon equation have been determined in the three-dimensional extended relativistic
quantum mechanics 3D-ERQM symmetries using position-dependent mass (PDM) with unequal scalar and vector potential for the
improved Hulthén plus improved deformed type-hyperbolic potential (PDM-SVID(H-TP)) models. PDM with unequal scalar and vector
potential for the Hulthén plus deformed type-hyperbolic potential (PDM-(SVH-DTP)) models, as well as a combination of radial terms,
which are coupled with the coupling L® , which explains the interaction of the physical features of the system with the topological
deformations of space-space. The new relativistic energy eigenvalues have been derived using the parametric Bopp shift method and
standard perturbation theory which is sensitive to the atomic quantum numbers ( j,/,s,m ), mixed potential depths (¥, S,,V},S, ), the rest,

and perturbed mass (movml ) , the screening parameter's inverse ¢ , and noncommutativity parameters (G), T, ;() . Within the framework of

3D-ERQM symmetries, we have treated certain significant particular instances that we hope will be valuable to the specialized researcher.
We have also treated the nonrelativistic limit and applied our obtained results to generate the mass spectra of heavy-light mesons (HLM)

suchasccand bb under PDM-SE with improved deformed Hulthén plus improved hyperbolic potential (PDM-ID(H-TP)) models. When
the three simultaneous limits (G),T, ;() were applied, we recovered the normal results of relativistic in the literature ( 0,0,0 ) for the

PDM-ID(H-TP)) models.

Keywords: Klien-Gordon equation, deformed Hulthén plus deformed type-hyperbolic potential, heavy-light mesons, Noncommutative
quantum mechanics and Bopp's shift method, Canonical noncommutativity

PACS: 03.65.—w3;03.65.Ge;05.30.Jp

1. INTRODUCTION

One of the significant issues in quantum mechanics (QM) and noncommutative quantum mechanics (NCQM) or
extended quantum mechanics (EQM) is the investigation of solutions to the nonrelativistic Schrodinger equation (SE) or
relativistic Klien-Gordon (KG), Dirac and Duffin-Kemmer-Petiau equations for a particle with spin 0, 1/2 or (1,2...) under
the real physical potentials. The hyperbolic and Hulthén potentials are considered to be one of the most important
interactions that have received great attention. It has been the subject of an in-depth study by many researchers within the
framework of fundamental equations [1-5] whether it is a single treatment or a combination of both. In their study of the
bound and scattering states of the KGE with deformed Hulthén plus deformed hyperbolical potential for arbitrary states,
Ikot et al. used supersymmetry quantum mechanics and factorization techniques [6]. The variable mass formalism
provides relevant and practical theoretical predictions of a variety of experimental properties for many-body quantum
systems for this goal [7,8]. The effective mass notion has been applied to numerous important issues in the literature,
including nuclei, metallic clusters, *He clusters, quantum liquids, and nuclei [9-13]. In the present work, we aim to
investigate the solution of KG and SE with deformed Hulthén plus deformed-type hyperbolic potential in 3D-ERQM and
3D-ENRQM symmetries to develop the physical concepts in ref. [6]. We aspire through this work to reveal more new
applications within the framework of extended postulates that include more comprehensive axioms than we know about
relativistic quantum mechanics (see below). These new postulates were connected to the deformation space-space and
phase-phase. The divergence problem of the standard model, gravity quantization, the problem of unifying it with the rest
of the fundamental interactions, and other significant physical problems have emerged despite the brilliant successes of
quantum mechanics in treating physical and chemical systems in various research fields [14-21]. It should be mentioned
that before the renormalization approach was created and gained popularity, Heisenberg proposed the idea of extended
noncommutativity to the coordinates as a possible treatment for eliminating the limitless number of field theories in 1930.
Snyder published the first work on QFT's history in 1947 [22], and Connes introduced its geometric analysis in 1991 and
1994 [23,24] to standardize QFT. I believe that this research will contribute to further subatomic scale investigations and
scientific knowledge of elementary particles. The position-dependent mass with unequal scalar and vector potential for
the improved deformed Hulthén plus improved type-hyperbolic potential (PDM-SVID(H-TP)) models in the 3D-ERQM
symmetries was motivated by the fact that it had not been reported in the literature for bosonic particles and antiparticles.
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The following are the vector and scalar that will be used in this study F,, (r)=(V,,(r.).S, (r.) and m, (r,) which

> Mht

are unified in the following form:

1 0F, .
Fr ):th(r)—g—ar(r)L®+O(® ), 0

where V,,(r),S, () and m,, (r) are the (vector, scalar) potentials and PDM, in 3D-RQM known in the literature [6]:

VS0 WS, (1+4¢=)

Vhr /Shr =
1 _ qe(72ar) 1 _ qe(72ar) (
, 2)
_ m
mht (rnc) - mO + 1_ qe(,zar)

where V,/V, stand for the potential wells' depths, ¢ for deformation, and « is the screening parameter's inverse, m, is

the integration constant (rest mass of the bosonic particles and antiparticles), m; is the perturbed mass, (rnc and r) are

the distances in the EQM and usual QM symmetries, respectively.
The coupling L® is the scalar product of the usual components of the angular momentum operator L (LX L, LZ)

and the modified noncommutativity vector ® (6,,,6,;,6,,)/2 which present the noncommutativity elements parameter.

nc nc

In the case of G, the noncentral generators can be suitably realized as self-adjoint differential operators (x,°, p/*) in

3D-EQM symmetries. NC canonical commutations in a variety of canonical structures satisfying a deformed algebra of
the form (we have used the natural units 7 =c=1) [25-30]:

nc nc I3
|:xﬂ D) } =zheff5ﬂv
* . 3)
nc nc —
|:xﬂ , X, } —lé‘ﬂvﬁ

The corresponding generalizing momentums (x, and p, ) in the usual QM symmetries, respectively. Here 6, is

uv
the Kronecker symbol, ( U,V = 1,2,3) R QW is antisymmetric real constant (3 x 3) matrices with the dimensionality

(length)? parameterizing the deformation of space-space, &, 1is the Levi-Civita symbol (¢, =—¢,, =1 for 4#Vv and
¢,.=0),and 6 eR is the noncommutative parameter which measures the non-commutativity of coordinates, 7, =%

is the effective Planck constant. In the first order of the noncommutativity parameter £“'6, the scalar product in 3D-
EQM symmetries is expressed in terms (/*g)(x) as follows [31-34]:

(h*g)(x)~(he)(x)-is"0/20,h0}g] , . “

The outline of the paper is as follows: Sect. 2 presents an overview of the 3D-KGE under the PDM-SVID(H-TP)
model. Sect. 3 is devoted to investigating the 3D-DKGE using the well-known Bopp's shift method to obtain the effective
potential of the PDM-SVID(H-TP) model. Furthermore, using standard perturbation theory, we find the expectation
values of some radial terms to calculate the corrected relativistic energy generated by the effect of the perturbed effective

potential Wp";t (r) , and we derive the global corrected energies for bosonic particles and bosonic antiparticles whose

spin quantum number has an integer value (0,1,2...). Sect. 4 is reserved for the study of important relativistic particular

cases in 3D-ERQM symmetries. The next section is reserved for the nonrelativistic limits for PDM-SVID(H-TP) models
in 3D-ENRQM symmetries and we apply these results to generate mass spectra of HLM systems. Finally, we present our
conclusion in Sec. 7.

2. AN OVERVIEW OF KGE UNDER THE PDM-SVD(H-TP) MODEL IN RQM SYMMETRY
The radial component u, (r) of the wave function solution W, (r,0,¢) satisfies the differential equation

below [6]:

o 5 _
(W-FE”Z —m; W(r)] u, (r)=0. %)
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The effective potential We;'; (r) is determined from:

w, exp(—4ar)+ o, exp(—2ar)+w
()= A A@) o0 (ar) o, ©
(1—qexp(—2(xr))

The parameters @, @, and @, are determined in Ref. [6] as a function of (V,S,,V,,S,,m, m, ). The author of this
Ref. used the SUSYQM and factorization methods to obtain the expression u,, (r) as a function of generalized Jacobi

polynomial P"") (x) in RQM symmetries. We reformulate the relativistic wave function ‘¥, (r,6,4) in terms of the

hypergeometric polynomials ,F, (—n,n+2y 3, +28, +114+2\/ 7}, ,2) as,

7

z

\Pnl:NZYnIz(e’¢) (l_z)ﬁnl oF (—n,n+2\/7,f1+2,3ﬂ1+1;1+2 ZusZ)s (7

where z equal gexp(—2ar) while N, and(y,, y; and ;) are given by:

g @ Eummp . 0 Eiom
"4dtqt 4t T 4’ A’
3 ) 8
— B —m? " Nn,l"(n+2w/;(nl+1) ®)
nl — - s
4a’q’ 4o’ n!r(z/;@ +1)

1
with S, equal \/Z+ X — x4+ 1, - We obtained the energy for bosonic particles E;, and bosonic antiparticles £,

from the square root of the equation of energy [6]:

2
1 ’—
EX—m} = _W[—wgao—wl +2a(n+ G)J +o,, ©)

1
where a:%[1+\/l+a2—qz<a)l+qw2—q2w3)J

3. SOLUTIONS OF PDM-SVID(H-TP) MODELS IN 3D-ERQM SYMMETRIES
By applying the new principles which we have seen in the introduction, Egs. (3) and (4), summarized in new
relationships MASCCCRs and the notion of the Weyl-Moyal star product. These data allow us to rewrite the usual radial
KG equations in Eq. (5) in 3D-ERQM symmetries as follows:

d’ .
[W+Ef,—m§—m;(r)] 1, (r)=0. (10)

There are two approaches to including non-commutativity in the quantum field theory: either through the Moyal
product on the space of ordinary functions or by redefining the field theory on a coordinate operator space that is inherently
noncommutative [35-37]. It is known to specialists that the star product can be translated into the ordinary product known
in the literature using what is called Bopp's shift method. F. Bopp was the first to consider pseudo-differential operators

obtained from a symbol by the quantization rules (x, p) - | X=x--0,, f)=x+éax instead of ordinary

_t
2
correspondence (x, p) - [i =x,p=x+ %axj , respectively. This procedure is known as Bopp's shifts (BS) method,

and this quantization procedure is known as Bopp quantization [38-45]. It is worth motioning that the BS method permutes
us to reduce Eq. (10) in the simplest form:

2
(%*Eff‘mé—w’}}(m)] u, (r)=0. (1n
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The Taylor expansion of W(rm,) can be expressed as in the 3D-ERQM symmetries, as [42-52]:

(rm,)th’(r)—aWL;(r)L®+0(®z). (12)

Wht ol
& 2ror

e

Substituting Eq. (12) into Eq. (11), we obtain the following, as in the Schrodinger equation:

d’ ; er
[drz +E =W (1)~ ’(r)] w, () =0, (13)
with
pert 1 a Weh‘t (7")
W, (r):—;aj—/rL®+O(®2). (14)

By comparing Egs. (5) and (11), we observe an additive potential W, (r) dependent on new radial terms, which
are coupled with the coupling L® that explains the interaction of the physical features of the system with the topological
deformations of space-space:
2aw, exp(—4ar) Lo exp(—2ar) . 2aqw, exp(—6ar)

r(l - qe(‘z""))z r(l - qexp(—Zazr))2 r(1-gexp(-2ar))
2aqw, exp(—4ar) . 20qo, exp(—2ar)
r(l - qexp(—thr))3 r(l - qexp(—Zc{r))3

3

Wh,trm(r): L®+0(®z) s (15)

Eq. (13) cannot be solved analytically for any state / =0 because of the centrifugal term and the studied potential

itself. The effective perturbative potential /" (r) in Eq. (15) has a strong singularity » —0, we need to use the
suitable approximation of the centrifugal term proposed by Kurniawan et al. [46] and applied by Ikot et al. [47]. The
radial part of the 3D-DKGE with the PDM-SVID(H-TP) models contains the centrifugal term I(/ +1)/#> and /(I +1)/#*
since we assume [ # 0. However, the PDM-SVID(H-TP) model is a kind of potential that cannot be solved exactly when

the centrifugal term is taken into account unless /=0 is assumed. The conventional approximation used in this paper is
as follows:

1/r? = &’ /sinh? (ar) = 4a” /(1-z)" . (16)

This gives the perturbative effective potential as follows:

2 3 2
Wl (r) = bz -+ ﬂ123+ P —+ Pz —+ ﬁ524 L®+0(®2), (17)
(1-2) (-2 (-2 (-2 (1-2)
. 4o’ 20w, 4’ w, 40’ w, )
with g = 7 , B, = p; , By = 7 ,ﬂ4=Tandﬁ5:4aa)3.

2 3 2
z z z

(1=2) " (1=2)  (1-2)" " (1-2)'

and ﬁ to become PDM-SVID(H-TP) models in 3D-ERQM symmetries. The new additive part 7" (r) is also
1-z

proportional to the infinitesimal coupling L®, this is logical from a physical point of view because it explains the

interaction between the physical properties of the studied potential L and the topological properties resulting from the

deformation of space-space ®. This allows us to consider the additive effective potential as a perturbation potential

The PDM-SVID(H-TP) model is extended by including new radial terms

compared with the main potential W, (r) (parent potential operator) in the symmetries of 3D-ERQM symmetries, that is,

the inequality W2 (r) << W, (r) has become achieved. That is all the physical justifications for applying the time-
independent perturbation theory become satisfied. This allows us to give a complete prescription for determining the
energy level of the generalized (n,l ,m)’h excited states.
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3.1. The expectation values /' () in the 3D-ERQM symmetries

In this subsection, we want to apply perturbative theory in the first order to find the expectation values A(lfl’ A

(nim)
A(S,Z:n) , A(‘: hzfn) and A(5 ) for bosonic particles and bosonic antiparticles taking into account the unperturbed ¥, (r, 6’,¢)

which we have seen previously in Eq. (7):

A 21/ el 28,-2- 1

nlm

2\ 3 +1-1 20,
A2ht — 1 z

nlm

nlm

A(4hr —NJ 2\/7+211 Zz

nim

(1-2)
(1-2)™
A(am Nf 2\/7+3 1(1 Z)z ' Fde ’ (18)
(1-2)
(1-2)

AN = ”—*” 1-2)"""" Fdz
with
F{ 21~;(—n,n+2\/;7;,+2/3n,+1;1+ ;@,,z)}z,
n2
and N=—L.

2a

We have used useful abbreviations <A>iht

(nim)
we have introduced the change of variable z = gexp(-2ar). This maps the region 0<r<wto 0<z<g and allows

= (n,l,m ||A|| n,l,m) toavoid the extra burden of writing. Furthermore,

. d . . . .
us to obtain dr =—1/22% . We can evaluate the above integrals either in a recurrence way through the physical values
oz

of the principal quantum number (7 = 0,1,...) and then generalize the result to the general (n,1, m)th excited state or we

use the method proposed by Dong et al. [48] and applied by Zhang [49], to obtain the general excited state directly. We
calculate the integrals in Egs. (20) with help of the special integral formula:

L ~ T(E)T(z
J:) z° 1(l—s) 1[ B (cl,cz;c3;z)J2 dz :% ,F, (Cl ’Cz’ﬂ)'c3;ﬂ+a,'1), (19)
here F, (¢, .c,.B:¢;, f+a:1) equal 2¢ the symbol (¢, ) = denotes the rising factorial or Pochhammer

= (cy), (z+&)n!
symbol while F(f)O denoting the usual Gamma function. For the case ¢ =1 and by identifying Eqgs. (18) with the

integrals in Eq. (21), we obtain the following results:

W TVr+2)res,-2)
A(n/m) - qu—‘(B ) F (Yn/’Bnl’l)
20t (2\/_ - 1) (2/3’1,
A(nlm) = N F(B _1) 3F‘2(Ynl7Bnl _l’l)
. (2J7+3) (28, - ,
A == 3T (5} @(Y,“,Bn,;l) : (20)
nl
r(2yz +2)r(28, -
A(A:};:n) = 1 F (Ynl’B 1 1)
NT(B,-1)
5ht :F(z Z; +1)F(2ﬂ”1_3) F (Y ,B 2’1)
(nlm) N 1r( 2) nl nl
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with

B,,] =2\[ erl +2’ﬂnl’
Y, :(—n,n+21l;(;, +28,+LX, 51+ 2 70 ) >

Y'nl :(_n’n—‘rzvl/:l +2ﬂnl +1an’1+2 Z/?l)’
and
X/;/ :2ﬂ111_3‘

3.2. The corrected energy for the PDM-SVID(H-TP) models
The crucial goal of this sub-section is to identify the contribution under the PDM-SVID(H-TP) models, in 3D-
ERQM symmetries, arising from deformation space-space using the method we have successfully applied in the past and
are always working to develop. We can confirm that the PDM-SVD(H-TP) models are in place, which we provided
through a summary of the bosonic particles and bosonic antiparticles in Eq. (9), produce a significant contribution to
relativistic energy known in the literature under deformation KG theory, whereas the new contribution is generated from
the topological properties under space-space deformation. The influence of the perturbed spin-orbit effective potential

W,k (r) corresponding to the bosonic particles and bosonic antiparticles with spin-s produces the first contribution.
We obtain the perturbed spin-orbit effective potential by replacing the coupling of the angular momentum operator L
and the NC vector ® with the new equivalent coupling L® —-OLS (@ =0}, +0, + 0], ) This degree of freedom

results from the arbitrary nature of the infinitesimal NC vector ® . We have oriented the spin-s of the bosonic particles

and bosonic antiparticles to become parallels to the vector ® which interacted with the PDM-SVID(H-TP) models.
Additionally, we use the following transformation which is well known in QM symmetries:

OLS +(0/2)G’,
with
GZ — JZ _LZ _SZ

It is well known in QM symmetries, that the operators ( I:I';z ,J, 12, S?and J . ) form a complete set of conserved
physics quantities, and the eigenvalues 2 F' ( j,l,s) of the operator G?are equal to the values j(j+1)-/([+1)-s(s+1),
|l —s| <j< |l + s| in 3D-ERQM symmetry. As a direct consequence, the square partially corrected energies AE;"> due
to the perturbed effective potential W/ (r) produced for the (n,! ,m)'h excited state, as follows:

AEY? =OF (j,l,s) (K)' @1

ht (nim) *

ht
(nlm)

the effect of the PDM-SVID(H-TP) models, are determined from the following expression:

The global expectation values (K > for the bosonic particles and bosonic antiparticles, which were created from

ht S ahi
(K iy = Z By - 22)
The second principal physical contribution for the perturbed potential W, (r) is proven when we substitute the
coupling interaction L® with physical coupling LN and we chose N= Ne_ for simplification with physical condition
[@] = [1:] [N] = (length)?, here (N and 7) present the intensity of the magnetic field induced by the effect of the deformation

of space-space geometry and a new infinitesimal noncommutativity parameter. This choice that the magnetic field is directed
according to the (Oz) axis serves to simplify quantitative calculations without affecting the nature of the physical point of

view; we also need to apply the identity <n Jd ,m |L, n,l,m) which is equal mé . 6, 6. (—|l| <m< +|l| ). All of

m Il nn

these data allow for the discovery of the new square improved energy shift AE]"** due to the perturbed Zeeman effect
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created by the influence of the PDM-SVID(H-TP) models for the (n,l ,m)m excited state in 3D-ERQM symmetries as

follows:

AE!? = (K" m . (23)

(nlm)

After we have completed the first and second stages of the self-production of energy, we are going to discover
another very important case under the PDM-SVID(H-TP) models in 3D-ERQM symmetries. This physical new

phenomenon is produced automatically from the influence of perturbed effective potential W, (r) . We consider the

bosonic particles and bosonic antiparticles undergoing rotation with angular velocity € . The features of this subjective
phenomenon are determined through the substitute of the arbitrary vector ® with the new physical quantity y.2.
Allowing us to replace the coupling L® with yLLQ, y is just an infinitesimal real proportional constant. The effective

potentials W;:e‘,jm’ (z) which induced the rotational movements can be expressed as follows:

W (r) = (K ), L. en)

We chose a rotational velocity Q parallel to the (Oz ) axis (2 =Qe_) to simplify the calculations. The perturbed
generated spin-orbit coupling is then transformed into new physical phenomena as follows:

e (Z)LQ = QW (Z)LZ ) 25)

pert pert

All of these data allow for the discovery of the new corrected square improved energy AE;"* due to the perturbed

effective potential W™ " (z) which is generated automatically by the influence of the PDM-SVID(H-TP) models for

pert

the (n,! ,m)th excited state in 3D-ERQM symmetries as follows:

ht

AE”;[Z = zgz<K>(nlm) m. (26)

It is worth noting that the authors of ref. [48] were studied rotating isotropic and anisotropic harmonically confined
ultra-cold Fermi gases in two and 3D space at zero temperature, but in this case, the rotational term was manually added

to the Hamiltonian operator, whereas, in our study, the rotation operator the’r;m’ (Z)LQ appears automatically due to the

effect of the deformation of space-space under the PDM-SVID(H-TP) models. The eigenvalues of the operations G* for
bosonic particles and antiparticles (negative energy) with spin s = (1,2..) are equal to the following values F ( J,1 ,s) .

In the 3D-ERQM symmetries, the total relativistic improved energy E’ for the case of the bosonic particles and bosonic

nc

antiparticles with spin has an integer value (0,1,2...) and satisfies the Bose-Einstein statistics such as (z* and 7°) with

PDM-SVID(H-TP) models, corresponding to the generalized (n,1, m)'h excited states are expressed as:

E'=E; £[(K)" J(A(RQ)m+ O], 27)

nl = (nim

where
A(&Q) =N+ Q.

Here E;, are usual relativistic energies under the PDM-SVID(H-TP) model obtained from equations of energy in
Eq. (9). It should be noted that the positive and negative sign denotes the improved energy of the bosonic particles which
corresponds to the positive and negative energy of the bosonic antiparticles which corresponds to the negative energy.
We can now generalize our obtained energies E" ", in a unified formula, under the PDM-SVID(H-TP) models that

t—nc

were produced with the global induced potential W,/ (r):

ht-blap __ ht
E" = B0

t—nc

ht
EHC

)-iol-

ht
Enc

). (28)
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by using the unit step function (also known as a viside step function H(x) or simply the theta function). It is important
to point out that because we have only used corrections of the first order of infinitesimal noncommutative parameters
(®,7, x), perturbation theory cannot be used to find corrections of the second order (@2 N ) .

4. STUDY OF IMPORTANT RELATIVISTIC PARTICULAR CASES IN 3D-ERQM SYMMETRIES
We will look at some specific examples involving the new bound state energy eigenvalues in Eq. (27) in this section.
By adjusting relevant parameters of the PDM-SVID(H-TP) models in the 3D-ERQM, we could derive some specific
potentials useful for other physical systems for much concern the specialist reach.

(1). If we choose, V, =0,S,=S =m =0 and a > /2 in Eq. (1), we obtain the improved generalized Hulthén

potential (GHP) and the global relativistic energy for the bosonic particles E”~” (bosonic antiparticles £”~“) under
the improved GHP in 3D-ERQM symmetries as:
EV (*(ZI‘) QV (720(//)
V() =V ()| T 9 g
r(l—qe ) r(l—qe(’“")) . (29)

E" = E" J_{(K)h” )(A(NQ)m+®F)} -

nc (nim

HereV, (r) presents the GHP in 3D-RQM symmetries [51], while <K >hp (n, Vo,a,m) is determined from the limits:

(nlm)

(K (WVom) = Lim (K},

(Vi=Sy=8,=m,a)~40,a/2)

The first two parts E"”* describe the relativistic energies of bosonic particles and bosonic antiparticles. In 3D-RQM

symmetries, the rest of the terms present the topological effect of the deformation space-space (TDSS) on the thesis’s
main energies E”*

nl

1
(2). If we choose, « =E,q = exp[%] and V, =qV, = exp[%} in Eq. (1), we obtain the improved Woods-Saxon

potential (WSP), the global relativistic energy for the bosonic particles E”* (or bosonic antiparticles E)”~“) under
the improved WSP in 3D-ERQM symmetries as:

Vi (1) =V (r)+ ;’eexp[r;f} Lo

ws 7 ws 2
r{l—exp[r_ej] > (30)
R

EY =E"* i[ (K )y (A(RQ)m+ ®F)} -

ne nim

where V,,6 and R are the potential depth, the width of the potential, and the surface thickness whose values

correspond to the ionization energies, respectively, V, (r) present the standard WSP [52] while the rest terms give the

ws
hp
(nlm)

influences of TDSS on the standard WSP,(K >WP obtained from <K >

(nhn)

with (¥,,a)—{qV,,%). The first two parts

E'"*in RHS of Egs. (30) describe the relativistic energy of bosonic particles and bosonic antiparticles within the

wpt

7% which are

framework of 3D-RQM while the rest terms are present in the TDSS on the thesis’s main energies F
obtained from making these substitutes.

5. SE WITH PDM-ID(H-TP) MODES IN 3D-ENRQM SYMMETRIES
To realize a study of the nonrelativistic limit, in 3D extended nonrelativistic QM (3D-ENRQM) symmetries, for the
PDM-ID(H-TP) models, two steps must be applied. The first corresponds to the NR limit, in 3D-NRQM symmetries.

This is done by applying the following simultaneous replacements, ( £, +m, and E ,—m,) by (2m,and E]] ),
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respectively in addition to the setv S, = §, = 0 . After straightforward calculation, we can obtain the NR-energy equation
for PDM-D(H-TP) models as:

nr 2 nr 2
M +2a (n +o™" )
E" 200" e 31
" 8q : (mo -N ) ’
”" 20V +2 +VE+m’
with o, and V are equal % 1+, [1- pz ~| and — 5 (moml 7 )1 ™ respectively, while:
aq my =V,

O = 24ELV, 24 BV, V47V,
@y ==2ENV,+2qV,V, —2qmym, +41(1+1)a’ | (32)
o = 2BV, +2(m, V)V

with
2 nr nr

nro__ nr
P =q 0y —0 —q4a, .

Now, under the conditions of NR-limit, the new NR-expectation values B , B> = B = B , and B are

(nlm) * (nim) > (nim) > (nim (nim)
obtained from the expectation values A, Aviy s Ay s Aoy and A

, by setting S, =S, =0and £ —/ in
Eq. (20). As a direct consequence, the new NR improved energy E™~" of the excited state (n,l , m)th in 3D-ENRQM

nc—nl

symmetries under the PDM-ID(H-TP) models equals the NR-energy E!/ in Eq. (31) under PDM-D(H-TP) models plus
the NR corrections which are generated with the effect of deformation space-space, as:

nr—ht

En o =Ey +[ (K Yy (A (RQ)m+ ®F} ~ o

ne—nl

where
K nr—ht i anaht
< >(nlm) _azlﬁa (nlm)'

6. Spin-averaged mass spectra of HLM under PDM-ID(H-TP) modes
The quark-antiquark interaction potentials, are spherically symmetrical and provide a good description of HLM such
as cc and bb under PDM-ID(H-TP) modes. This would give us a strong incentive to dedicate this section to the purpose

to determine the modified spin-averaged mass spectra of HLM under the PDM-ID(H-TP) modes interaction by using the
following formula:

3
X E"* for spin-1
a= .

ht __ nr ht _
+M), —mq+m;+En1 =M =m, +m_ + (34)

E!" for spin-0

The LHS of Eq. (34) describes spin-averaged mass spectra of HLM in usual QM symmetries [53-57], while the RHS
is our self-generalization to this formula in 3D-ENRQM symmetries, m, and m._ are the quark mass and the antiquark

mass, M is the spin-averaged mass spectra of HLM under the mass-dependent SE with the vector quark-antiquark
interaction in usual NRQM symmetries, E); is the nonrelativistic energy under PDM-ID(H-TP) modes, which is
E"* and E!") are the modified energies of HLM which have spin-1

ne

determined by generalizing Eq. (33) while ( £

nc

while E™ is the modified energies of HLM that have spin-0. We need to replace the factor F ( j,l,s) with new

nc

generalized values as follows:

é for (j=1+1,5s=1)

F=4-1 for (j=0Ls=1) (35)
—(l—i—l) for(j:l—l,szl)

0 for (j=1,5=0)
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The modified energies (E™', EM*, E"* and E’) correspond to Eq. (35) and can be expressed by the following formula:

ne 2 “nc 2

nr—ht

1/2
EM" =E" J{ (K )y (N(RQ)m+ %)}
EN =Ey +[ (K)o (A(RQ)m— @)} -
: (36)
Ey =Ey J{ (K)o 2 (A(RQ)m-0(I+ 1))} -

nr—ht

1/2
E" =E" { <K>(n/m) A(XQ)m)}

By substituting Eqgs. (36) and (35) into Eq. (34), the new mass spectrum of the HLM systems in 3D-ENRQM
symmetries under the PDM-ID(H-TP) models for any arbitrary radial and angular momentum quantum numbers becomes:

<E,f'c’ >np For spin —1
M:: = M:; + e \172 . . , (37)
(<K>(nlm) ) |: (T&+ Zg}) m):| For Spin — 0

with <E:C’> mean physically the value of the nonpolarized energy which takes into account different all spin values:
np

nr—ht 12
ht _ (< >(nlm) )
(EL), =5 h(@.z.m.). (38)

and /(©,7,x,m,l) is given by:

h(©,7, 7,m,1) :H((rm ;(Q)m+®1/z)J " +[ (N ZQ)m—@))J " +[ (N ;(Q)m—@(l+l))] ”J . (39)

It is important to notice that the new function #% (G), T, x,m,l ) describe the topological defect de deformation space-
space because it disappears in the absence of the non-commutativity parameters (®,z, y ). The LHS of Eq. (37) is the
spin-averaged mass spectra M of HLM under the PDM-D(H-TP) modes in 3D-NRQM symmetries and the RHS is
produced with the effect of deformation space-space which is sensitive to the atomic quantum numbers (n,l 5 JsS, m) and
potential depths (V,S,,V;, S, ).

7. CONCLUSIONS
This paper presents an approximate analytical solution of the 3D-ERQM and 3D-ENRQM symmetries with PDM-
SVID(H-TP) and PDM-ID(H-TP) models using the parametric Bopp shift method and standard perturbation theory.
Under the deformed features of space-space, we found new bound-state energies that appear sensitive to quantum numbers

(n, j,l,s,m), the mixed potential depths (VO,SO, V., S, ) , the rest and perturbed mass (mo’ml) , the screening parameter's

inverse & , and the noncommutativity parameter(@, T, ;() . Moreover, the nonrelativistic limit of the studied potential in

3D-ENRQM symmetries has been investigated. The modified spin-averaged mass spectra of HLM in both 3D-NRQM
(commutative space CS) and 3D-ENRQM symmetries were determined by applying our results of the new nonrelativistic
energies that represent the binding energy between the quark and antiquark. We have treated certain significant particular
instances that we hope will be valuable to the specialized researcher such as the improved GHP and the improved WSP
in the context of 3D-ERQM symmetries. It is shown that the PDM-SVID(H-TP) model in a 3D-ERQM has a behavior
similar to the dynamics of bosonic particles and bosonic antiparticles under the PDM with PDM-SVD(H-TP) in a 3D-
RQM symmetry (CS) influenced by the effect of constant magnetic field and a self-rotational which can be similar to the
behavior of coupling to spin-orbit. As a result, the dynamics of PDM-SVID(H-TP) models in a 3D-ERQM symmetry
under the DKGE are similar to the dynamics of a particle in a 3D-RQM symmetry under the Duffin-Kemmer equation
which describes bosonic particles with spin-1.
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PEJIATUBICTCBKI CUMETPIi BO3OHHUX YACTUHOK I AHTUYACTUHOK HA ®OHI O3UIIIAHO-
3AJIEXKHOI MACH 1J11 BIOCKOHAJIEHOI'O TE®OPMOBAHOI'O XIOJIBTEH ILTIOC HOKPAIIIEHOT'O
MNOTEHLIAJY I'MEPBOJITYHOI'O TUITY Y CUMETPISAX 3D-EQM
Abapeapmamkug Maiipeme
Daxynemem @izuku, Ynisepcumem Mcina, Jlabopamopis PMC, Yuigeepcumem Mcina, Anxcup
Po3Bs3anns 3B’s13aH0rO0 cTany nedopmosanoro piBHsSHHS Kimiena-['oppona Oyiu Bu3HAa4eHI B CHMETPIsSX TPUBUMIPHOI pO3MIMPEHOT
penstuBicTcbkoi kBaHTOBOI MexaHiku 3D-ERQM 3 BukopucTaHHAM mo3umiiiHo-3anexxHoi mMacu (PDM) 3 HepiBHHM CKaJISIpHHM i
BEKTOPHHUM IIOTEHLIaJIOM Julsl BIoCKoHaneHoro nedopmosanoro Hulthén mmroc mokpaineHoro moreHmiany rinepOONiYHOrO THITY
(PDM-SVID(H-TP)). PDM 3 HepiBHUM CKaJISIPHUM i BEKTOPHUM HOTeHHianoM it Mozenei Hulthén miroc rinep6onivnuii moTeHmian
nedopmoanoro tumy (PDM-(SVH-DTP)), a Takoxx koMOiHawis pafialbHUX 4YICHIB, sSKi HOB’s3aHi 3 L@ , 10 HOSCHIOE B3aEMOJIII0
(i3MIHOr0 0COOJIMBOCTI CHCTEMH 3 TOMOJIOTIYHUMH JedopMamisMu npocTip-npoctip. HoBi pensTHBICTCHKI BlIacHi 3HAYEHHS €Hepril
OynH OTpHMaHI 3a JOIOMOTOI0 MapaMeTPUYHOr0 MeToxy 3cyBy bomma Ta cranmapTHoi Teopii 30ypeHb, ska JyTJIMBAa O aTOMHHX

KBaHTOBMX umcen ( j,/,s,m ), 3MilIaHUX NOTeHUianbHuX rmbuH (V,,S,,V,S; ), cnokoto Ta 30ypeHoi macu (mu_ml) , TapameTpa

eKpaHyBaHHsI, 3BOPOTHOTO MApaMeTpy ¢ , i mapaMeTpiB HEKOMYTaTHBHOCTI (G), T, ;() . Y pamkax cumetpiii 3D-ERQM mu po3risiHym

MICBHI BOXJIMBI OKpPEMi BHUIIAJIKH, SIKi, IK MU CHOAIBaeEMOCS, OyIyTh IIHHUMH JIJIS TOCIITHUKIB-CIIEIiaTicTiB. MU TaKoX PO3TIISHYIIH
HEepEeIITUBICTCEKY MEXY Ta 3aCTOCYBAJIM HAIlll OTPUMaHI pe3yJIbTaTH JJIsl CTBOPEHHS Mac-CHEeKTPIB BXKHX 1 JIeTkuX Me30HiB (HLM),

Takux K cc Ta cc 'y pamkax PDM-SE 3 mokpamennmu gedhopmoBannmu monessimu Hulthén mmoc mokpaimenoro rinep6osigHoro
noreniany (PDM ID(H-TP)). Kosmu Oymno 3acTocoBaHO TpH OIHOYACHI OOMEKEHHS (@,z’, ;() , MH BiJJHOBWJIM HOPMAJIbHI
pensITUBICTCHKI pe3ynbTati B nitepatypi ( 0,0,0 ) ans moxeneit PDM ID(H-TP).

Kurouosi cioBa: piBusiaHs Kiiena-I'opiona, nedopmosanmii XyibTeH 1miroc qeopMoBaHuii rinepOosiyHuil HOTeHIial, BaKKi-JIerKi
Me30HH, HexoMyTaTHBHa KBaHTOBA MeXaHika Ta MeTo 3cyBy bomma, KaHoHiYHa HEKOMYTaTHBHOCTh



