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The study of thermal convection in porous media saturated by nanofluid and microorganisms is an important problem for many
geophysical and engineering applications. The concept of a mixture of nanofluids and microorganisms has attracted the interest of
many researchers due to its ability to improve thermal properties and, as a result, heat transfer rates. This property is actively used
both in electronic cooling systems and biological applications. Thus, the purpose of this research is to study biothermal instability in
a porous medium saturated by a water-based nanofluid containing gyrotactic microorganisms in the presence of a vertical magnetic
field. Given the presence of an external magnetic field in both natural and technological situations, we were motivated to perform this
theoretical research. Using the Darcy-Brinkman model, a linear analysis of the convective instability has been considered for both-
free boundaries, taking into account the effects of Brownian diffusion and thermophoresis. The Galerkin method was used to perform
this analytical study. We have established that heat transfer is accomplished by stationary convection without oscillatory movements.
In stationary convection regimes, metal oxide nanofluids (4/203), metallic nanofluids (Cu, Ag), and semiconductor nanofluids
(TiO2, SiO:2) are analyzed. Increasing the Chandrasekhar and Darcy numbers improve system stability significantly, but increasing
porosity and modified bioconvection Rayleigh-Darcy number speed up the beginning of instability. To determine the transient
behavior of heat and mass transports, a non-linear theory based on the representation of the Fourier series method is applied. In small
time intervals, the transitional Nusselt and Sherwood numbers exhibit an oscillatory character. The Sherwood numbers (mass
transfer) in the time interval reach stationary values faster than the Nusselt numbers (heat transfer). This research might help with
seawater convection in the oceanic crust as well as the construction of biosensors.

Keywords: nanofluid, bio-thermal convection, Lorentz force, thermophoresis, Brownian motion, gyrotactic microorganism,
magnetic field
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1. INTRODUCTION

Many theoretical and practical study in fields such as soil mechanics, groundwater hydrology, petroleum
engineering, industrial filtration, powder metallurgy, nuclear energy, and so on have been based on the study of the
physics of flow through a porous media. Such flows through porous media are of great interest to petroleum engineers
and geophysical fluid dynamicists. The problem of thermal instability of a liquid layer in a porous medium is of special
importance. Ingham and Pop [1] as well as Nield and Bejan [2] provide excellent reviews of the most of the studies on
convection in porous media. The issues of fluid flow and heat transfer in rotating porous media have been studied in
detail in a recent review by Vadasz [3].

Objects with dimensions of less than one hundred nanometers have developed as a result of the progress of
nanotechnology. Such nanosized objects are called nanoparticles. Choi [4] proposed suspending these nanoparticles in a
base fluid (known as nanofluid) to improve heat conductivity and convective heat transfer of the base fluid. Thus,
nanofluids began to be intensively used in industry, such as coolants, lubricants, heat exchangers, microchannel
radiators, and many others. Buongiorno [5] extensively studied convective transport in nanofluids and concentrated on
explaining the additional heat transfer increases observed under convective flows. Tzou [6] used Buongiorno transport
equations to study the onset of convection in a horizontal layer uniformly heated from below for a nanofluid and
discovered that due to Brownian motion and thermophoresis of nanoparticles, the critical Rayleigh number is much
lower, by one to two orders of magnitude, than that of an ordinary fluid.

Because of the remarkable characteristics of nanofluids in heat transfer phenomena, research involving nanofluids
in a porous media has become required. Kuznetsov and Nield [7]-[8] used the Brinkman model to investigate the onset
of thermal instability in a porous media saturated with a nanofluid, taking into account Brownian motion and
nanoparticle thermophoresis. They discovered that the presence of nanoparticles may significantly lower or increase the
critical thermal Rayleigh number, depending on whether the basic nanoparticle distribution is top-heavy or bottom-
heavy. Further, Bhadauria and Agarwal [9] and Yadav et al. [10] extended the thermal instability problem by including
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the Coriolis force term (rotation) in momentum equations for porous and non-porous materials, concluding that
including the Coriolis force component made the overall system more stable. Bhadauria and Agarwal [9] made a
nonlinear investigation of nanofluid convection in a rotating porous layer in terms of Nusselt number. Chand and
Rana [11] used the Darcy-Brinkman model to investigate the influence of rotation on nanofluid convection. For
stationary convection, an equation for the thermal Rayleigh number was found. Gupta et al. [12] studied the onset of
convection in a horizontal nanofluid layer in the presence of a vertical magnetic field and discovered that stability
increases as the magnetic field value increases. The effects of a magnetic field on a horizontal layer of nanofluid have
several significant characteristics, making it necessary to explore the effects of a magnetic field in a porous medium.
Ahuja et al. [13] used the Darcy-Brinkman model to explore the thermal convection of a nanofluid layer in the presence
of an applied vertical magnetic field saturated by a porous medium for both-free, rigid-free, and both-rigid barriers. The
effect of an externally applied magnetic field on the stability of a binary nanofluid layer in porous medium is considered
by Sharma et al. [14]. It was established that semiconducting nanofluids are found to be more stable than metallic
nanofluids. Furthermore, porosity destabilizes the layer while solute difference (at the boundaries of the layer) stabilizes
it and the magnetic field stabilizes the fluid layer system significantly. Yadav et al. [15] investigated the effect of Hall
current on the criterion for the onset of MHD convection in a porous medium layer saturated by a nanofluid. They were
shown that the increase in the Hall current parameter, the Lewis number, the modified diffusivity ratio, and the
concentration Rayleigh Darcy number is to hasten the onset of convection while the magnetic Darcy number, the
porosity parameter and the Darcy number have stabilized on the onset of convection. Ahuja and Gupta [16] investigated
the onset of thermal convection of a porous nanofluid layer under the combined influence of rotation and magnetic field
using the Darcy-Brinkman model. As shown in[16], the stability of the system enhances with the rise in Chandrasekhar
number and Taylor number whereas it falls with the rise in porosity. According to [16] silver nanoparticles stabilized
water-based fluids better than copper nanoparticles, while 7i0, nanoparticles in semiconductors improve system

stability better than SiO, nanoparticles.

A detailed review of the current state of the problem of MHD convection in nanofluids presents in [17]. The
article [18] discusses a new review devoted to the subject of Rayleigh-Benard instability in a nanofluid. In addition to
the above, a relatively new area of research: bioconvection inside a nanofluid is of great importance in applied problems
of creating biosensors, microdevices for measuring the toxicity of nanoparticles. Bioconvection is the movement of a
fluid medium caused by a directed flow of microorganisms that results in a redistribution of the medium's density. As a
result, hydrodynamic processes in the medium emerge, analogous to natural convection in the presence of temperature
gradients. Bioconvection takes into account the movement of bacteria and algae, with microorganisms having a higher
density than water. Microorganisms can move due to gravity forces (gyrotactic microorganisms), oxygen concentration
gradients (oxytactic microorganisms), light radiation (phototaxis microorganisms), nutrition gradients (chemotaxis
microorganisms), and other factors. The number of self-propelled microorganisms can be quite considerable, varying
from 107 cm™ in a low concentratin regime to 10''cm™ in a turbulent regime with almost densely packed
microorganisms. A linear theory of the stability of bioconvection of gyrotactic microorganisms in a finite depth layer of
an ordinary fluid was developed by Pedley et al. [19]-[21]. In these works, the criteria for the onset of a bioconvective
flow were determined. Avramenko [22] based on the Lorenz approach [23] a nonlinear theory of bioconvection for
gyrotactic microorganisms in a layer of ordinary liquid was developed. In [22], the boundaries of various hydrodynamic
regimes of two-dimensional bioinvection were determined.

Unlike microorganisms, nanoparticles are not self-propelled, move due to Brownian motion and thermophoresis,
and are driven by fluid flow. Kuznetsov's [24],[25] works are devoted to the interaction of nanofluids with
bioconvection. The paper [24] investigated the possibility of oscillatory instability in a nanofluid suspension containing
oxitate bacteria. In [25] analyzes the combined influence on the onset of biothermal convection in suspension,
nanoparticles, gyrostatic microorganisms, and algae. A linear analysis of the instability is performed, allowing the
bounds of the oscillatory instability to be determined. The destabilizing effect of Brownian motion and thermophoresis
of nanopatrticles, vertical throughflow, and gyrotactic microorganisms on biothermal instability was discovered by Saini
and Sharma [26].

Because of the practical nature of the problem, a significant number of works (for example, [27-31]) have recently
arisen that investigate two-dimensional magnetohydrodynamic flows and the processes of heat and mass transfer of a
watery nanofluid, including gyrotactic microorganisms. The effects of buoyancy, Brownian motion, thermophoresis,
and chemical reactivity on bioconvection of nanofluidic gyrostatic microorganisms are investigated in these papers. The
aim of using microorganisms is to stabilize nanoparticle suspensions created by bioconvection caused by the combined
effects of buoyancy and magnetic field forces.

There are a lot of publications on the effect of gyrotactic microorganisms on nanofluid flows in bounded porous
media. The study of biological processes in porous media has recently rapidly progressed. Kuznetsov, Nield, and
Avramenko [32-36] made a significant contribution to the dynamics of biological processes in porous media. A linear
analysis of biothermal convection based on the Darcy-Brinkman model in a suspension of gyrotactic microorganisms in
a highly porous medium heated from below was carried out in [37]. The following conclusions [37] were drawn there: a
suspension containing faster-swimming cells is more unstable; gyrotaxis contributes to the development of
bioconvection instability; the modified Darcy number associated with the effective viscosity stabilizes the slurry.
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Recently, the flow of boundary layers of natural convection nanofluids over a vertical flat plate embedded in a
saturated porous Darcy medium containing gyrotactic microorganisms was studied in studies[38]-[40]. The effects of
dimensionless parameters, such as the Lewis number of bioconvection, the Rayleigh number of bioconvection, the
Peclet number of bioconvection, the Brownian motion parameter, the buoyancy coefficient, the thermophoresis
parameter, the index of change of the power law, and the Lewis number, on the flow characteristics of the
bioconvection process are analyzed during a numerical solution.

Despite significant progress in the study of bioconvection in porous media, the impact of gyrotactic organisms on
thermal instability in a layer of a porous media saturated by a nanofluid under the action of a magnetic field has yet to
be investigated. Of particular interest is the study of the linear and nonlinear stages of bio-thermal convection in a
porous medium saturated with nanofluid for various types of nanoparticles such as metal, metal oxides, and
semiconductor nanoparticles under an external magnetic field. The aim of this paper is to investigate the
abovementioned problem.

The content of the paper is presented in the following sections. The Introduction (section 1) presents a review of
the literature on this issue. In section 2, we describe the problem statement and obtain evolution equations in the
Boussinesq-Oberbeck approximation in a layer of a Darcy-Brinkman porous medium saturated by an electrically
conducting nanofluid with gyrotactic microorganisms. In section 3, we obtained equations for the basic state and small
perturbations in dimensionless form. The equation for the vertical component of the perturbed velocity was obtained
using the elimination of variables technique. This equation is supplemented with conditions for free-free boundaries. In
section 4, we derive a general dispersion equation taking into account the effects of a vertical magnetic field, gyrotactic
microorganism bioconvection, Brownian diffusion of nanoparticles, and thermophoresis. The oscillatory and stationary
regimes of mixed convection are considered. In section 5, we study the non-linear theory based on the representation of
the Fourier series method used to find the temporary behavior of heat and mass transports. In section 6, we analyze the
linear regime of stationary convection and calculate the expressions for heat and mass transports. In section 7, we
perform a numerical/graphical analysis of the development of stationary convection carried out for oxide metal,
metallic, and semiconductor nanofluids. Convective heat and mass transfers in terms of Nusselt number Nu(¢) and

Sherwood number Sh(¢) were calculated. The Conclusions present the main conclusions of this paper.

2. STATEMENT OF THE PROBLEM AND BASIC EQUATIONS
Let us consider an infinite horizontal layer of incompressible electrically conductive nanofluid containing
nanoparticles and gyrotactic microorganisms in a homogenous porous medium. Initially, a homogeneous porous layer
with a thickness of / is assumed to be at rest. Heating from below the layer causes disturbance, where T,,7, are the

u

temperatures and ¢,,4, (4, > ¢,) are the volume fractions of nanoparticles at the lower and upper boundaries,

respectively (as shown in Fig. 1). The presence of nanoparticles is considered to not affect the direction and speed with
which microorganisms swim. Physically, this is possible if a flow generated by bioconvection exists for a small
concentration of nanoparticles. The terminology for nanoparticles are written using Buongiorno's [5] theory, whereas
those for gyrotactic microorganisms are written using Pedley's [19]-[21] approach.

_, Z-axis
H A

« nanoparticles Q microorganisms

T T Td y > X-axis

Heated from below

Figure 1. Geometry and coordinate system of the problem
Fig. 1 depicts the problem's geometry. We used the Cartesian coordinates (x,y,z) with the z-axis points
vertically upward. The gravitational force g =(0,0,—g) acts vertically downwards, while the magnetic field
I:I0 =(0,0,H,) acts vertically upwards. 170 is the Darcy velocity, which is related to the nanofluid velocity V as

I7D =&V . The physical model of our problem consists of the following assumptions:

* All thermophysical characteristics are constant except for density in the buoyant force (Boussinesq
approximation).
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* Because the fluid phase, microorganisms, and nanoparticles are in a condition of thermal equilibrium, the heat
flow may be described using a one equation model.

* Nanofluid is incompressible, electrically conducting, viscous, laminar, and nanoparticles are non-magnetic
spherical particles.

» Each boundary wall is assumed to be impermeable and perfectly thermal conducting.

* The porous material is completely saturated with a nanofluid in which microorganisms can swim.

*» The material's pores must be big enough to accommodate biological organisms and their movement.

* The solid porous matrix does not absorb microorganisms, and each one has the same volume and form, as well as
swimming at the same speed.

* The heating from below has no influence on the cells' gyrotactic activity and does not kill them.

According to the above assumptions, the bioconvective motion of gyrotactic microorganisms in a porous medium
saturated with nanofluid in the presence of a magnetic field will be described using the Darcy-Brinkman model. Let's
suppose that a suspension of swimming microorganisms and nanoparticles is incompressible, and therefore

V. 7, =0, (M

The conservation equation for the nanoparticles given by

%(V_D. v] 5= Dyg Dovir, ®
ot & T

The conservation equation of cells is given by [20, 32,33]
on ) ~
5——dzv(nVD +nWCl—DmVn)), 3)

The momentum equation can be written using the Boussinesq approximation [7] as

ov ~ . L _
P - py T, - B+ Ee (- V)E + g, + (- §)py(1- BT ~T,)]+ E(Jp)Vn )
& Ot K 47

here the buoyancy force is made up of three different components: the fluid's temperature change, the distribution of
nanoparticles (nanoparticles are heavier than water), and the concentration of microorganisms (microorganisms are also
heavier than water). In equation (4), the external magnetic field is taken into account with the help of an additional
force, the Lorentz force, which affects the movement of the electrically conductive nanofluid.

The thermal energy conservation equation is

(pe), %+ (pe) V- VT =k, VT +(po), [DBV¢- vr+p, YL VT - vr )

1

The inductive magnetic fields caused by convective flows of an electrically conductive nanofluid is described by
the following equations [41]
o0H
—4

> {V—D- VJH—(Hv)vaZH (6)

& &

V- H=0, (7)

here p=d¢p,+(1-9)p, is the nanofluid density, p, =dp, +(1-¢)p,, is the nanofluid reference density, p, and p,
are the density of nanoparticle and base fluid, respectively. p,, is the base fluid density at the reference temperature
T, ¢ is the volumetric fraction of nanoparticles. D, and D, denote the Brownian diffusion coefficient and
thermophoretic diffusion, respectively. (pc),,(pc),,(pc), are fluid heat capacity, nanoparticles heat capacity and
medium heat capacity, respectively. n is the concentration of microorganisms, dp is the density difference between
microorganisms and a base fluid: p, —p,, V is the average volume of a microorganism, D, is the diffusivity of
microorganisms. We assumed that random motions of microorganisms are simulated by a diffusion process. WJ is the

average microorganism swimming velocity (W, is constant, / is a unit vector of movement of microorganisms). P is

the pressure, S is the thermal expansion coefficient, € = (0,0,1) is a unit vector in the direction of the axis z . ¢ is the
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porosity of the porous medium, K is the permeability of the porous medium, ;1 is the effective viscosity, £, 1 and
4, are the viscosity, magnetic viscosity and magnetic permeability of nanofluid, respectively.

We assume that the temperature and volume fraction of nanoparticles have fixed values at the boundaries of the
porous layer.

w=0, T=T,, ¢=¢,, J-é=0, at z=0 ®)

w=0, T=T, ¢=¢, J-€=0, at z=h, )

=_ W + . . .
where J =n—=+nW,I —D,Vn is the flux of microorganisms.
&

Let us introduce the following non-dimensional parameters

* * * Tk * * * iyt h * t
(X sV .z ):MDVD(M ,V ,W):VD(U,V,W)—,t = 62{713
a, h“o
. PK’ . k, ’ gz(pc)m’ n*:i’ (10)
ua, (pc), (pc), N,
~. H . . T-T
PP A T i
Ho ¢u ¢d Td_Tu

where IV, = const is average concentration of microorganisms in the layer. Using expressions (10) and omitting the

asterisks, we get the following system of dimensionless equations

V-7, =0, (11

184 |V, 2 Ny
=—+| = V|¢g=—Vop+—=VT, 12
pt [8 ]qﬁ VT (12)
la—n——v V +P—nl—LVn (13)
o Ot Lb Lb

! 6VD =-VP+D, VZV V —éR —eR ¢— e—bN+

V ot L, ’ (14)

+éRaT + Qﬁ(ﬁ - V)H
Pm

aa—f+(I7DV)T:V2T+NBV¢ VT + zB(VT) (15)
loH [VD JH (H - V)—+PFVH, (16)
o 6t & Pm

V- H=0. (17)

In Egs. (11)-(17), we introduced the following dimensionless parameters:

P 1K .
) =& ,u(p )y is the modified Vadasz number, D, = # > is the Darcy number, Pr= A is the Prantdl
D, u(pe), h PoC
number, Pm = M is the magnetic Prantdl number, L, = G is the nanoparticle Lewis number, L, = G is the

10077 DB Dm
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2
#H K is the Chandrasekhar-Darcy number, R, :M

4mun uD,
+p,(1- hK
bioconvection Rayleigh-Darcy number, R = Lpy9s + £y (1= 4.)N(EHK) is the basic density Rayleigh-Darcy number,
yaﬂl

bioconvection Lewis number, Q = s the

- - hK _
R = (0, =G, ~4.)¢ is the concentration Rayleigh-Darcy number, Ra _ PughKpd, = 1,)

n
ﬂ am lLl a}ﬂ

£(pe), (¢, —¢,) is the modified nanoparticles density, N, - D@, =1
(pc), DT, (9, ~4.)

is the Rayleigh-

Darcy number, N, = is the modified

diffusivity ratio, Pe = D‘ is bioconvection Peclet number.

Eq. (14) has been linearized using a small temperature gradient in a dilute suspension of nanoparticles and
microorganisms using the Boussinesq approximation. Equations (11)-(17) are supplemented with boundary conditions
in non-dimensional form:

w=0, T=1, ¢=0, Pen:@, at z=0, (18)
dz
dn
w=0, T=0, ¢=1, Pen=—, atz=1. (19)
dz
2. EQUATIONS FOR PERTURBATIONS

Let's start with the assumption that the fluid layer is at rest. The physical system is then moved slightly out of its
equilibrium position. We assume that all variables in Eqs. (11)-(17) can describe the sum of the steady and perturbed
components:

V.=0, P=P(z)+p, T=T,()+T, $=4,()+4, n=n,(2)+n, [=é+m. (20)

The steady profiles of temperature 7,(z) and the volume fraction of nanoparticles ¢, (z) are found from the

solutions of the equations

dZT;) +&d¢h d]-;) +NANB [dn]z :0’ (21)

dz* L, dz dz L, E

&g, 4T,

dz* 1 dz? -0

Taking into account the experimental data for most nanofluids [5], a good approximation of the base state (21) is a
linear dependence on z for 7, (z) and ¢,(z) (see, for example, [16]):

L(z)=1-z ¢,(z)== (22)
The pressure distribution in the ground state satisfies the equation
dF, R
LIACH —-R,-R $,(z2)——LN,(z)+ RaT,(z), (23)
dz L,

from which the explicit form F,(z) may be found by integration. The stationary profile of the concentration of

microorganisms #,(z) is determined by the following expression [19]

Peexp(zPe)

exp(Pe)—1"~ %)

n,(z)=N,:

For the case of small Peclet numbers Pe, it follows from (24) that n(z) = N, = const . Following the approach as

in article [22], to simplify the, we will focus on this case.
According to publications[19],[ analysis 32], the equation for the perturbation of a unit vector indicating the
direction of swimming of microorganisms has the following form:
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7 =BT -BEj+0- G, (25)

where 7/ and ; are the unit vectors in the x- and y -directions, respectively. B =(3;1/ p.gd)a, | h) is a

dimensionless parameter characterizing the reorientation of microorganisms under the action of a gravitational moment
against viscous resistance, d is the displacement of the center of mass of the cell from the center of buoyancy. In Eq.

(25), the parameters ¢ and & inthe x - and y -components of vector i are

NG ou_
é’_ (1 0(0) Ox +(l+0!0) oz ) (26)

ow ov
=(l-a,))—-(1+a,)—.
§=(-a) o (1+a,) 5

o, is the cell eccentricity which is given by the following equation [19,32]:

2 2

r —r .

— _max min
%= 2 @7n

rmax min

where 7 and 7

max min

are the semi-major and semi-minor axes of the spheroidal cell.
Taking into account Egs. (25)-(26), we get the following equation for the perturbation of the cell number density:

' ' 2. 2. 2
100 Pedn  poG| (14a) T+ (1-a)| 22+ 20 | = Loy, (28)
c ot L, dz dz ox~ Oy L,

where G=D, B/h* is a dimensionless orientation parameter [22].

After substituting (20) into the equations (12)-(16), we get equations for the variables u,v,w,T,¢,b , which are
also linearized. Further, the analysis of equations for the perturbation will be investigated by the method of normal
modes, assuming that the perturbing quantities have the following form:

ik Xk, y+y1)

[u,v,w,T,¢,n,b]1=[U(2),V(2),W(z),0(z),D(z),N(z), B(z)]e 29)

where k .k, are the wave number along the X and y directions, and a = [k + kf is the horizontal wave number of

the disturbances. The growth rate parameter is denoted by y .

Using (29), we get the linearized equations in dimensionless form after a few simple but cumbersome
transformations:

2
[Da(DZ —az)—g—lj (D* —az)W—azRa®+a2Rn(D+a R, N+@D(D2 -a’)B.=0, (30)
a b m
N,
[Dz—az—y+%(1—2NA)D] —L—BDcD+W=0, 3D
L L
[Dz—az—ny<I>+NA(D2—a2)®—€—W—0, (32)
o &
1 2 ,, Pe /4 2 2
L—(D ~a )—L—D—Z N+ PeG((1+a,)D* —(1-a,)a’)W =0, (33)
b b
[ﬂ(Dz—az)—éj B +2" . (34)
Pm o) £

The system of equations (30)-(34) is reduced to one equation for /¥ using the elimination of variables technique
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T T T 2 2 2p. 7 7.7 7 N
LLoLsLsLy (D —a )+a RaLsLsLy| Ly——2D|+
£
1 7 5 | 7 L 2 a7 Ng
+a’R LgLy| L=+ N,(D"—-a’)| Ly——=D | | - w=0, (35)
&£ &
R A~ - An A
a2t -2 1R 1 (D2 )
| , &Pm ]
where the operators are
A~ ~~ N ~ N,N
L=1LrLy +L—B(l—2NA)L¢D+%(D2—aZ)D,
Zr=132—a2—7/, gz=PeG((1+ao)D2—(l—a0)a2),
7 2 2 -1 7 2 2 L
Lp=D,(D"—a’)-yV, -1, Ly=D"—-a —y=,
o
- 1 P ~ P
Iv=—(D-a)-p-L L, =D -a*)-L.
L, b o Pm c
Eq. (33) is supplemented with boundary conditions for free boundaries
W=DW=0 at z=0,1. (36)

Equation (35) describes bioconvection in a layer of a porous medium saturated by an electrically conducting
nanofluid in an external vertical magnetic field. Further, we will use a single term approximation of Galerkin method to
solve (35).

3. OSCILLATING AND STATIONARY CONVECTION REGIMES
The eigenfunctions W of equation (35) take the form of a simple harmonic for free boundary conditions (39):

W=W,sinzz, (37)

where W, is constant. By substituting (40) for (38) and integrating across the layer thickness z=(0,1), the
characteristic equation is obtained, with Rayleigh number Ra as the eigenvalue:

Ra— (ﬂZ +a22)FDFT . OPr 1:7 2 (ﬂz +a2) (1+PN2) B
a EPmaT, PNl
¢
) (3%
R [L [?J Folr
_ﬁ(fFTJFNA(#Jraz)JFPN‘ (1—2NA)J— o 7
1 T _
MY

where

U,=D, (7" +a)+yV,'+1, T, =z’ +a’+y, T, :Li(n2+a2)+£,
b (e

N, P eh, N
P, =l p =1 =N+ (2 +a) |

LoeLT, r,L )

r, :1%(”2 +a2)+%, T, =PeG((1+a,) 7" +(1-a,)d’).

. . N, N,
For most nanofluids, the quantities PeL—B,Pe—B are small (N, =7.5- 107, L, =5000 see, for example, [5]),

&

e

and expression (38) becomes simpler
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R
*+a’)r,r Pr T R (L [Lb]r“rT
+
Ra=E O OPr Ty ooy Rel Lep o N (22 ey | AL (39)
a EPmaT, I,\e r,

In the equation (39) the growth rate y of perturbations is generally complex y =y, +iw,. It is obvious that the
system is stable if y, <0 and unstable if y, > 0. Let us determine the stability boundary for monotonic @, =0 and
oscillatory @, # 0 perturbations. At the stability boundary (neutral states), y, =0; therefore, making the substitution
y =io, in Eq. (39), we find

Ra=Ra" +ioRa", (40)

where Ra"” and Ra" are the real and imaginary parts of the dispersion equation for Ra :

2
R (r):<72'2+a2) D (22 +a® )+ 22 +a2) =2V OPr 72'2(71'2+a2). ﬁ(” +a2) " o _
“ a’ (( “(ﬂ ta )+ )(ﬂ +a) @ )+8Pm a’ Pr’ @
2 2(7z2+a2) +—5
m c
R L )
<ﬂz+az>zﬂ[f[<ﬂ”a2>”%}+NA<’*“*>2J “
~2
o
(7Z2+a2) + ifb

_R 2, 2 2 _ 2)). o

aB(ﬂ +a +ao(7r a )) (”2+a2)2+a)izLi

o
where Ra, = R, PeG is the modified bioconvection Rayleigh-Darcy number.
2, 2 2( 2, 2)? S-PIJ
Ra(i):(” ta )(D <7r2+a2)+1+V'](7z2+a2))+QPr 4 (” ta ) ) oPm _
a’ ‘ ‘ gPm a’ Pr’ @
F (7[2+a2) +=5
(42)
RL (7 +a*) | o(o-L)-eN, _RaB(iz2+a2+a0(7z2—a2)){g_LbJ
272 - 272 -
(72’2+a2)2+w;~_f" €o (ﬂ2+a2)2+wéf” oLy

Since the value Ra is real, then the imaginary part in (40) must vanish. In this case, the following situation
@, =0 or Ra" =0 is possible.

4.1. Oscillating convection regime
In the case of an oscillatory perturbation @, #0 (Ra"” =0), we find the critical Rayleigh-Darcy number for
oscillatory instability using the formula (41)

_(@+d) opr ' (7° +a*)

Ra,, p ((Da (7[2 +a2)+l)(7z2 +a2)—0)[2Va‘1)+ng pe 5}’2 . Ly CUI.Z —
e
i . (43)
2 2 a)i Lb
~ R i{(ﬂ2+a2)2+w’?}e] N, (7r2+a2)2 —RaB(ﬂ2+a2+a’0(7r2—a2))- (77 +a ) + g_z
BT : (v} o
~2 pe
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and the frequency of neutral oscillations @ = @, , satisfying the following equation:

i

6 4 2
Ko[gj +Kl(gj +K2(2J +x,=0, (44)
o o o

where the following notation has been introduced:

2 2
5 =g BL, p=C 0 (G a0, + 1) +1),
_Ofr (x> +a*)’ oPr—Pm

ePm a’ oPm

B

P 2
&= +a'y [Li v +P—;2LEL2] FOEL -+l g

R (7’ +d*)L, ~ ~ Ra,(c—L
_R@ AL S ry-eny, =R o 20y,
Eo oL,

n

K, =p(7r2+a2)4[1+§r22 (L§+L§)J +q(7° +a2)2(L§+L§)—
m

2 a2 Pr’ Pr’
_(72' +a ) [f;l{l-l-sz Lbj—i_rb’{l—i—ﬁl’e

2 4 2
+q(7r2+a2) —~

K3:p(72'2+a2)5 (ﬂ2+a2)4(rn+r5).

2 2

Pm

Equation (44) is cubic in @, so it can lead to more than one positive value of @’ for fixed values of the
parameters Da,Va,Q,Pr,Pm,E,Rn,LB,N L, ,Ra, and ¢,. If there are no positive solutions to Eq. (44), then
oscillatory instability is impossible. Our numerical solution of Eq. (44) for the range of parameters considered here

gives only a negative value of @’, which indicates the impossibility of an oscillatory neutral solution. As a result, we'll
go through the stationary convection regime in significant detail.

4.2, Stationary convection regime
The marginal state will be characterized by @, = 0, and the dispersion relation (41) reduces to

2
Ra, = aLz[Da(ﬂ2 +a’) + (7t +a’) +_7T€Q (* +a2)] -
(45)

L
-R, ( <+ NAJ —R,)PeG(;r2 +a’ +a, (7r2 -a’ ))
&£
The last term in (45) describes a new effect of the influence of the motion of gyrotactic microorganisms on thermal
instability. Thus, we have obtained a new way to control magnetic convection in a porous medium saturated with
nanofluid using bioconvection of gyrotactic microorganisms.
Let us now continue to a more exhaustive analysis of the equation (45). The critical wave numbers for the onset of
convection are found from the condition
ORa,
[ "’j =0 (46)

oa

We get an equation for determining a, by substituting the expression (45) into the condition (46). This equation has a
rather cumbersome form, so we do not present it here. However, we can conclude that the critical wave number «,,
does not depend on the nanofluid parameters (R, ,L,,N,), but depends on the dimensionless parameters

&,D,,0,R,,Pe,G,a,. We will be doing a numerical study of the dispersion equation (45) using the physical
characteristics of the A4/,0, -water nanofluid from [5]:

=0. , P = g/m , u=10"Pas,
¢, =0.001, p, =1000kg / ’ 107 P, 47)
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p, =4 10kg/m’, a,=2-10"m* /s, f=3.4-10"1/K,
D,=4-10"m"/s, D,=6-10"m" /s,

(pc), =3.1- 10°0 /m’*, (pc), =4 10°J /m’,
T,-T,=1K, T,=300K, L, =5000, p, =4- 10°kg /m’* .

The above-mentioned parameter values give the following dimensionless parameter values: L, =5000,Pr =35,
and N, =5 . The concentration Rayleigh-Darcy and bioconvection Rayleigh-Darcy numbers can be changed by varying

the distance between the borders and the nanoparticle and microorganisms volumetric concentration. For a complete
numerical analysis, we need the estimated parameters of gyrotactic microorganisms, for example, for the alga
Chlamydomonas nivalis [20]:

D, =5-10"cm* /s ,N, =10°cm™, (6p)/ p, =5+ 107, (48)
V=5-10"em’, W, =107cm/s.

Next, we will fix the value for the parameter R, as R, =0.122 and R, as R, =1.2- 10°. The values of the parameters
Pe and G change in the neighborhood of Pe=0.1 and G =0.01[34]. The cell eccentricity can change in the range
a, €[0,1][20].

In addition, we will be doing a numerical study of the dispersion equation (45) using the physical characteristics of
nanofluids from metallic and semiconductor nanoparticles. Yang et al. [42] found that the physical characteristics of
nanofluids change with the form, size, and volumetric percentage of nanoparticles. Metallic nanofluids, as the name
implies, are metallic nanoparticles dispersed in a base fluid. Because metallic nanoparticles have a high thermal
conductivity, they increase the thermal conductivity of nanofluids. We consider nanoparticles of metals (Cu and Ag )
dispersed in the base fluid water for analyzing the stability of metallic nanofluids. For Cu -water nanofluid, the values
of nanofluid parameters at d¢ = ¢, —¢, = 0.001 (nanoparticle concentration) are R, =0.392, N,=0.5, L, =5000,

and for Ag -water nanofluid: R, =0.465, N,=0.5, L, =5000 [16]. The electrical conductivity of semiconductor
materials is approximately between a conductor and an insulator. At ¢ =0.001 (nanoparticle concentration), the
values of nanofluid parameters are R, =0.159, N, =20, L, =5000 for TiO,-water nanofluid and R, =0.0785,
N,=175, L, =5000 for SiO, -water nanofluid [16].

5. WEAK NONLINEAR STABILITY ANALYSIS
We explored linear stability analysis using the normal mode method in the previous section. Although linear
stability analysis is appropriate for studying the stability condition of the motionless solution describing convective
flow. However, this approach cannot offer information regarding convection amplitudes and hence heat and mass
transfer rates. In this section, we consider the situation of two-dimensional rolls, assuming that all physical variables are
independent of y . In this case, Eqs. (1) and (7) for velocity and magnetic field perturbations will take the form

ou 0w _y, 9b 0b (49)
ox Oz ox Oz

We may introduce two scalar functions using Eq. (49), the hydrodynamic function of the current ¥ and the magnetic
function @ , for which the following relationships hold:

ho=-=. (50)

Then equations (2)-(6) for the perturbed quantities, taking into account nonlinear effects, take the following form for
dimensionless variables

(5D

g o0x L p

] ] o 0r ¢ d(xnz)
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Ly LN _pp2e - LON _10W-N) | poGe N, peav' 25 (52)
L L, oz Ox o 0t ¢ 0(x,2) Oox ox
' " R ' O,V;D
Vft//—Dant//+Ra6—T—Rn%——bai—@ivﬁb=—LQV12 _@M (53)
ox Oox L, Ox Pm Oz ), ot Pm  0(x,z)

vr Ne| 0T 04| 2NN, 0T 0y 0T Ow.T) N,| 04T 04 0T |
] L\ 0z oz L 0z ox o0t O0(xz) L, \ 0x Ox 0z Oz
NN, | (o) [or )
NNy |OT | oT | (54)
L, Ox 0z
18_1//_’_ Pr _10® 10(y,P)

— V== ,
g 0z Pm o Ot ¢ 0(x,z)

(35)

where

o o o’y 'y
Vie—t—,{=Viy+a,| —— )
boox? ozt ¢ Vv 0{ oz ox’

The boundary conditions considered for solving the given system of equations (51)-(55) are
w=DWw=0=DDO=¢ =N =T =0, at z=(0,1) (56)

We use the following Fourier expressions to perform a local nonlinear stability analysis:

w(x,z,0= 33 A, (O)sin(mix)sin(nzz),

n=lm=1

O(x,2,6) = 33 B, (1)sin(mkx) cos(n7z),

n=lm=

# (xv,2,0)= 3C, () cos(mhkx)sin(nrz), (57)

n=lm=1

N'(x,2,8) = 33D, (¢) cos(mix)sin(nrz),

P
T'(x,2,1) = 22@ (t) cos(mhkx)sin(nzz).

We limit our research with the Fourier analysis of the minimum order, namely, for the current function y and
magnetic potential ® we take the modes (1,1), and (1,1)+(0,2) for nanoparticle volume fraction, concentration of
microorganisms (or cells), and temperature perturbations:

v = 4,(¢)sin(kx)sin(rz),

@ = B,,(¢)sin(kx) cos(zz),
¢ = C,,(t)cos(kx)sin(zz) + C,, (¢)sin(27z), (58)
N' = D,,(t)cos(kx)sin(zz) + D, (¢)sin(27z),
T' = E, (t)cos(kx)sin(zz) + E,, (t)sin(27z).

The minimum order Fourier expansion was first used by Lorentz to model atmospheric convection [23]. The
system of ordinary differential equations obtained by Lorentz is a low-order spectral model, but it is quite capable of
qualitatively reproducing convective processes, in particular, the transition to a weakly turbulent state (chaos) through a
series of bifurcations. In this study, we also use the Lorentz approach in describing the weakly nonlinear stage of
convective instability. However, we do not touch upon issues related to the chaotic behavior of the obtained system of
ordinary differential equations (51)-(55) since it requires a particular study. So we apply the weakly nonlinear theory
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[43]-[45] to the problem of determining the characteristics of heat and mass transfer: nonstationary Nusselt Nu(z) and
Sherwood Sh(t) numbers.

Substituting (58) in (51)-(55) and taking into account the orthogonality condition, we get the evolution equations
for amplitudes:

04 kRaV), KR,V kR,V) 0P,

a_tll:—Va(1+Da(k2+7z2))A“—kzM2 Byttt c“+Lb(k2+”2) W B (39
B G m) g, T, (60)
%= —é(k2 +7)C, - a5k + 2°)E, JFEA11 —@A”COZ, (61)
t L, L, £ £
%:_47:5 ; _%4;;251502 +%AHC“, (62)
% = _L;‘b(kz +7r2)D11 —@AHDO2 +PeG(~7k(k2 +7 +a, (7;2 —kz))A11 , (63)
65;2 - 4”L Z‘; Dy, + k;f A4,D,, , (64)
%: —~(k* + 7°)E,, — kA, — kA, E,, , (65)
aaE:Z = —41’E,, +%”A“E“. (66)

In phase space, the eight-mode differential Eqs. (59)-(66) have an interesting property that indicates that the
system is dissipative:

o4, 0B, ocC, oC, oD, oD, OE, OE,
+ + + + + + + =
aAll 8l;]] 6CH aCOZ al)]] aDOZ aE'll al;02

“wften e )50 e 2 Lk s L] (o) <o
m 2 b o b

(67)

As a result, the impact of parameters R ,R,,L,,N,,L,,)] on trajectories is to attract them to a set of measures

zero, or a fixed point. For the time-dependent variables, the nonlinear system of differential equations cannot be solved
analytically and must be solved numerically. In the case of steady motions, Egs. (59)-(66) become:

1 R kR kR P
4, = 2 2[_ 2kazE11+ =Gt zb 2 D“_”Q rB“ ’
1+D, (kK +7 )L K+ K+r L,(k+7*) Pm
7Pm kL kzL
By=——" 4, C,=-N,E, +—— 4, — 5 4,Co> (68)
1 Pr(k2+7l'2) 11 1 2En g(k2+72'2) 11 g(k2+ﬂ2) 1-02
kL krL kPeGL
Coz :_NAEOZ +gA”C”’ D” :_g<k2—+bﬂz)A”D02+ﬁ(k2 + 7 +0{0<7z'2_k2))A]]7
kL k krx k
Dy, :gAlan: E, :_k2+7Z2 4, _k2+72'2 A\ By, Ey :gA“E“'

The steady state solutions are useful because they indicate that the system can have a finite amplitude solution.
When all amplitudes except 4,, are eliminated, an equation with A4 /8 is obtained:

2 O 17 R 73 B
L?] +ﬂ1[ 8] +ﬁ2[ 8]+ﬁ3 0> (69)
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where
1
I+ 1 Ra Rn(g_NA] RaB(k2+7r2+a0(7r2—k2))

A= KLL K EM KLM KM ’
M:(1+Da<k2+7z22))(k2+7r2)2+7z2Q(k22+7r2)’ . 2k2 - e ’
k ck k*+rx &? (kz + 7 )

L@
:k§+kf(L§+Lj) Ra(L +1;) Rn[g+NAJ_

RECE KK LPEM KR LEM

2

&
KLLM kKkILLM

1
Rn[_NAJ  Ra, (kz+”2+“0(”2_k2))(k§+kai), B, :%'
01 Hetp

In the limit of small amplitudes (4,, = 0), Eq. (69) transforms into dispersion equation (45) for the stationary

convection regime when the wave number a is replaced by k. It should be noted that the amplitude of the stream
function must be real, hence we must only consider positive signs in the roots of Eq. (69). If we determine the value of
A, , we can find the value of heat and mass transfer in a stationary regime.
6. RESULTS AND DISCUSSIONS
6.1. Analysis of the linear regime of stationary convection
Now, we will study the effects of axial magnetic field, Darcy number, medium porosity, Lewis number, modified
diffusivity ratio, concentration Rayleigh-Darcy number, modified bioconvection Rayleigh-Darcy number
Ra, = R, PeG , and the cell eccentricity on thermal instability. We calculate the derivatives

dRa, dRa, dRa, dRa, dRa, dRa, dRa, dRa,

dQ " dD,’ de ' dL, " dN,’ dR, " dRa, da,

E)

using Eq. (45), as a result we obtain
dRa, _ (7’ +a*)

0 e, (70)
dRa, (n*+a’)
dDA - a’ ) ’ 71
dRast — RnNALe 7[2 (72.2 + az )Q 72
ds & ga’ ’ (72)
dRa, _ R, ’ dRa, _ R dRa,, _ i N, | 73)
dL, & dN dR, &

Eq. (70) shows that the derivative dRa, /dQ is always positive, i.e. the vertical magnetic field has a stabilizing

effect on stationary convection in the porous medium. As a consequence, it is discovered that increasing the magnetic
field delays the initiation of convection, which is agreement with the results derived by Ahuja et al. [13].

Eq. (71) implies that the Darcy number has a stabilizing influence on the stationary convection of the system,
which is in a good agreement with the results derived by Kuznetsov and Nield [7], Rana and Chand [11],
Ahuja et al. [13]. With an increase in Darcy number, Ra, increases, indicating that the heat transmission characteristics
of the nanofluid will improve. Therefore, the effect of the Darcy number, as well as the magnetic field, delays the onset

of convection.
Eq. (72) shows that porosity can have both a stabilizing and destabilizing effect. If inequality

2 2 2
o \7" +a
RnNALe > ( )Q
g ga’
is satisfied, then porosity delays the onset of convection. This conclusion is in good accord with Ahuja et al. [13]
results.
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The following conclusions may be drawn from Eq. (73). Because all of the parameters L,, and R, are

A
positive for the current configuration of nanoparticles, and the expression R (L, /&+ N,) appears with a negative sign,

it is obvious that the suspension of nanoparticles in ordinary fluids decreases the critical value of Rayleigh number. As a
result, the system with nanoparticle distribution at the top of the fluid layer is less stable than the system with regular
fluid and bottom heavy nanoparticle distribution.

Finally, we proceed to study the impact of gyrotactic microorganism bioconvection on magnetic convection. For
this purpose, we calculate the following derivatives

dRa, _ _[ 7’ +a +a, (72'2 ~-a’ )} , (74)
dRa,
dR
E — _Ray(n?-d?). (75)
da,

Eq. (74) shows that the spherical shape of microorganisms &, = 0 contributes has a destabilizing effect since

dRa,,

=—(7*+a*)<0 76
dRa, ( ) (76)

Thus, increasing the value of modified bioconvection Rayleigh-Darcy number Ra, enhances the magnetic
convection nanofluid in the layer of a porous medium. In the case of an arbitrary form of microorganisms, an increase
in the parameter Ra, can both stabilize (at 7° +a’ <a,(a’—7x")) and destabilize (at 7° +a’ > a,(a’ —7°)) the
thermal instability if «, is positive: o, > 0.

Eq. (75) shows that dRa,, /de, can be positive or negative, i.e. the cell (or microorganism) eccentricity has a

stabilizing (if 7> < a”) or destabilizing (if 7> > a”) effect on stationary convection. This conclusion remains valid for
positive Ra, >0 numbers.

6.2. Heat and mass transports
The determination of heat and mass transport is critical in the study of fluid convection. This is because the onset
of convection, when the Rayleigh number increases, is more easily observed through its influence on heat and mass
transport. Consequently, heat and mass fluxes of nanoparticles are important in identifying thermal- and bioconvective
motion in its early stages. Heat transfers can be calculated and described using the Nusselt number Nu(t) (see, for

example [45])
27, kcr aT'

—dx
Nu(t) =1+ % 77
'r cr 7bdx
0 oz =0
According to (22) and (57), we get from (77)
Nu(t)=1-27E,(t) (78)

Similarly, the Sherwood number for nanoparticle concentration Si(¢) is determined to be:

2r k'r !
9 i

Sht)=1+| =292 | =1427C,(¢) (79)
f cr%dx

0 oz =0

In the next section, we will consider the numerical/graphical investigation of the equations (70)-(79) by
considering the numerical values of various parameters of the system.

7. NUMERICAL RESULTS AND DISCUSSION
In this section, we use the standard Maple computer environment programs for the numerical analysis of equations
(70)-(75) and (78)-(79). Nonlinear equations (59)-(66) were solved by the 4th-5th order Runge-Kutta-Felberg method
(rfk45) with initial conditions:

4,(0)=B,,(0)=C,,(0)=C,(0)=D,,(0)= D, (0)=E,,(0)=E,(0)=1.
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7.1. Stationary MHD bioconvection in A/,0, -water nanofluid

Figures 2 and 3 depict the role of the magnetic field, Darcy parameter, porosity, Lewis number, modified
diffusivity ratio, nanoparticles concentration Rayleigh number, modified bioconvection Rayleigh-Darcy number, and
cell (or microorganism) eccentricity ¢, on Rayleigh number for metal oxide ( 4/,0,) nanoparticles in water based

nanofluid. The physical properties of aluminum-water nanofluids are given in (47).

a) b)
Rasl Ras,l
15000 15000
=250,350,450
Q-250350, D, - 03,0508
10000 10000
5000 5000
0 0
2 4 6 8 10 12 14 g 2 4 6 8 10 12 14 16 18 g
c) d)
Ra Ra
st st
150001 15000
10000 10000
=0.3
E=3 0405 L =3000, 5000, 8000
5000 5000
0 0
2 4 6 8 10 12 14 g 2 4 6 8 10 12 14 g

Figure 2. Dependence of the Rayleigh number of stationary convection on the wavenumber a for parameter variations: (a)
magnetic field (Chandrasekhar number) Q ; (b) Darcy number D, ; (c) medium porosity & ; (d) Lewis number L,

In Fig. 2a, the Rayleigh-Darcy number is plotted against the dimensionless wavenumber for different values of the
axial magnetic field (Chandrasekhar number). This shows that as values of axial magnetic field increase, the Rayleigh-
Darcy number also increases for fixed values

D, =0.5,6=04,L,=5000,N, =5,R, =0.122, Ra, =120,a, = 0.4.

As a consequence, the axial magnetic field can stabilize stationary convection, which is consistent with the
analytical conclusion obtained from Eq. (70).

For different values of the Darcy number, the Rayleigh-Darcy number is displayed against the dimensionless
wavenumber in Fig. 2b for fixed values

0=250,6=04,L, =5000,N, =5,R, =0.122,Ra, =120,c, = 0.4.

This demonstrates that when Darcy's number rises, so does the Rayleigh-Darcy number. As a result, the Darcy
number has a stabilizing impact on stationary convection, which is in agreement with the analytical result obtained from
Eq. (71).

For different values of medium porosity, the Rayleigh-Darcy number is plotted against dimensionless wavenumber
in Fig. 2¢ for fixed values

D, =0.5,0=250,L, = 5000,N, =5,R, =0.122,Ra, =120,c;, = 0.4 .

This shows that when porosity increases, the values of Rac decrease significantly. As a result, medium porosity
has a destabilizing impact on stationary convection, which is consistent with the analytical result obtained from
Eq. (72).
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Figure 3. Dependence of the Rayleigh number of stationary convection on the wavenumber a for parameter variations:
(a) modified diffusivity ratio N, ; (b) concentration Rayleigh-Darcy number R, ;

(c) modified bioconvection Rayleigh-Darcy number Ray ; (d) cell eccentricity «,

In Figs. 2d, 3a, 3b the Rayleigh-Darcy number is plotted against dimensionless wavenumber for different values of
Lewis number, modified diffusivity ratio, and concentration Rayleigh number. These show that as Lewis number,
modified diffusivity ratio, and concentration Rayleigh number increase, the Rayleigh-Darcy numbers decrease. Thus,
the nanofluid parameters have a destabilizing effect on stationary convection, which is in good agreement with the
result obtained analytically from Egs. (73).

In Fig. 3c, the stationary Rayleigh-Darcy number Ra, is plotted against dimensionless wave number a for
different values of modified bioconvection Rayleigh-Darcy number Ra, for fixed values
D, =0.5,0=250,6=0.4,L, =5000,N, =5,R, =0.122,c¢, = 0.4 . Curve 1 depicts the dependency of the stationary
Rayleigh-Darcy number on the wave number in the absence of the impact of microorganism bioconvection, i.e. when
R, =0. A similar dependence also arises in the case when there is no gyrotax G =0 (Ra, =0 ). The gyrotaxis number
G characterizes the deviation of the cell's swimming direction from strictly vertical. If G =0, there is no gyrotaxis and
the microorganisms swim vertically upwards (show negative geotaxis). Pedley et al. [19] demonstrated that a
suspension of gyrotactic microorganisms ( G > 0) is unstable under the same conditions. As a result, gyrotaxis plays a
role in the emergence of bioconvection instability. As can be seen from Fig. 3c, with an increase in the parameter Ra,,
the threshold for the occurrence of magnetic convection decreases. This is because the movement of microorganisms
leads to a redistribution of the density of the nanofluid, reducing the process of heat transfer in the nanofluid. As a

consequence, the cell's swimming can destabilize stationary magnetoconvection, which is consistent with the analytical
conclusion obtained from Eq. (74).

Table 1. Critical Rayleigh numbers Ra"™

o and critical wavenumbers k, for A/,0; -water nanofluid at fixed parameters R, =0.122,
N,=5, L =5000

0 D, £ Ra, a, Ra™ k,,
250 0.5 0.4 120 0.4 2544.36 8.31
350 0.5 0.4 120 0.4 5355.59 8.51
450 0.5 0.4 120 0.4 8151.92 8.69
250 0.3 0.4 120 0.4 445.25 10.57
250 0.5 0.4 120 0.4 2544.36 8.31
250 0.8 0.4 120 0.4 4095.58 6.86
250 0.5 0.3 120 0.4 4379.85 8.48
250 0.5 0.4 120 0.4 2544.36 8.31
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0 D, & Ra, a, Ra"™ k,
250 0.5 0.5 120 0.4 1436.89 8.19
250 0.5 0.4 0 No 7730.31 5.90
250 0.5 0.4 120 0.4 2544.36 8.31
250 0.5 0.4 140 0.4 1384.94 8.85
350 0.5 0.4 120 0 1459.64 532
350 0.5 0.4 120 0.4 5355.59 8.51
350 0.5 0.4 120 0.6 6675.31 7.60

In Fig. 3d, the stationary Rayleigh-Darcy number Ra, is plotted against dimensionless wave number a for

different values of cell eccentricity ¢, for fixed values
D, =0.5,0=350,6=04,L, =5000,N,=5,R, =0.122,Ra, =120. As can be seen from Fig. 3d, the spherical shape

of microorganisms has a destabilizing effect on the beginning of magnetoconvection. This conclusion is confirmed by
analytical results Eqs. (75) and (76).

The critical Rayleigh numbers Ra

min
st

and the corresponding critical wavenumbers a, for different values of
0,D,,¢,Ra, and «a, for Al,0O,-water nanofluid are shown in Table 1. Let's notice that results in Table 1 were obtained
numerically using (46) for A/,O,-water nanofluid and are in good agreement with the graphical results in
Figs. 2a, 2b, 2¢ and Figs. 3c, 3d. In the limiting case when there are no microorganisms ( Ra, = 0), the results from
Table 1 are in good agreement with the results of paper [18].

7.2. Stationary MHD bioconvection in Cu ( Ag )-water and 7iO, (SiO, )-water nanofluids
We now consider the graphical interpretation of numerical calculations for metallic nanofluids (Cu, Ag ) and

semiconductors (770, and SiO,). We investigate the impact of several nanofluids (metal, metal oxide, and

semiconductor) on stationary convection by fixing the values of the parameters Da,V,0,Pr, Pm,g', Le,Lb,Ra,
and ¢, . The thermal Rayleigh-Darcy number Ra,, is plotted against the wavenumber for several nanofluids in Fig. 4.
From Fig. 4, we can see that the SiO,-water nanofluid exhibits the highest stability compared to 47,0, -water,
TiO, -water, Cu -water and Ag -water nanofluids. The phenomena for this behavior is not only the different density of

nanoparticles but also different thermophysical properties. We can conclude that semiconductor and metal oxide
nanoparticles have a more destabilizing effect on stationary convection than metallic nanoparticles.

Ra

st

15000

10000

5000

Figure 4. Dependence of the Rayleigh number of stationary convection on the wavenumber a for metal oxide ( 47,0, ), metallic
(Cu , Ag ), and semiconducting ( 7i0, , SiO, ) nanoparticles in water based nanofluids
(D,=0.5,0=450,6 =04,L, =5000,Ra, =120,a, =0.4)

Let us now consider the impact of different nanofluid parameters on the thermal instability of the system under the
simultaneous influence of magnetic field. Figures 5a and 5b illustrate the impact of the Chandrasekhar number on the
Rayleigh-Darcy number for metals (Cu, Ag ) and semiconductors (7i0,, SiO,) in water-based nanofluids. These

figures show that when the value of the Chandrasekhar parameter Q increases, the values of the thermal Rayleigh-Darcy

number for both forms of convection increase, indicating that magnetic field has a stabilizing impact. The curves depicting
the influence of Chandrasekhar number for Cu -water nanofluid are above those for Ag -water nanofluid, indicating that

Cu -water nanofluid is more stable than Ag -water nanofluid. When the situation of semiconductors is considered
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(Fig. 5b), it is found that SiO, -nanoparticles improve the stability of nanofluid more than 7i0, -nanoparticles as the

Chandrasekhar number increases. Thus, it is also interpreted from the figures that semiconductors inhibit the onset of
convection as compared to metals under the influence of magnetic field.

Ra Ra
st st
15000 15000
10000 10000
5000 5000
Q =350
0 0
2 4 6 8 I 12 14 a 2 4 6 8 0 12 14 a

Figure 5. Impact of Chandrasekhar number Q on the stationary convective instability for different nanofluids: (a) Cu ( Ag) -
water; (b) TiO, ( SiO, )-water (D, =0.5,& =0.4,L, = 5000, Ra, =120,a,=0.4)

Figures 6a and 6b show the effect of Darcy number on the system. The value of Ra,, increases with the increase
in Darcy's number and hence the Darcy number D, delays the onset of instability. By increasing the Darcy number
Cu -water and SiO, -water nanofluids exhibit higher stability than Ag -water and 7iO, -water nanofluids.

a)
Ra, s Rasl
A i
g ’t :
1
15000 J P 15000
P /|
4 l/
1 [/
1 1
10000 , 1 10000
r/
I, Y
\ ’ /
3 D=08 , /
1
5000 N i ’ 5000
== Ed
oo -I
i D =05
0 0
2 4 6 8 w 12 14 a 2 4 6 8 0 12 14 a

Figure 6. Impact of Darcy number D, on the stationary convective instability for different nanofluids:

(a) Cu (Ag )-water; (b) TiO, ( SiO, )-water ( O =350, =0.4,L, =5000,Ra, =120,c;, = 0.4 )

Further, let us study the influence of the effect of porosity on the system. Figures 7a and 7b show that the increase
in & porosity stimulates the onset of instability. The critical Rayleigh-Darcy numbers for nonmetallic nanofluids are

higher than that for metallic nanofluids.

a)

Ra

st

15000

10000

5000

Ra

st

15000

10000

5000

Figure 7. Impact of porosity & on the stationary convective instability for different nanofluids:
(a) Cu ( Ag) -water; (b) TiO, ( SiO, )-water (D, =0.5,0 =350,L, = 5000, Ra, =120,c;, = 0.4 )
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Figures 8a and 8b illustrate the impact of modified bioconvection Rayleigh-Darcy number Ra, on the stationary

convective instability for metallic and semiconductors nanofluids. We can observe that the cell's swimming can
destabilize stationary magnetoconvection since the threshold for the occurrence of magnetic convection decreases when
the parameter Ra, is increased. As can be seen from Fig. 8 nonmetallic nanoparticles delay the onset of convection

even in the absence of bioconvection Ra, =0 (or movement of microorganisms).

Ra Ra

st st

15000 15000

10000 10000

5000 5000

0 0
2 4 6 8 10 12 14 4 2 4 6 & 10 12 14 4

Figure 8. Impact of modified bioconvection Rayleigh-Darcy number Ra, on the stationary convective instability for different
nanofluids: (a) Cu ( Ag )-water; (b) TiO, ( SiO, )-water (D, =0.5,0 =350, =0.3,L, =5000,cr, = 0.4 )
Finally, let us study the influence of the effect of cell eccentricity ¢, on thermal stability. Figures 9a and 9b show

that the spherical shape of microorganisms has a destabilizing effect on the beginning of magnetoconvection for

metallic as for nonmetallic nanoparticles. However, nonmetallic nanoparticles still retard the development of stationary
convection.

Ra Ra
st st
15000 15000
10000 10000
5000 5000
0 0
4 6 8 w 12 14 16 g 4 6 8 10 12 14 16 g

Figure 9. Impact of cell eccentricity ¢, on the stationary convective instability for different nanofluids:
(a) Cu (Ag)-water; (b) TiO, ( SiO, )-water (D, =0.5,0 =450, =0.3,L, =5000,Ra, =120).

The critical Rayleigh numbers Ra”" and the corresponding critical wavenumbers a, for different values of
0.D,,&,Ra, and ¢, for metallic nanofluids ( Cu -water, Ag -water ) are shown in Table 2. Take note that the results in

Table 2 were derived numerically using (46) for metallic nanofluids ( Cu -water, Ag -water) and correspond well with
the graphical results in Figs. 5a, 6a, 7a, 8a, 9a.

Table 2. The critical Rayleigh numbers Ra”" and critical wavenumbers k, for metallic nanofluids ( Cu -water, Ag -water) at fixed
parameters L, = 5000, a) R, |, =0.392,N,|,=0.5,b) R, |,=0.465N,|,,=0.5

0 D, & Ra, a a) Ra!" a)k, b) Ra”" bk,
350 0.5 0.4 120 0.4 1981.01 8.51 1068.47 8.51
450 0.5 0.4 120 0.4 4777.34 8.69 3864.80 8.69
350 0.5 0.4 120 0.4 1981.01 8.51 1068.47 8.51
350 0.8 0.4 120 0.4 3686.96 7.11 2774.42 7.11
350 0.5 0.3 120 0.4 3608.82 8.71 2392.12 8.71
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Q Du & RaB a() a) Ra‘:’i” a) kcr b) Ra:i” b) k('r'
350 0.5 0.5 120 0.4 994.92 8.37 264.88 8.37
350 0.5 0.3 0 No 9406.12 6.61 8189.42 6.61
350 0.5 0.3 120 0.4 3608.82 8.71 2392.12 8.71
450 0.5 0.3 120 0 3157.93 10.73 1941.22 10.73
450 0.5 0.3 120 0.6 8817.45 8.12 7600.75 8.12

min
st

The critical Rayleigh numbers Ra)” and the corresponding critical wavenumbers a, for different values of
0,D,,&,Ra, and «a, for semiconductor nanofluids ( 7iO, -water, SiO, -water) are shown in Table 3. We notice that the
numerical results in Table 3 for semiconductor nanofluids (77O, -water, SiO, -water) agree well to the graphical results
in Figs. 5b, 6b, 7b, 8b, 9b. In the limited case of no microorganisms (Ra, = 0), the results from Tables 2 and 3 agree

well with the results of paper [13].

Table 3. The critical Rayleigh numbers Ra”" and critical wavenumbers k, for semiconductor nanofluids

cr

(TiO, -water, SiO, -water) at fixed parameters L, = 5000, a) R, |5, = 0.159, N, |5, =20, b) R, |50, = 0.0785, N, |5, =17.5

0 D, £ Ra, 2, a) Ra" a)k, b) Ra!" bk,
350 0.5 0.4 120 0.4 4890.52 8.51 5898.58 8.51
450 0.5 0.4 120 0.4 7686.86 8.69 8694.91 8.69
350 0.5 0.4 120 0.4 4890.52 8.51 5898.58 8.51
350 0.8 0.4 120 0.4 6596.47 7.11 7604.53 7.11
350 0.5 0.3 120 0.4 7489.17 8.71 8832.65 8.71
350 0.5 0.5 120 0.4 3321.94 8.37 4128.75 8.37
350 0.5 0.3 0 No 13286.47 6.61 14629.94 6.61
350 0.5 0.3 120 0.4 7489.17 8.71 8832.64 8.71
450 0.5 0.3 120 0 7038.28 10.73 8381.75 10.73
450 0.5 0.3 120 0.6 12697.80 8.12 14041.28 8.12

It is noteworthy that copper-water nanofluid is more stable than silver-water nanofluid (refer to Figures 5a, 6a, 7a,
8a, 9a) and silicon oxide-water nanofluid is more stable than titanium oxide-water nanofluid (refer to Figures 5b, 6b, 7b,
8b, 9b). These conclusions are consistent with the results of paper [14].

7.3. The numerical/graphical results for Nusselt Nu(z) and Sherwood S4(z) numbers

In general, the transition from linear to non-linear convection can be complex. The study of Egs. (59)-(66), whose
solution provides a full description of the two dimensional non-linear evolution issues, helps to understand the
transition. The Runge-Kutta technique is used to solve the autonomous system of unstable finite-amplitude equations.
Convective heat and mass transfers were calculated using Nusselt number Nu(¢#) and Sherwood number Sh(z). The

results are presented in Figures 10-12. It is assumed that the original value of the Nusselt and Sherwood number are
equal to 1 at =0 . These figures show that when time is short, oscillations in the values of the Nusselt and Sherwood
numbers occur, indicating an unsteady rate of heat and mass transfer in the thermal convection system. These values
approach a steady state, equivalent to a near convection stage, as time passes.

Figs. 10a-10h depict the temporary behavior of thermal Nusselt number Nu(¢), for varying values of magnetic

field (Chandrasekhar number @), Darcy number D,, nanoparticle concentration Rayleigh-Darcy number R ,
bioconvection Rayleigh-Darcy number R, , modified gyrotaxis number PeG, geometric shape of microorganisms ¢,
and bioconvection Lewis number L, . It is observed that as O, D,, R, , ¢, and L, increase (see Figs. 10a, 10c, 10d,
10g and 10h), the values of Nu(¢) show slightly incremented, thus showing an increase in the heat transport, which are

the similar results obtained by Agarwal et al. [44].
According to Figs. 10b, 10e, and 10f, when porosity &, bioconvection Rayleigh-Darcy number R, , and modified

gyrotaxis number PeG increase, the Nu(¢) decreases, indicating a delay in heat transfers.

Figs. 11a-11d and 12a-12d depict the temporary behavior of Sherwood number Sk(¢), for varying values of
magnetic field (Chandrasekhar number Q), porosity &, Darcy number D,, nanoparticle concentration Rayleigh-Darcy
number R, , bioconvection Rayleigh-Darcy number R,, modified gyrotaxis number PeG, geometric shape of
microorganisms ¢, and bioconvection Lewis number L, .

As shown in Figs. 11a-11d and 12a-12d, the stationary level of mass transfer of nanoparticles is reached in less
time than heat transfer. The Sherwood number varies at small intervals depending on the parameters
(Q,¢,D,,R,,R,,PeG,a,,L,) . Because of the basic distribution of the volumetric concentration of nanoparticles (22),

the stationary value of the Sherwood number surpasses 1.

no
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Figure 10. Thermal Nusselt number Nu(¢) variation with time ¢ for various values of: a) Chandrasekhar number Q ; b) porosity ¢ ;
¢) Darcy number D, ; d) concentration Rayleigh-Darcy number Ra, ; €) bioconvection Rayleigh-Darcy number R, ;

f) modified gyrotaxis number PeG ; g) geometric shape of microorganisms ¢« ; h) bioconvection Lewis number L, .
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Figure 11. Sherwood number Sh(¢) variation with time ¢ for Figure 12. Sherwood number Si(¢) variation with time ¢ for

various values of: a) Chandrasekhar number Q ; b) porosity & ; various values of: e) bioconvection Rayleig-Darcy number R, ;

¢) Darcy number D, ; d) concentration Rayleigh-Darcy number Ra,. f) modified gyrotaxis number PeG; g) geometric shape of
microorganisms ¢, ; h) bioconvection Lewis number L, .

8. CONCLUSIONS

Under a vertical magnetic field, we investigated linear stability in a horizontal porous media saturated by
nanofluid and gyrotactic microorganisms, heated from below and cooled from above, using the Darcy-Brinkman model,
which incorporates Brownian motion and thermophoresis. The system with nanoparticle distribution at the top of the
fluid layer has also been proposed. The influence of gyrotaxes on the orientation of swimming microorganisms was
used in this study. The normal mode method was used for the linear analysis. The impact of various factors on the
development of thermal instability was then established. The results are graphically represented. The following are our
conclusions for 47,0, -water nanofluid with gyrotactic microorganisms:

e The vertical magnetic field and Darcy number enhance the stability of the system.
e  Medium porosity, Lewis number, modified diffusivity ratio and concentration Rayleigh number have a
destabilizing influence on the stationary convection of the system.
e An increase in the concentration of gyrotactic microorganisms (or modified bioconvection Rayleigh-Darcy
number) enhances the onset of magnetic convection.
e  Spherical gyrotactic microorganisms contribute more effectively to the development of thermal instability.
Similar conclusions are also valid for metallic and semiconductor nanofluids. It has been determined that copper-
nanofluid is more stable than silver-water, whereas silicon oxide-water nanofluid is more stable than titanium oxide-
water nanofluid, according to a comparative investigation of thermal instability using metallic and semiconducting
nanofluids.
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Graphic representation of the nonlinear theory results for A/,0,-water nanofluid containing gyrotactic

microorganisms. The following conclusions may be taken from these research results:
e The convective heat transport (Nusselt number Nu(t) ) is enhanced with increasing O,D,,R ,c,, and L, .

¢  Convective heat transport decreases as &, R, , and PeG increase.
e  When the parameters Q,&,D,,R ,R,,PeG,a,, and L, are changed, the stationary value of mass transfer is
established faster than convective heat transfer and is approximately S4(¢) ~ 3.9 at an initial value of SA(0)=1.

The results of the theoretical studies presented in this work can be applied in geophysics, especially in the study of
sea flows through a porous medium (the ocean crust) containing nanoparticles and gyrotactic microorganisms, as well
as in designing biosensors.
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BIOTEPMAJIBHA KOHBEKIISA B TIOPUCTOMY CEPEJOBUIII, SIKE HACHYEHE HAHOPIANHOIO
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BuBueHHS TETUI0BOI KOHBEKIIT B OPUCTUX CEPEIOBUINAX, SIKI HACHYEHI HAHOPIAMHOIO Ta MIKPOOPraHi3MaMH, € BRKIMBHM 3aBIaHHAM
i OarateoxX Treoi3MUHMX Ta IMKEHEPHHX NporpaM. KOHIEMINs CyMill HaHOPIIMH Ta MIKpOOpraHi3MiB mpuBaOioe OaraThox
JOCTIHUKIB uepe3 1i 3AaTHICTh MOKPAIlyBaTH TEIUIOBI BIACTHBOCTI Ta, SIK HACIIJOK, IIBUAKOCTI TeII000MiHy. LIs BIacTuBicTh aKTHBHO
BHKOPHCTOBYETHCS SIK B €IIEKTPOHHMX CHCTEMAX OXOJIODKEHHsI, TaK i 6io¢i3ui. TakuM YHHOM, METOIO L[bOTO TOCIIPKCHHS € BUBUYCHHS
0i0TepMasIbHOI HECTIMKOCTI B MOPHUCTOMY CEPEIOBHIII, SKE HACHUCHE HAHOPIAMHOK Ha BOJHINA OCHOBI, IO MICTUTh TipOTAKTUYHI
MIKPOOPTaHi3MH, Y IPUCYTHOCTI BEPTUKAIEHOTO MarHiTHOTrO 11oj1s1. HasiBHICTh 30BHIIIHBOIO MarHiTHOTO MOJIS SIK Y TIPUPOIHUX, TaK i B
TEXHOJIOTIYHHMX CHTyalisX, CTUMYJIOBalla HAC Yy MPOBEACHHI IHOTO TEOPETHYHOrO [OCHIDKCHHS. 3 BUKOPUCTAHHSM MOJEIi
Hapci-bpiHkMaHa po3IISIHYTO JIHIHHMMA aHaI3 KOHBEKTUBHOI HECTIHKOCTI Uit 000X BUIBHHX MEX 3 ypaxyBaHHAM e(exTiB
OpoyHiBcbkoi mudysii Ta Tepmodopesy. s MpoBeneHHS BOTO aHAIITUYHOTO AOCTIKEHHS Oylo BHKOpHCTaHO Meron [amepkiHa.
BcraHoBieHo, 110 TEII000MiH 34iHCHIOETHCSI CTALIOHAPHOIO0 KOHBEKILIEK0 03 KONUBAIBHUX PYXIB. Y CTAliOHAPHUX PEKMMAX KOHBEKIIT
QHAITI3YIOThCSl HAHOPIIMHK OKcuaiB MeTaniB (4/203), metanesi nHanopiauau (Cu, Ag) Ta HaniBnposiauukosi HaHopinuuu (7i0s, SiO:).
36utsienns yrcen Yanapacekapa Ta Jlapci 3Ha4HO TOKpaIye CTaOlIbHICTh CUCTEMH, ajie 30UIBIICHHS OPUCTOCTI Ta MO iKOBAHOTO
OiokoHBekIiiHOro umcna Penes-Jlapci  IPHCKOPIOIOTH  MOYATOK — HecTifikocTi. JIist  BM3HAUGHHS IEPEXITHOIO  PEXUMY
TEIUIOMACOIIEPEHECEHHS 3aCTOCOBYEThCS HEMiHIMHA Teopis, 3aCHOBaHA Ha MpeAcTaBleHHI Metoxy psaiB Dyp'e. Ha mamix mpomikkax
yacy uncia Hyccenbra Ta IllepByna MaroTh KonuBanbHUi xapaktep. Yncia [IlepByna (MacooOMiH) y 4acoBOMY iHTEpBalli 1OCSATalOTh
CTaIllOHApHUX 3HA4YeHb MIBHALIE, HiX uucna Hyccempra (TemuiooOmin). Lle mocmimKeHHS MOXe IOMOMOTTH y BHBYCHHI KOHBEKIIl
MOPCBHKOi BOW B OKEaHI4Hii KOpi, a TAKOXK y CTBOPEHHI 010CEHCOPIB.

KarouoBi ciioBa: HaHopiguHa, OioTeruioBa KoHBekuisi, cuia JlopeHna, Tepmodopes, OpOYHIBCBKHIl pyX, TipOTaKTHYHHI
MiKpOOpraHi3M, MarHiTHe 1oie





