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The study of thermal convection in porous media saturated by nanofluid and microorganisms is an important problem for many 
geophysical and engineering applications. The concept of a mixture of nanofluids and microorganisms has attracted the interest of 
many researchers due to its ability to improve thermal properties and, as a result, heat transfer rates. This property is actively used 
both in electronic cooling systems and biological applications. Thus, the purpose of this research is to study biothermal instability in 
a porous medium saturated by a water-based nanofluid containing gyrotactic microorganisms in the presence of a vertical magnetic 
field. Given the presence of an external magnetic field in both natural and technological situations, we were motivated to perform this 
theoretical research. Using the Darcy-Brinkman model, a linear analysis of the convective instability has been considered for both-
free boundaries, taking into account the effects of Brownian diffusion and thermophoresis. The Galerkin method was used to perform 
this analytical study. We have established that heat transfer is accomplished by stationary convection without oscillatory movements. 
In stationary convection regimes, metal oxide nanofluids (Al2O3), metallic nanofluids (Cu, Ag), and semiconductor nanofluids 
(TiO2, SiO2) are analyzed. Increasing the Chandrasekhar and Darcy numbers improve system stability significantly, but increasing 
porosity and modified bioconvection Rayleigh-Darcy number speed up the beginning of instability. To determine the transient 
behavior of heat and mass transports, a non-linear theory based on the representation of the Fourier series method is applied. In small 
time intervals, the transitional Nusselt and Sherwood numbers exhibit an oscillatory character. The Sherwood numbers (mass 
transfer) in the time interval reach stationary values faster than the Nusselt numbers (heat transfer). This research might help with 
seawater convection in the oceanic crust as well as the construction of biosensors. 
Keywords: nanofluid, bio-thermal convection, Lorentz force, thermophoresis, Brownian motion, gyrotactic microorganism, 
magnetic field 
PACS: 44.10.+i, 44.30.+v, 47.20.-k 
 

1. INTRODUCTION 
Many theoretical and practical study in fields such as soil mechanics, groundwater hydrology, petroleum 

engineering, industrial filtration, powder metallurgy, nuclear energy, and so on have been based on the study of the 
physics of flow through a porous media. Such flows through porous media are of great interest to petroleum engineers 
and geophysical fluid dynamicists. The problem of thermal instability of a liquid layer in a porous medium is of special 
importance. Ingham and Pop [1] as well as Nield and Bejan [2] provide excellent reviews of the most of the studies on 
convection in porous media. The issues of fluid flow and heat transfer in rotating porous media have been studied in 
detail in a recent review by Vadasz [3]. 

Objects with dimensions of less than one hundred nanometers have developed as a result of the progress of 
nanotechnology. Such nanosized objects are called nanoparticles. Choi [4] proposed suspending these nanoparticles in a 
base fluid (known as nanofluid) to improve heat conductivity and convective heat transfer of the base fluid. Thus, 
nanofluids began to be intensively used in industry, such as coolants, lubricants, heat exchangers, microchannel 
radiators, and many others. Buongiorno [5] extensively studied convective transport in nanofluids and concentrated on 
explaining the additional heat transfer increases observed under convective flows. Tzou [6] used Buongiorno transport 
equations to study the onset of convection in a horizontal layer uniformly heated from below for a nanofluid and 
discovered that due to Brownian motion and thermophoresis of nanoparticles, the critical Rayleigh number is much 
lower, by one to two orders of magnitude, than that of an ordinary fluid. 

Because of the remarkable characteristics of nanofluids in heat transfer phenomena, research involving nanofluids 
in a porous media has become required. Kuznetsov and Nield [7]-[8] used the Brinkman model to investigate the onset 
of thermal instability in a porous media saturated with a nanofluid, taking into account Brownian motion and 
nanoparticle thermophoresis. They discovered that the presence of nanoparticles may significantly lower or increase the 
critical thermal Rayleigh number, depending on whether the basic nanoparticle distribution is top-heavy or bottom-
heavy. Further, Bhadauria and Agarwal [9] and Yadav et al. [10] extended the thermal instability problem by including 
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the Coriolis force term (rotation) in momentum equations for porous and non-porous materials, concluding that 
including the Coriolis force component made the overall system more stable. Bhadauria and Agarwal [9] made a 
nonlinear investigation of nanofluid convection in a rotating porous layer in terms of Nusselt number. Chand and 
Rana [11] used the Darcy-Brinkman model to investigate the influence of rotation on nanofluid convection. For 
stationary convection, an equation for the thermal Rayleigh number was found. Gupta et al. [12] studied the onset of 
convection in a horizontal nanofluid layer in the presence of a vertical magnetic field and discovered that stability 
increases as the magnetic field value increases. The effects of a magnetic field on a horizontal layer of nanofluid have 
several significant characteristics, making it necessary to explore the effects of a magnetic field in a porous medium. 
Ahuja et al. [13] used the Darcy-Brinkman model to explore the thermal convection of a nanofluid layer in the presence 
of an applied vertical magnetic field saturated by a porous medium for both-free, rigid-free, and both-rigid barriers. The 
effect of an externally applied magnetic field on the stability of a binary nanofluid layer in porous medium is considered 
by Sharma et al. [14]. It was established that semiconducting nanofluids are found to be more stable than metallic 
nanofluids. Furthermore, porosity destabilizes the layer while solute difference (at the boundaries of the layer) stabilizes 
it and the magnetic field stabilizes the fluid layer system significantly. Yadav et al. [15] investigated the effect of Hall 
current on the criterion for the onset of MHD convection in a porous medium layer saturated by a nanofluid. They were 
shown that the increase in the Hall current parameter, the Lewis number, the modified diffusivity ratio, and the 
concentration Rayleigh Darcy number is to hasten the onset of convection while the magnetic Darcy number, the 
porosity parameter and the Darcy number have stabilized on the onset of convection. Ahuja and Gupta [16] investigated 
the onset of thermal convection of a porous nanofluid layer under the combined influence of rotation and magnetic field 
using the Darcy-Brinkman model. As shown in[16], the stability of the system enhances with the rise in Chandrasekhar 
number and Taylor number whereas it falls with the rise in porosity. According to [16] silver nanoparticles stabilized 
water-based fluids better than copper nanoparticles, while 2TiO  nanoparticles in semiconductors improve system 
stability better than 2SiO  nanoparticles. 

A detailed review of the current state of the problem of MHD convection in nanofluids presents in [17]. The 
article [18] discusses a new review devoted to the subject of Rayleigh-Benard instability in a nanofluid. In addition to 
the above, a relatively new area of research: bioconvection inside a nanofluid is of great importance in applied problems 
of creating biosensors, microdevices for measuring the toxicity of nanoparticles. Bioconvection is the movement of a 
fluid medium caused by a directed flow of microorganisms that results in a redistribution of the medium's density. As a 
result, hydrodynamic processes in the medium emerge, analogous to natural convection in the presence of temperature 
gradients. Bioconvection takes into account the movement of bacteria and algae, with microorganisms having a higher 
density than water. Microorganisms can move due to gravity forces (gyrotactic microorganisms), oxygen concentration 
gradients (oxytactic microorganisms), light radiation (phototaxis microorganisms), nutrition gradients (chemotaxis 
microorganisms), and other factors. The number of self-propelled microorganisms can be quite considerable, varying 
from 107 cm-3 in a low concentratin regime to 1011 cm-3 in a turbulent regime with almost densely packed 
microorganisms. A linear theory of the stability of bioconvection of gyrotactic microorganisms in a finite depth layer of 
an ordinary fluid was developed by Pedley et al. [19]-[21]. In these works, the criteria for the onset of a bioconvective 
flow were determined. Avramenko [22] based on the Lorenz approach [23] a nonlinear theory of bioconvection for 
gyrotactic microorganisms in a layer of ordinary liquid was developed. In [22], the boundaries of various hydrodynamic 
regimes of two-dimensional bioinvection were determined. 

Unlike microorganisms, nanoparticles are not self-propelled, move due to Brownian motion and thermophoresis, 
and are driven by fluid flow. Kuznetsov's [24],[25] works are devoted to the interaction of nanofluids with 
bioconvection. The paper [24] investigated the possibility of oscillatory instability in a nanofluid suspension containing 
oxitate bacteria. In [25] analyzes the combined influence on the onset of biothermal convection in suspension, 
nanoparticles, gyrostatic microorganisms, and algae. A linear analysis of the instability is performed, allowing the 
bounds of the oscillatory instability to be determined. The destabilizing effect of Brownian motion and thermophoresis 
of nanoparticles, vertical throughflow, and gyrotactic microorganisms on biothermal instability was discovered by Saini 
and Sharma [26]. 

Because of the practical nature of the problem, a significant number of works (for example, [27-31]) have recently 
arisen that investigate two-dimensional magnetohydrodynamic flows and the processes of heat and mass transfer of a 
watery nanofluid, including gyrotactic microorganisms. The effects of buoyancy, Brownian motion, thermophoresis, 
and chemical reactivity on bioconvection of nanofluidic gyrostatic microorganisms are investigated in these papers. The 
aim of using microorganisms is to stabilize nanoparticle suspensions created by bioconvection caused by the combined 
effects of buoyancy and magnetic field forces. 

There are a lot of publications on the effect of gyrotactic microorganisms on nanofluid flows in bounded porous 
media. The study of biological processes in porous media has recently rapidly progressed. Kuznetsov, Nield, and 
Avramenko [32-36] made a significant contribution to the dynamics of biological processes in porous media. A linear 
analysis of biothermal convection based on the Darcy-Brinkman model in a suspension of gyrotactic microorganisms in 
a highly porous medium heated from below was carried out in [37]. The following conclusions [37] were drawn there: a 
suspension containing faster-swimming cells is more unstable; gyrotaxis contributes to the development of 
bioconvection instability; the modified Darcy number associated with the effective viscosity stabilizes the slurry. 
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Recently, the flow of boundary layers of natural convection nanofluids over a vertical flat plate embedded in a 
saturated porous Darcy medium containing gyrotactic microorganisms was studied in studies[38]-[40]. The effects of 
dimensionless parameters, such as the Lewis number of bioconvection, the Rayleigh number of bioconvection, the 
Peclet number of bioconvection, the Brownian motion parameter, the buoyancy coefficient, the thermophoresis 
parameter, the index of change of the power law, and the Lewis number, on the flow characteristics of the 
bioconvection process are analyzed during a numerical solution. 

Despite significant progress in the study of bioconvection in porous media, the impact of gyrotactic organisms on 
thermal instability in a layer of a porous media saturated by a nanofluid under the action of a magnetic field has yet to 
be investigated. Of particular interest is the study of the linear and nonlinear stages of bio-thermal convection in a 
porous medium saturated with nanofluid for various types of nanoparticles such as metal, metal oxides, and 
semiconductor nanoparticles under an external magnetic field. The aim of this paper is to investigate the 
abovementioned problem. 

The content of the paper is presented in the following sections. The Introduction (section 1) presents a review of 
the literature on this issue. In section 2, we describe the problem statement and obtain evolution equations in the 
Boussinesq-Oberbeck approximation in a layer of a Darcy-Brinkman porous medium saturated by an electrically 
conducting nanofluid with gyrotactic microorganisms. In section 3, we obtained equations for the basic state and small 
perturbations in dimensionless form. The equation for the vertical component of the perturbed velocity was obtained 
using the elimination of variables technique. This equation is supplemented with conditions for free-free boundaries. In 
section 4, we derive a general dispersion equation taking into account the effects of a vertical magnetic field, gyrotactic 
microorganism bioconvection, Brownian diffusion of nanoparticles, and thermophoresis. The oscillatory and stationary 
regimes of mixed convection are considered. In section 5, we study the non-linear theory based on the representation of 
the Fourier series method used to find the temporary behavior of heat and mass transports. In section 6, we analyze the 
linear regime of stationary convection and calculate the expressions for heat and mass transports. In section 7, we 
perform a numerical/graphical analysis of the development of stationary convection carried out for oxide metal, 
metallic, and semiconductor nanofluids. Convective heat and mass transfers in terms of Nusselt number ( )Nu t  and 
Sherwood number ( )Sh t  were calculated. The Conclusions present the main conclusions of this paper. 

 
2. STATEMENT OF THE PROBLEM AND BASIC EQUATIONS 

Let us consider an infinite horizontal layer of incompressible electrically conductive nanofluid containing 
nanoparticles and gyrotactic microorganisms in a homogenous porous medium. Initially, a homogeneous porous layer 
with a thickness of h  is assumed to be at rest. Heating from below the layer causes disturbance, where ,d uT T  are the 
temperatures and ,d u   ( > )u d   are the volume fractions of nanoparticles at the lower and upper boundaries, 
respectively (as shown in Fig. 1). The presence of nanoparticles is considered to not affect the direction and speed with 
which microorganisms swim. Physically, this is possible if a flow generated by bioconvection exists for a small 
concentration of nanoparticles. The terminology for nanoparticles are written using Buongiorno's [5] theory, whereas 
those for gyrotactic microorganisms are written using Pedley's [19]-[21] approach. 

 
Figure 1. Geometry and coordinate system of the problem 

Fig. 1 depicts the problem's geometry. We used the Cartesian coordinates ( , , )x y z  with the z -axis points 
vertically upward. The gravitational force = (0,0, )g g  acts vertically downwards, while the magnetic field 

0 0= (0,0, )H H


 acts vertically upwards. DV


 is the Darcy velocity, which is related to the nanofluid velocity V


 as 

=DV V
 

. The physical model of our problem consists of the following assumptions: 
• All thermophysical characteristics are constant except for density in the buoyant force (Boussinesq 

approximation).  
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• Because the fluid phase, microorganisms, and nanoparticles are in a condition of thermal equilibrium, the heat 
flow may be described using a one equation model.  

• Nanofluid is incompressible, electrically conducting, viscous, laminar, and nanoparticles are non-magnetic 
spherical particles. 

• Each boundary wall is assumed to be impermeable and perfectly thermal conducting.  
• The porous material is completely saturated with a nanofluid in which microorganisms can swim.  
• The material's pores must be big enough to accommodate biological organisms and their movement.  
• The solid porous matrix does not absorb microorganisms, and each one has the same volume and form, as well as 

swimming at the same speed.  
• The heating from below has no influence on the cells' gyrotactic activity and does not kill them.  
According to the above assumptions, the bioconvective motion of gyrotactic microorganisms in a porous medium 

saturated with nanofluid in the presence of a magnetic field will be described using the Darcy-Brinkman model. Let's 
suppose that a suspension of swimming microorganisms and nanoparticles is incompressible, and therefore 

 = 0,DV


 (1) 

The conservation equation for the nanoparticles given by  

 2 2= ,D T
B

u

V DD T
t T
  



            


 (2) 

The conservation equation of cells is given by [20, 32,33] 

  = ) ,D c m
n div nV nW l D n
t


   




 (3) 

The momentum equation can be written using the Boussinesq approximation [7] as 

  20
0= ( ) [ (1 ) (1 ( ))] ( )

4
eD

D D p u
V P V V H H g T T g n
t K

      
 


            


      
  (4) 

here the buoyancy force is made up of three different components: the fluid's temperature change, the distribution of 
nanoparticles (nanoparticles are heavier than water), and the concentration of microorganisms (microorganisms are also 
heavier than water). In equation (4), the external magnetic field is taken into account with the help of an additional 
force, the Lorentz force, which affects the movement of the electrically conductive nanofluid. 

The thermal energy conservation equation is  

 2

1

( ) ( ) = ( )m f D m p B T
T T Tc c V T k T c D T D
t T

    
                 


 (5) 

The inductive magnetic fields caused by convective flows of an electrically conductive nanofluid is described by 
the following equations [41] 

   2=D DV VH H H H
t


 

            
 (6) 

 = 0H


, (7) 

here = (1 )p f      is the nanofluid density, 0 0= (1 )p f      is the nanofluid reference density, p  and f  
are the density of nanoparticle and base fluid, respectively. 0f  is the base fluid density at the reference temperature 

uT ,   is the volumetric fraction of nanoparticles. BD  and TD  denote the Brownian diffusion coefficient and 
thermophoretic diffusion, respectively. ( ) , ( ) , ( )f p mc c c    are fluid heat capacity, nanoparticles heat capacity and 
medium heat capacity, respectively. n  is the concentration of microorganisms,   is the density difference between 
microorganisms and a base fluid: m f  ,   is the average volume of a microorganism, mD  is the diffusivity of 

microorganisms. We assumed that random motions of microorganisms are simulated by a diffusion process. cW l


 is the 

average microorganism swimming velocity ( cW  is constant, l


 is a unit vector of movement of microorganisms). P  is 
the pressure,   is the thermal expansion coefficient, = (0,0,1)e  is a unit vector in the direction of the axis z .   is the 
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porosity of the porous medium, K  is the permeability of the porous medium,   is the effective viscosity,  ,   and 

e  are the viscosity, magnetic viscosity and magnetic permeability of nanofluid, respectively. 
We assume that the temperature and volume fraction of nanoparticles have fixed values at the boundaries of the 

porous layer.  

 = 0, = , = , = 0, = 0d dw T T J e at z  
   (8) 

 = 0, = , = , = 0, =u uw T T J e at z h  
 

, (9) 

where = D
c m

VJ n nW l D n

  

 
 is the flux of microorganisms. 

Let us introduce the following non-dimensional parameters  

 
* * * * * * * *

2

( , , )( , , ) = , ( , , ) = ( , , ) , = ,m
D D

m

tx y z hx y z V u v w V u v w t
h h


 

 
 

 * *

0

( )= , = , = , = ,
( ) ( )

m m
m

m f f

k cPK nP n
c c N


 

  
 (10) 

 * * *

0

= , = , = ,d u

u d d u

T THH T
H T T

 


 
 
 


 

where 0 =N const  is average concentration of microorganisms in the layer. Using expressions (10) and omitting the 
asterisks, we get the following system of dimensionless equations  

 = 0DV


, (11) 

 
2 21 1=D A

e e

V N T
t L L
  



            


, (12) 

 �
1 1= D

b b

n PenV nl n
t L L

 
      


, (13) 

 

21 =

( )

bD
a D D m n

a b

RV P D V V eR eR e N
t L

PreRaT Q H H
Pm




       


   

     

 
 , (14) 

 2 2( ) = ( )B A B
D

e e

N N NT V T T T T
t L L


        




, (15) 

 
21 = ( )D DV VH PrH H H

t Pm 

             

    
, (16) 

 = 0H


. (17) 

In Eqs. (11)-(17), we introduced the following dimensionless parameters: 
( )=

( )
m

a
a f

cPr
D c

 
 

  is the modified Vadasz number, 


2=a
KD
h




 is the Darcy number, 
0

=
m

Pr 
 

 is the Prantdl 

number, 
0

=Pm 
 

 is the magnetic Prantdl number, = m
e

B

L
D
  is the nanoparticle Lewis number, = m

b
m

L
D
  is the 
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bioconvection Lewis number, 
2
0=

4
e H KQ 


 is the Chandrasekhar-Darcy number, 0 ( )=b
m

ghN KR
D



  is the 

bioconvection Rayleigh-Darcy number, 0[ (1 )]( )
= p d d

m
m

ghK
R

   


   is the basic density Rayleigh-Darcy number, 

0( )( )
= p u d

n
m

ghK
R

   


   is the concentration Rayleigh-Darcy number, 0 ( )= d u

m

ghK T TRa  


  is the Rayleigh-

Darcy number, 
( )

= ( )
( )

p
B u d

f

c
N

c
 

 


  is the modified nanoparticles density, ( )=
( )

T d u
A

B u u d

D T TN
D T  




 is the modified 

diffusivity ratio, = c

m

W h
Pe

D
 is bioconvection Peclet number. 

Eq. (14) has been linearized using a small temperature gradient in a dilute suspension of nanoparticles and 
microorganisms using the Boussinesq approximation. Equations (11)-(17) are supplemented with boundary conditions 
in non-dimensional form:  

 = 0, = 1, = 0, = , = 0,dnw T Pen at z
dz

  (18) 

 = 0, = 0, = 1, = , = 1.dnw T Pen at z
dz

  (19) 

 
2. EQUATIONS FOR PERTURBATIONS 

Let's start with the assumption that the fluid layer is at rest. The physical system is then moved slightly out of its 
equilibrium position. We assume that all variables in Eqs. (11)-(17) can describe the sum of the steady and perturbed 
components:  

  '' ' ' '= 0, = ( ) , = ( ) , = ( ) , = ( ) , =b b b b bV P P z p T T z T z n n z n l e m      
   . (20) 

The steady profiles of temperature ( )bT z  and the volume fraction of nanoparticles ( )b z  are found from the 
solutions of the equations  

 
22

2 = 0,b b b bB A B

e e

d T d dT dTN N N
L dz dz L dzdz

       
 

 (21) 

 
2 2

2 2 = 0.b b
A

d d T
N

dz dz


  

Taking into account the experimental data for most nanofluids [5], a good approximation of the base state (21) is a 
linear dependence on z  for ( )bT z  and ( )b z  (see, for example, [16]):  

 ( ) = 1 , ( ) = .b bT z z z z  (22) 

The pressure distribution in the ground state satisfies the equation  

 ( ) = ( ) ( ) ( )b b
m n b b b

b

dP z R
R R z N z RaT z

dz L
    , (23) 

from which the explicit form ( )bP z  may be found by integration. The stationary profile of the concentration of 
microorganisms ( )bn z  is determined by the following expression [19] 

 0
exp( )( ) = ,

exp( ) 1b
Pe zPen z N

Pe



 (24) 

For the case of small Peclet numbers Pe , it follows from (24) that 0( ) =n z N const . Following the approach as 
in article [22], to simplify the, we will focus on this case. 

According to publications[19],[ analysis 32], the equation for the perturbation of a unit vector indicating the 
direction of swimming of microorganisms has the following form:  
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  '
= 0 ,m i j e   

  
   (25) 

where i


 and j


 are the unit vectors in the x - and y -directions, respectively.  2= (3 / )( / )m mgd h    is a 
dimensionless parameter characterizing the reorientation of microorganisms under the action of a gravitational moment 
against viscous resistance, d  is the displacement of the center of mass of the cell from the center of buoyancy. In Eq. 

(25), the parameters   and   in the x - and y -components of vector 
'

m  are  

 
' '

0 0= (1 ) (1 )w u
x z

   
   

 
, (26) 

 
' '

0 0= (1 ) (1 )w v
y z

   
  

 
. 

0  is the cell eccentricity which is given by the following equation [19,32]: 

 
2 2

0 2 2= max min

max min

r r
r r





, (27) 

where maxr  and minr  are the semi-major and semi-minor axes of the spheroidal cell. 
Taking into account Eqs. (25)-(26), we get the following equation for the perturbation of the cell number density:  

 
' ' 2 ' 2 ' 2 '

2 '
0 02 2 2

1 1(1 ) (1 ) =
b b

n Pe dn d w w wPeG n
t L dz Ldz x y

 


                    
, (28) 

where 2= /mG D h  is a dimensionless orientation parameter [22]. 
After substituting (20) into the equations (12)-(16), we get equations for the variables ' ' ' ' ' ', , , , ,u v w T b  , which are 

also linearized. Further, the analysis of equations for the perturbation will be investigated by the method of normal 
modes, assuming that the perturbing quantities have the following form:  

 
(' ' ' ' ' ' ' )

[ , , , , , , ] = [ ( ), ( ), ( ), ( ), ( ), ( ), ( )]
i kx yx k y t

u v w T n b U z V z W z z z N z B z e



 

  , (29) 

where ,x yk k  are the wave number along the x  and y  directions, and 2 2= x ya k k  is the horizontal wave number of 
the disturbances. The growth rate parameter is denoted by  . 

Using (29), we get the linearized equations in dimensionless form after a few simple but cumbersome 
transformations:  

 
2

2 2 2 2 2 2 2 2( ) 1 ( ) ( ) = 0b
a n z

a b

a R QPrD D a D a W a Ra a R N D D a B
L Pm

             
 

, (30) 

 2 2 (1 2 ) = 0B B
A

e e

N ND a N D D W
L L


          
 

, (31) 

 
2 2 2 2( ) = 0e e

A
L L WD a N D a



         
 

, (32) 

 
2 2 2 2

0 0
1 ( ) ((1 ) (1 ) ) = 0

b b

PeD a D N PeG D a W
L L

  


          
 

, (33) 

 
2 2( ) = 0z

Pr DWD a B
Pm




      
 

. (34) 

The system of equations (30)-(34) is reduced to one equation for W  using the elimination of variables technique 
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b
B N

b
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L Na R L L L N D a L D W

R QPra LL L LL L D D a
L Pm

  



 



 




                                        

, (35) 

where the operators are 

     2 2= (1 2 ) ( )B A B
T A

e e

N N NL L L N L D D a D
L L

     , 

   2 2=TL D a   ,       2 2
0 0= 1 1PeG D a     , 

  2 2 1= ( ) 1D a aL D D a     ,  
2 2= eLL D a 


  , 

 


2 21= ( )N

b b

PeL D a D
L L




   ,  
2 2= ( )B

PrL D a
Pm




  . 

Eq. (33) is supplemented with boundary conditions for free boundaries 

 2= = 0 = 0,1W D W at z . (36) 

Equation (35) describes bioconvection in a layer of a porous medium saturated by an electrically conducting 
nanofluid in an external vertical magnetic field. Further, we will use a single term approximation of Galerkin method to 
solve (35). 

 
3. OSCILLATING AND STATIONARY CONVECTION REGIMES 

The eigenfunctions W  of equation (35) take the form of a simple harmonic for free boundary conditions (39):  

 0= sinW W z , (37) 

where 0W  is constant. By substituting (40) for (38) and integrating across the layer thickness = (0,1)z , the 
characteristic equation is obtained, with Rayleigh number Ra  as the eigenvalue:  
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                     
                              

, (38) 

where 

 2 2 1= ( ) 1D a aD a      , 2 2=T a    , 
2 21= ( )N

b

a
L




   ,  
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1
= B

N
b N

N PeP
L


 

, 2 21
2

= 1 1 2 ( )N A
N A

T e

P NP N a
L 




          
,  

 
2 2= ( )B

Pr a
Pm




   ,     2 2
0 0= 1 1PeG a       .  

For most nanofluids, the quantities ,B B

e

N NPe Pe
L 

 are small ( 4= 7.5 10BN  , = 5000eL  see, for example, [5]), 

and expression (38) becomes simpler  
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2 2 2 2 2
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( )= ( ) ( )
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bn eD T T
T A
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R
LR La QPrRa a N a

Pma a






  

 

                        
 (39) 

In the equation (39) the growth rate   of perturbations is generally complex = r ii   . It is obvious that the 
system is stable if < 0r  and unstable if > 0r . Let us determine the stability boundary for monotonic = 0i  and 
oscillatory 0i   perturbations. At the stability boundary (neutral states), = 0r ; therefore, making the substitution 

= ii   in Eq. (39), we find  

 ( ) ( )= ,r i
iRa Ra i Ra  (40) 

where ( )rRa  and ( )iRa  are the real and imaginary parts of the dispersion equation for Ra :  
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 (41) 

where =B bRa R PeG  is the modified bioconvection Rayleigh-Darcy number. 
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

 (42) 

Since the value Ra  is real, then the imaginary part in (40) must vanish. In this case, the following situation 
= 0i  or ( ) = 0iRa  is possible. 

 
4.1. Oscillating convection regime 

In the case of an oscillatory perturbation 0i   ( ( ) = 0iRa ), we find the critical Rayleigh-Darcy number for 
oscillatory instability using the formula (41)  
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(43) 
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and the frequency of neutral oscillations = i  , satisfying the following equation:  

   

6 4 2

0 1 2 3 = 0     
  

                      
     

, (44) 

where the following notation has been introduced:  
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Equation (44) is cubic in 2 , so it can lead to more than one positive value of 2  for fixed values of the 
parameters , , , , , , , , , ,a a n e A b BD Q Pr Pm R L N L Ra  and 0 . If there are no positive solutions to Eq. (44), then 
oscillatory instability is impossible. Our numerical solution of Eq. (44) for the range of parameters considered here 
gives only a negative value of 2 , which indicates the impossibility of an oscillatory neutral solution. As a result, we'll 
go through the stationary convection regime in significant detail. 
 

4.2. Stationary convection regime 
The marginal state will be characterized by = 0i , and the dispersion relation (41) reduces to  
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 (45) 

The last term in (45) describes a new effect of the influence of the motion of gyrotactic microorganisms on thermal 
instability. Thus, we have obtained a new way to control magnetic convection in a porous medium saturated with 
nanofluid using bioconvection of gyrotactic microorganisms. 
 Let us now continue to a more exhaustive analysis of the equation (45). The critical wave numbers for the onset of 
convection are found from the condition  

 
=

0st

a acr

Ra
a

      
 (46) 

 We get an equation for determining cra  by substituting the expression (45) into the condition (46). This equation has a 
rather cumbersome form, so we do not present it here. However, we can conclude that the critical wave number cra  
does not depend on the nanofluid parameters ( , , )n e AR L N , but depends on the dimensionless parameters 

0, , , , , ,a bD Q R Pe G  . We will be doing a numerical study of the dispersion equation (45) using the physical 
characteristics of the 2 3Al O -water nanofluid from [5]:  

 0 = 0.001 , 3= 1000 /f kg m , 3= 10 Pas  , (47) 
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 3 3= 4 10 /d kg m  , 7 2= 2 10 /m m s  , 3= 3.4 10 1/ K  , 

 11 2= 4 10 /BD m s ,  11 2= 6 10 /TD m s , 

 6 3( ) = 3.1 10 /pc J m  , 6 3( ) = 4 10 /fc J m  , 

 = 1d uT T K , = 300uT K , = 5000eL , 3 3= 4 10 /p kg m  . 

The above-mentioned parameter values give the following dimensionless parameter values: = 5000, = 5eL Pr , 
and = 5AN . The concentration Rayleigh-Darcy and bioconvection Rayleigh-Darcy numbers can be changed by varying 
the distance between the borders and the nanoparticle and microorganisms volumetric concentration. For a complete 
numerical analysis, we need the estimated parameters of gyrotactic microorganisms, for example, for the alga 
Chlamydomonas nivalis [20]:  

 4 2= 5 10 /mD cm s , 6 3
0 = 10N cm , 2

0( ) / = 5 10   , (48) 

 10 3= 5 10 cm , 2= 10 /cW cm s .  

Next, we will fix the value for the parameter nR  as = 0.122nR  and bR  as 5= 1.2 10bR  . The values of the parameters 
Pe  and G  change in the neighborhood of = 0.1Pe  and = 0.01G [34]. The cell eccentricity can change in the range 

0 [0,1]  [20]. 
In addition, we will be doing a numerical study of the dispersion equation (45) using the physical characteristics of 

nanofluids from metallic and semiconductor nanoparticles. Yang et al. [42] found that the physical characteristics of 
nanofluids change with the form, size, and volumetric percentage of nanoparticles. Metallic nanofluids, as the name 
implies, are metallic nanoparticles dispersed in a base fluid. Because metallic nanoparticles have a high thermal 
conductivity, they increase the thermal conductivity of nanofluids. We consider nanoparticles of metals ( Cu  and Ag ) 
dispersed in the base fluid water for analyzing the stability of metallic nanofluids. For Cu -water nanofluid, the values 
of nanofluid parameters at = = 0.001u d   (nanoparticle concentration) are = 0.392nR , = 0.5AN , = 5000eL , 
and for Ag -water nanofluid: = 0.465nR , = 0.5AN , = 5000eL  [16]. The electrical conductivity of semiconductor 
materials is approximately between a conductor and an insulator. At = 0.001  (nanoparticle concentration), the 
values of nanofluid parameters are = 0.159nR , = 20AN , = 5000eL  for 2TiO -water nanofluid and = 0.0785nR , 

= 17.5AN , = 5000eL  for 2SiO -water nanofluid [16]. 
 

5. WEAK NONLINEAR STABILITY ANALYSIS 
We explored linear stability analysis using the normal mode method in the previous section. Although linear 

stability analysis is appropriate for studying the stability condition of the motionless solution describing convective 
flow. However, this approach cannot offer information regarding convection amplitudes and hence heat and mass 
transfer rates. In this section, we consider the situation of two-dimensional rolls, assuming that all physical variables are 
independent of y . In this case, Eqs. (1) and (7) for velocity and magnetic field perturbations will take the form  

 
' '' '

= 0, = 0.x zb bu w
x z x z

  
 

   
 (49) 

We may introduce two scalar functions using Eq. (49), the hydrodynamic function of the current   and the magnetic 
function  , for which the following relationships hold:  

 ' ' ' '= , = , = , = .x zu w b b
z x z x
    

 
   

 (50) 

Then equations (2)-(6) for the perturbed quantities, taking into account nonlinear effects, take the following form for 
dimensionless variables  
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where  
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The boundary conditions considered for solving the given system of equations (51)-(55) are  

 2 ' ' '= = = = = = = 0, = (0,1)D D N T at z     (56) 

We use the following Fourier expressions to perform a local nonlinear stability analysis:  
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We limit our research with the Fourier analysis of the minimum order, namely, for the current function   and 
magnetic potential   we take the modes (1,1) , and (1,1) (0,2)  for nanoparticle volume fraction, concentration of 
microorganisms (or cells), and temperature perturbations:  

 11= ( )sin( )sin( ),A t kx z   

 11= ( )sin( )cos( ),B t kx z  

 '
11 02= ( )cos( )sin( ) ( )sin(2 ),C t kx z C t z    (58) 

 '
11 02= ( )cos( )sin( ) ( )sin(2 ),N D t kx z D t z   

 '
11 02= ( )cos( )sin( ) ( )sin(2 ).T E t kx z E t z   

The minimum order Fourier expansion was first used by Lorentz to model atmospheric convection [23]. The 
system of ordinary differential equations obtained by Lorentz is a low-order spectral model, but it is quite capable of 
qualitatively reproducing convective processes, in particular, the transition to a weakly turbulent state (chaos) through a 
series of bifurcations. In this study, we also use the Lorentz approach in describing the weakly nonlinear stage of 
convective instability. However, we do not touch upon issues related to the chaotic behavior of the obtained system of 
ordinary differential equations (51)-(55) since it requires a particular study. So we apply the weakly nonlinear theory 
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[43]-[45] to the problem of determining the characteristics of heat and mass transfer: nonstationary Nusselt ( )Nu t  and 
Sherwood ( )Sh t  numbers. 

Substituting (58) in (51)-(55) and taking into account the orthogonality condition, we get the evolution equations 
for amplitudes:  
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In phase space, the eight-mode differential Eqs. (59)-(66) have an interesting property that indicates that the 
system is dissipative:  
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As a result, the impact of parameters , , , , ,n b e A b aR R L N L   on trajectories is to attract them to a set of measures 
zero, or a fixed point. For the time-dependent variables, the nonlinear system of differential equations cannot be solved 
analytically and must be solved numerically. In the case of steady motions, Eqs. (59)-(66) become:  
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The steady state solutions are useful because they indicate that the system can have a finite amplitude solution. 
When all amplitudes except 11A  are eliminated, an equation with 2

11 / 8A  is obtained:  
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where  
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In the limit of small amplitudes 11(    0)A  , Eq. (69) transforms into dispersion equation (45) for the stationary 
convection regime when the wave number a  is replaced by k . It should be noted that the amplitude of the stream 
function must be real, hence we must only consider positive signs in the roots of Eq. (69). If we determine the value of 

11A , we can find the value of heat and mass transfer in a stationary regime. 
 

6. RESULTS AND DISCUSSIONS 
6.1. Analysis of the linear regime of stationary convection 

Now, we will study the effects of axial magnetic field, Darcy number, medium porosity, Lewis number, modified 
diffusivity ratio, concentration Rayleigh-Darcy number, modified bioconvection Rayleigh-Darcy number 

=B bRa R PeG , and the cell eccentricity on thermal instability. We calculate the derivatives  

 
0

, , , , , , , ,st st st st st st st st

a e A n B

dRa dRa dRa dRa dRa dRa dRa dRa
dQ dD d dL dN dR dRa d 

 

using Eq. (45), as a result we obtain  
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Eq. (70) shows that the derivative /stdRa dQ  is always positive, i.e. the vertical magnetic field has a stabilizing 
effect on stationary convection in the porous medium. As a consequence, it is discovered that increasing the magnetic 
field delays the initiation of convection, which is agreement with the results derived by Ahuja et al. [13]. 

Eq. (71) implies that the Darcy number has a stabilizing influence on the stationary convection of the system, 
which is in a good agreement with the results derived by Kuznetsov and Nield [7], Rana and Chand [11], 
Ahuja et al. [13]. With an increase in Darcy number, stRa  increases, indicating that the heat transmission characteristics 
of the nanofluid will improve. Therefore, the effect of the Darcy number, as well as the magnetic field, delays the onset 
of convection. 

Eq. (72) shows that porosity can have both a stabilizing and destabilizing effect. If inequality 

  
 2 2 2

2 2 2>n A e
a QR N L

a
 

 


  

is satisfied, then porosity delays the onset of convection. This conclusion is in good accord with Ahuja et al. [13] 
results. 
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The following conclusions may be drawn from Eq. (73). Because all of the parameters ,e AL N , and nR  are 
positive for the current configuration of nanoparticles, and the expression ( / )n e AR L N   appears with a negative sign, 
it is obvious that the suspension of nanoparticles in ordinary fluids decreases the critical value of Rayleigh number. As a 
result, the system with nanoparticle distribution at the top of the fluid layer is less stable than the system with regular 
fluid and bottom heavy nanoparticle distribution. 

Finally, we proceed to study the impact of gyrotactic microorganism bioconvection on magnetic convection. For 
this purpose, we calculate the following derivatives  
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Eq. (74) shows that the spherical shape of microorganisms 0 = 0  contributes has a destabilizing effect since  

 2 2= ( ) < 0st

B

dRa
a

dRa
   (76) 

Thus, increasing the value of modified bioconvection Rayleigh-Darcy number BRa  enhances the magnetic 
convection nanofluid in the layer of a porous medium. In the case of an arbitrary form of microorganisms, an increase 
in the parameter BRa  can both stabilize (at 2 2 2 2

0< ( )a a    ) and destabilize (at 2 2 2 2
0> ( )a a    ) the 

thermal instability if 0  is positive: 0 > 0 . 
Eq. (75) shows that 0/stdRa d  can be positive or negative, i.e. the cell (or microorganism) eccentricity has a 

stabilizing (if 2 2< a ) or destabilizing (if 2 2> a ) effect on stationary convection. This conclusion remains valid for 
positive > 0BRa  numbers. 

 
6.2. Heat and mass transports 

The determination of heat and mass transport is critical in the study of fluid convection. This is because the onset 
of convection, when the Rayleigh number increases, is more easily observed through its influence on heat and mass 
transport. Consequently, heat and mass fluxes of nanoparticles are important in identifying thermal- and bioconvective 
motion in its early stages. Heat transfers can be calculated and described using the Nusselt number ( )Nu t  (see, for 
example [45])  
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According to (22) and (57), we get from (77)  

 02( ) = 1 2 ( )Nu t E t  (78) 

Similarly, the Sherwood number for nanoparticle concentration ( )Sh t  is determined to be:  
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In the next section, we will consider the numerical/graphical investigation of the equations (70)-(79) by 
considering the numerical values of various parameters of the system. 
 

7. NUMERICAL RESULTS AND DISCUSSION 
In this section, we use the standard Maple computer environment programs for the numerical analysis of equations 

(70)-(75) and (78)-(79). Nonlinear equations (59)-(66) were solved by the 4th-5th order Runge-Kutta-Felberg method 
(rfk45) with initial conditions:  

11 11 11 02 11 02 11 02(0) = (0) = (0) = (0) = (0) = (0) = (0) = (0) = 1A B C C D D E E . 
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7.1. Stationary MHD bioconvection in 2 3Al O -water nanofluid 
Figures 2 and 3 depict the role of the magnetic field, Darcy parameter, porosity, Lewis number, modified 

diffusivity ratio, nanoparticles concentration Rayleigh number, modified bioconvection Rayleigh-Darcy number, and 
cell (or microorganism) eccentricity 0  on Rayleigh number for metal oxide ( 2 3Al O ) nanoparticles in water based 
nanofluid. The physical properties of aluminum-water nanofluids are given in (47). 
 

 
Figure 2. Dependence of the Rayleigh number of stationary convection on the wavenumber a  for parameter variations: (a) 

magnetic field (Chandrasekhar number) Q ; (b) Darcy number aD ; (c) medium porosity  ; (d) Lewis number eL  

In Fig. 2a, the Rayleigh-Darcy number is plotted against the dimensionless wavenumber for different values of the 
axial magnetic field (Chandrasekhar number). This shows that as values of axial magnetic field increase, the Rayleigh-
Darcy number also increases for fixed values 

0= 0.5, = 0.4, = 5000, = 5, = 0.122, = 120, = 0.4a e A n BD L N R Ra  . 

As a consequence, the axial magnetic field can stabilize stationary convection, which is consistent with the 
analytical conclusion obtained from Eq. (70). 

For different values of the Darcy number, the Rayleigh-Darcy number is displayed against the dimensionless 
wavenumber in Fig. 2b for fixed values 

0= 250, = 0.4, = 5000, = 5, = 0.122, = 120, = 0.4e A n BQ L N R Ra  . 

This demonstrates that when Darcy's number rises, so does the Rayleigh-Darcy number. As a result, the Darcy 
number has a stabilizing impact on stationary convection, which is in agreement with the analytical result obtained from 
Eq. (71). 

For different values of medium porosity, the Rayleigh-Darcy number is plotted against dimensionless wavenumber 
in Fig. 2c for fixed values 

0= 0.5, = 250, = 5000, = 5, = 0.122, = 120, = 0.4a e A n BD Q L N R Ra  . 

This shows that when porosity increases, the values of Rac decrease significantly. As a result, medium porosity 
has a destabilizing impact on stationary convection, which is consistent with the analytical result obtained from 
Eq. (72).  
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Figure 3. Dependence of the Rayleigh number of stationary convection on the wavenumber a  for parameter variations: 

(a) modified diffusivity ratio AN ; (b) concentration Rayleigh-Darcy number nR ; 
(c) modified bioconvection Rayleigh-Darcy number BRa ; (d) cell eccentricity 0  

In Figs. 2d, 3a, 3b the Rayleigh-Darcy number is plotted against dimensionless wavenumber for different values of 
Lewis number, modified diffusivity ratio, and concentration Rayleigh number. These show that as Lewis number, 
modified diffusivity ratio, and concentration Rayleigh number increase, the Rayleigh-Darcy numbers decrease. Thus, 
the nanofluid parameters have a destabilizing effect on stationary convection, which is in good agreement with the 
result obtained analytically from Eqs. (73). 

In Fig. 3c, the stationary Rayleigh-Darcy number stRa  is plotted against dimensionless wave number a  for 
different values of modified bioconvection Rayleigh-Darcy number BRa  for fixed values 

0= 0.5, = 250, = 0.4, = 5000, = 5, = 0.122, = 0.4a e A nD Q L N R  . Curve 1 depicts the dependency of the stationary 
Rayleigh-Darcy number on the wave number in the absence of the impact of microorganism bioconvection, i.e. when 

= 0bR . A similar dependence also arises in the case when there is no gyrotax = 0G  ( = 0BRa ). The gyrotaxis number 
G  characterizes the deviation of the cell's swimming direction from strictly vertical. If = 0G , there is no gyrotaxis and 
the microorganisms swim vertically upwards (show negative geotaxis). Pedley et al. [19] demonstrated that a 
suspension of gyrotactic microorganisms ( > 0G ) is unstable under the same conditions. As a result, gyrotaxis plays a 
role in the emergence of bioconvection instability. As can be seen from Fig. 3c, with an increase in the parameter BRa , 
the threshold for the occurrence of magnetic convection decreases. This is because the movement of microorganisms 
leads to a redistribution of the density of the nanofluid, reducing  the process of heat transfer in the nanofluid. As a 
consequence, the cell's swimming can destabilize stationary magnetoconvection, which is consistent with the analytical 
conclusion obtained from Eq. (74). 

Table 1. Critical Rayleigh numbers min
stRa  and critical wavenumbers crk  for 2 3Al O -water nanofluid at fixed parameters = 0.122nR , 

= 5AN , = 5000eL    

Q  aD    BRa  0  min
stRa  crk  

250 0.5 0.4 120 0.4 2544.36 8.31
350 0.5 0.4 120 0.4 5355.59 8.51
450 0.5 0.4 120 0.4 8151.92 8.69
250 0.3 0.4 120 0.4 445.25 10.57
250 0.5 0.4 120 0.4 2544.36 8.31
250 0.8 0.4 120 0.4 4095.58 6.86
250 0.5 0.3 120 0.4 4379.85 8.48
250 0.5 0.4 120 0.4 2544.36 8.31
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Q  aD    BRa  0  min
stRa  crk  

250 0.5 0.5 120 0.4 1436.89 8.19
250 0.5 0.4 0 No 7730.31 5.90
250 0.5 0.4 120 0.4 2544.36 8.31
250 0.5 0.4 140 0.4 1384.94 8.85
350 0.5 0.4 120 0 1459.64 5.32
350 0.5 0.4 120 0.4 5355.59 8.51
350 0.5 0.4 120 0.6 6675.31 7.60

In Fig. 3d, the stationary Rayleigh-Darcy number stRa  is plotted against dimensionless wave number a  for 

different values of cell eccentricity 0  for fixed values  
= 0.5, = 350, = 0.4, = 5000, = 5, = 0.122, = 120a e A n BD Q L N R Ra . As can be seen from Fig. 3d, the spherical shape 

of microorganisms has a destabilizing effect on the beginning of magnetoconvection. This conclusion is confirmed by 
analytical results Eqs. (75) and (76). 

The critical Rayleigh numbers min
stRa  and the corresponding critical wavenumbers cra  for different values of 

, , ,a BQ D Ra  and 0  for 2 3Al O -water nanofluid are shown in Table 1. Let's notice that results in Table 1 were obtained 
numerically using (46) for 2 3Al O -water nanofluid and are in good agreement with the graphical results in 
Figs. 2a, 2b, 2c and Figs. 3c, 3d. In the limiting case when there are no microorganisms ( = 0BRa ), the results from 
Table 1 are in good agreement with the results of paper [18]. 

 
7.2. Stationary MHD bioconvection in Cu ( Ag )-water and 2TiO ( 2SiO )-water nanofluids 

We now consider the graphical interpretation of numerical calculations for metallic nanofluids ( Cu , Ag ) and 
semiconductors ( 2TiO  and 2SiO ). We investigate the impact of several nanofluids (metal, metal oxide, and 

semiconductor) on stationary convection by fixing the values of the parameters , , , , , ,aDa Q Pr Pm   , , BLe Lb Ra  
and 0 . The thermal Rayleigh-Darcy number stRa  is plotted against the wavenumber for several nanofluids in Fig. 4. 
From Fig. 4, we can see that the 2SiO -water nanofluid exhibits the highest stability compared to 2 3Al O -water, 

2TiO -water, Cu -water and Ag -water nanofluids. The phenomena for this behavior is not only the different density of 
nanoparticles but also different thermophysical properties. We can conclude that semiconductor and metal oxide 
nanoparticles have a more destabilizing effect on stationary convection than metallic nanoparticles. 

Figure 4. Dependence of the Rayleigh number of stationary convection on the wavenumber a  for metal oxide ( 2 3Al O ), metallic 
( Cu , Ag ), and semiconducting ( 2TiO , 2SiO ) nanoparticles in water based nanofluids 

( 0= 0.5, = 450, = 0.4, = 5000, = 120, = 0.4a e BD Q L Ra  ) 

Let us now consider the impact of different nanofluid parameters on the thermal instability of the system under the 
simultaneous influence of magnetic field. Figures 5a and 5b illustrate the impact of the Chandrasekhar number on the 
Rayleigh-Darcy number for metals ( Cu , Ag ) and semiconductors ( 2TiO , 2SiO ) in water-based nanofluids. These 
figures show that when the value of the Chandrasekhar parameter Q  increases, the values of the thermal Rayleigh-Darcy 
number for both forms of convection increase, indicating that magnetic field has a stabilizing impact. The curves depicting 
the influence of Chandrasekhar number for Cu -water nanofluid are above those for Ag -water nanofluid, indicating that 
Cu -water nanofluid is more stable than Ag -water nanofluid. When the situation of semiconductors is considered 
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(Fig. 5b), it is found that 2SiO -nanoparticles improve the stability of nanofluid more than 2TiO -nanoparticles as the 
Chandrasekhar number increases. Thus, it is also interpreted from the figures that semiconductors inhibit the onset of 
convection as compared to metals under the influence of magnetic field. 

 
Figure 5. Impact of Chandrasekhar number Q  on the stationary convective instability for different nanofluids: (a) Cu ( )Ag -

water; (b) 2TiO ( 2SiO )-water ( 0= 0.5, = 0.4, = 5000, = 120, = 0.4a e BD L Ra  ) 

Figures 6a and 6b show the effect of Darcy number on the system. The value of stRa  increases with the increase 
in Darcy's number and hence the Darcy number aD  delays the onset of instability. By increasing the Darcy number 
Cu -water and 2SiO -water nanofluids exhibit higher stability   than Ag -water and 2TiO -water nanofluids. 

 
Figure 6. Impact of Darcy number aD  on the stationary convective instability for different nanofluids: 

(a) Cu ( Ag )-water; (b) 2TiO ( 2SiO )-water ( 0= 350, = 0.4, = 5000, = 120, = 0.4e BQ L Ra  ) 

Further, let us study the influence of the effect of porosity on the system. Figures 7a and 7b show that the increase 
in   porosity stimulates the onset of instability. The critical Rayleigh-Darcy numbers for nonmetallic nanofluids are 
higher than that for metallic nanofluids. 

 
Figure 7. Impact of porosity   on the stationary convective instability for different nanofluids: 
(a) Cu ( )Ag -water; (b) 2TiO ( 2SiO )-water ( 0= 0.5, = 350, = 5000, = 120, = 0.4a e BD Q L Ra  ) 
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Figures 8a and 8b illustrate the impact of modified bioconvection Rayleigh-Darcy number BRa  on the stationary 
convective instability for metallic and semiconductors nanofluids. We can observe that the cell's swimming can 
destabilize stationary magnetoconvection since the threshold for the occurrence of magnetic convection decreases when 
the parameter BRa  is increased. As can be seen from Fig. 8 nonmetallic nanoparticles delay the onset of convection 
even in the absence of bioconvection = 0BRa  (or movement of microorganisms). 

 
Figure 8. Impact of modified bioconvection Rayleigh-Darcy number BRa  on the stationary convective instability for different 

nanofluids: (a) Cu ( Ag )-water; (b) 2TiO ( 2SiO )-water ( 0= 0.5, = 350, = 0.3, = 5000, = 0.4a eD Q L  ) 
Finally, let us study the influence of the effect of cell eccentricity 0  on thermal stability. Figures 9a and 9b show 

that the spherical shape of microorganisms has a destabilizing effect on the beginning of magnetoconvection for 
metallic as for nonmetallic nanoparticles. However, nonmetallic nanoparticles still retard the development of stationary 
convection. 

 
Figure 9. Impact of cell eccentricity 0  on the stationary convective instability for different nanofluids: 

(a) Cu ( Ag )-water; (b) 2TiO ( 2SiO )-water ( = 0.5, = 450, = 0.3, = 5000, = 120a e BD Q L Ra ). 

The critical Rayleigh numbers min
stRa  and the corresponding critical wavenumbers cra  for different values of 

, , ,a BQ D Ra  and 0  for metallic nanofluids ( Cu -water, Ag -water ) are shown in Table 2. Take note that the results in 
Table 2 were derived numerically using (46) for metallic nanofluids ( Cu -water, Ag -water) and correspond well with 
the graphical results in Figs. 5a, 6a, 7a, 8a, 9a. 

Table 2. The critical Rayleigh numbers min
stRa  and critical wavenumbers crk  for metallic nanofluids ( Cu -water, Ag -water) at fixed 

parameters = 5000eL , a) | = 0.392, | = 0.5n Cu A CuR N , b) | = 0.465, | = 0.5n Ag A AgR N  

Q  aD    BRa  0  a) min
stRa  a) crk  b) min

stRa  b) crk  
350 0.5 0.4 120 0.4 1981.01 8.51 1068.47 8.51
450 0.5 0.4 120 0.4 4777.34 8.69 3864.80 8.69
350 0.5 0.4 120 0.4 1981.01 8.51 1068.47 8.51
350 0.8 0.4 120 0.4 3686.96 7.11 2774.42 7.11
350 0.5 0.3 120 0.4 3608.82 8.71 2392.12 8.71
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Q  aD    BRa  0  a) min
stRa  a) crk  b) min

stRa  b) crk  
350 0.5 0.5 120 0.4 994.92 8.37 264.88 8.37
350 0.5 0.3 0 No 9406.12 6.61 8189.42 6.61
350 0.5 0.3 120 0.4 3608.82 8.71 2392.12 8.71
450 0.5 0.3 120 0 3157.93 10.73 1941.22 10.73
450 0.5 0.3 120 0.6 8817.45 8.12 7600.75 8.12

The critical Rayleigh numbers min
stRa  and the corresponding critical wavenumbers cra  for different values of 

, , ,a BQ D Ra  and 0  for semiconductor nanofluids ( 2TiO -water, 2SiO -water) are shown in Table 3. We notice that the 
numerical results in Table 3 for semiconductor nanofluids ( 2TiO -water, 2SiO -water) agree well to the graphical results 
in Figs. 5b, 6b, 7b, 8b, 9b. In the limited case of no microorganisms ( = 0)BRa , the results from Tables 2 and 3 agree 
well with the results of paper [13]. 

Table 3. The critical Rayleigh numbers min
stRa  and critical wavenumbers crk  for semiconductor nanofluids 

( 2TiO -water, 2SiO -water) at fixed parameters = 5000eL , a)
2 2

| = 0.159, | = 20n TiO A TiOR N , b)
2 2

| = 0.0785, | = 17.5n SiO A SiOR N  

Q  aD    BRa  0  a) min
stRa  a) crk  b) min

stRa  b) crk  
350 0.5 0.4 120 0.4 4890.52 8.51 5898.58 8.51
450 0.5 0.4 120 0.4 7686.86 8.69 8694.91 8.69
350 0.5 0.4 120 0.4 4890.52 8.51 5898.58 8.51
350 0.8 0.4 120 0.4 6596.47 7.11 7604.53 7.11
350 0.5 0.3 120 0.4 7489.17 8.71 8832.65 8.71
350 0.5 0.5 120 0.4 3321.94 8.37 4128.75 8.37
350 0.5 0.3 0 No 13286.47 6.61 14629.94 6.61
350 0.5 0.3 120 0.4 7489.17 8.71 8832.64 8.71
450 0.5 0.3 120 0 7038.28 10.73 8381.75 10.73
450 0.5 0.3 120 0.6 12697.80 8.12 14041.28 8.12

It is noteworthy that copper-water nanofluid is more stable than silver-water nanofluid (refer to Figures 5a, 6a, 7a, 
8a, 9a) and silicon oxide-water nanofluid is more stable than titanium oxide-water nanofluid (refer to Figures 5b, 6b, 7b, 
8b, 9b). These conclusions are consistent with the results of paper [14]. 

 
7.3. The numerical/graphical results for Nusselt ( )Nu t  and Sherwood ( )Sh t  numbers 

In general, the transition from linear to non-linear convection can be complex. The study of Eqs. (59)-(66), whose 
solution provides a full description of the two dimensional non-linear evolution issues, helps to understand the 
transition. The Runge-Kutta technique is used to solve the autonomous system of unstable finite-amplitude equations. 
Convective heat and mass transfers were calculated using Nusselt number ( )Nu t  and Sherwood number ( )Sh t . The 
results are presented in Figures 10-12. It is assumed that the original value of the Nusselt and Sherwood number are 
equal to 1 at = 0t . These figures show that when time is short, oscillations in the values of the Nusselt and Sherwood 
numbers occur, indicating an unsteady rate of heat and mass transfer in the thermal convection system. These values 
approach a steady state, equivalent to a near convection stage, as time passes. 

Figs. 10a-10h depict the temporary behavior of thermal Nusselt number ( )Nu t , for varying values of magnetic 
field (Chandrasekhar number Q ), Darcy number aD , nanoparticle concentration Rayleigh-Darcy number nR , 
bioconvection Rayleigh-Darcy number bR , modified gyrotaxis number PeG , geometric shape of microorganisms 0  
and bioconvection Lewis number bL . It is observed that as Q , aD , nR , 0  and bL  increase (see Figs. 10a, 10c, 10d, 
10g and 10h), the values of ( )Nu t  show slightly incremented, thus showing an increase in the heat transport, which are 
the similar results obtained by Agarwal et al. [44]. 

According to Figs. 10b, 10e, and 10f, when porosity  , bioconvection Rayleigh-Darcy number bR , and modified 
gyrotaxis number PeG  increase, the ( )Nu t  decreases, indicating a delay in heat transfers. 

Figs. 11a-11d and 12a-12d depict the temporary behavior of Sherwood number ( )Sh t , for varying values of 
magnetic field (Chandrasekhar number Q ), porosity  , Darcy number aD , nanoparticle concentration Rayleigh-Darcy 
number nR , bioconvection Rayleigh-Darcy number bR , modified gyrotaxis number PeG , geometric shape of 
microorganisms 0  and bioconvection Lewis number bL . 

As shown in Figs. 11a-11d and 12a-12d, the stationary level of mass transfer of nanoparticles is reached in less 
time than heat transfer. The Sherwood number varies at small intervals depending on the parameters 

0( , , , , , , , )a n b bQ D R R PeG L  . Because of the basic distribution of the volumetric concentration of nanoparticles (22), 
the stationary value of the Sherwood number surpasses 1. 
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Figure 10. Thermal Nusselt number ( )Nu t  variation with time t  for various values of: a) Chandrasekhar number Q ; b) porosity  ;

c) Darcy number aD ; d) concentration Rayleigh-Darcy number nRa ; e) bioconvection Rayleigh-Darcy number bR ; 
f) modified gyrotaxis number PeG ; g) geometric shape of microorganisms 0 ; h) bioconvection Lewis number bL . 
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Figure 11. Sherwood number ( )Sh t  variation with time t  for 
various values of: a) Chandrasekhar number Q ; b) porosity  ; 
c) Darcy number aD ; d) concentration Rayleigh-Darcy number 

n
Ra . 

Figure 12. Sherwood number ( )Sh t  variation with time t  for 
various values of: e) bioconvection Rayleig-Darcy number bR ; 
f) modified gyrotaxis number PeG ; g) geometric shape of 
microorganisms 0 ; h) bioconvection Lewis number bL . 

 
8. CONCLUSIONS 

Under a vertical magnetic field, we investigated linear stability in a horizontal porous media saturated by 
nanofluid and gyrotactic microorganisms, heated from below and cooled from above, using the Darcy-Brinkman model, 
which incorporates Brownian motion and thermophoresis. The system with nanoparticle distribution at the top of the 
fluid layer has also been proposed. The influence of gyrotaxes on the orientation of swimming microorganisms was 
used in this study. The normal mode method was used for the linear analysis. The impact of various factors on the 
development of thermal instability was then established. The results are graphically represented. The following are our 
conclusions for 2 3Al O -water nanofluid with gyrotactic microorganisms:  

 The vertical magnetic field and Darcy number enhance the stability of the system.  
 Medium porosity, Lewis number, modified diffusivity ratio and concentration Rayleigh number have a 

destabilizing influence on the stationary convection of the system.  
 An increase in the concentration of gyrotactic microorganisms (or modified bioconvection Rayleigh-Darcy 

number) enhances the onset of magnetic convection.  
 Spherical gyrotactic microorganisms contribute more effectively to the development of thermal instability.  

Similar conclusions are also valid for metallic and semiconductor nanofluids. It has been determined that copper-
nanofluid is more stable than silver-water, whereas silicon oxide-water nanofluid is more stable than titanium oxide-
water nanofluid, according to a comparative investigation of thermal instability using metallic and semiconducting 
nanofluids. 
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Graphic representation of the nonlinear theory results for 2 3Al O -water nanofluid containing gyrotactic 
microorganisms. The following conclusions may be taken from these research results: 

 The convective heat transport (Nusselt number ( )Nu t ) is enhanced with increasing 0, , ,a nQ D R  , and bL . 
 Convective heat transport decreases as , bR , and PeG  increase.  
 When the parameters 0, , , , , ,a n bQ D R R PeG  , and bL  are changed, the stationary value of mass transfer is 

established faster than convective heat transfer and is approximately ( ) 3.9Sh t   at an initial value of (0) = 1Sh .  
The results of the theoretical studies presented in this work can be applied in geophysics, especially in the study of 

sea flows through a porous medium (the ocean crust) containing nanoparticles and gyrotactic microorganisms, as well 
as in designing biosensors. 
 

ORCID IDs 
Michael I. Kopp, https://orcid.org/0000-0001-7457-3272; Volodymyr V. Yanovsky, https://orcid.org/0000-0003-0461-749X 
Ulavathi S. Mahabaleshwar, https://orcid.org/0000-0003-1380-6057 

 
REFERENCES 

[1] D. Ingham and L. Pop, Transport Phenomena in Porous Media (Elsevier, Oxford, 2005).  
[2] D. A. Nield and A. Bejan, Convection in porous media (Springer, New York, 2006).  
[3] P. Vadasz, '’Instability and convection in rotating porous media: A review,” Fluids, 4, 147 (2019), 

https://doi.org/10.3390/fluids4030147 
[4] S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Development and applications of Non-Newtonian 

flows, Vol. 66, edited by D. A. Signier and H. P. Wang (ASME, New York, 1995) pp. 99-105.  
[5] J. Buongiorno, “Convective Transport in Nanofluids,” J. Heat Trans., 128, 240 (2005), https://doi.org/10.1115/1.2150834 
[6] D. Tzou, “Thermal instability of nanofluids in natural convection,” Int. J. Heat Mass Transf., 51, 2967 (2008), 

https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.014 
[7] D.A. Nield, and A.V. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid,” Int. J. Heat Mass 

Transfer, 52, 5796 (2009), https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.023 
[8] A.V. Kuznetsov, and D A. Nield, “Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model,” 

Transp. Porous Media, 81, 409 (2010), https://doi.org/10.1007/s11242-009-9413-2 
[9] B.S. Bhadauria, and S. Agarwal, “Natural convection in a nanofluid saturated rotating porous layer: A nonlinear study,” Transp. 

Porous Media, 87, 585 (2011), https://doi.org/10.1007/s11242-010-9702-9 
[10] D. Yadav, G.S. Agrawal, and R. Bhargava, “Thermal instability of rotating nanofluid layer,” Int. J. Eng. Sci., 49, 1171-1184 

(2011), https://doi.org/10.1016/j.ijengsci.2011.07.00 
[11] G.C. Rana, and R. Chand, “On the onset of thermal convection in a rotating nanofluid layer saturating a Darcy-Brinkman 

porous medium: a more realistic model,” J. Porous Media, 18, 629 (2015), https://doi.org/10.1615/JPorMedia.v18.i6.60 
[12] U. Gupta, J. Ahuja, and R.K. Wanchoo, “Magneto convection in a nanofluid layer,” Int. J. Heat Mass Transfer, 64, 1163 

(2013), https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.035 
[13] J. Ahuja, U. Gupta, and R.K. Wanchoo, “Hydromagnetic Stability of Metallic Nanofluids (Cu-Water and Ag-Water) Using 

Darcy-Brinkman Model,” Int. J. Geophys., 2016, 9 (2016), https://doi.org/10.1155/2016/5864203 
[14] J. Sharma, U. Gupta, and R.K. Wanchoo, “Magneto Binary Nanofluid Convection in Porous Medium,” Int. J. Chem. Eng., 

2016, 8 (2016), https://doi.org/10.1155/2016/9424036 
[15] D. Yadav, R.A. Mohamed, H.H. Cho, and J. Lee, “Effect of Hall Current on the Onset of MHD Convection in a Porous 

Medium Layer Saturated by a Nanofluid,” J. App. Fluid Mech., 9, 2379 (2016), 
https://doi.org/10.18869/acadpub.jafm.68.236.25048 

[16] J. Ahuja, and U. Gupta, “Magneto convection of rotating nanofluids in porous medium: metals and semiconductors as 
nanoparticles,” Research Journal of Science and Technology, 09, 135 (2017), https://doi.org/10.5958/2349-2988.2017.00022.5 

[17] A.J. Chamkha, S.K. Jena, and S.K. Mahapatra, “MHD convection of nanofluids: A review,” J. Nanofluids, 4, 271 (2015), 
https://doi.org/10.1166/jon.2015.1166 

[18] J. Ahuja, and J. Sharma, “Rayleigh-benard instability in nanofluids: a comprehensive review,” Micro and Nano Syst. Lett. 8, 21 
(2020), https://doi.org/10.1186/s40486-020-00123-y 

[19] T.J. Pedley, N.A. Hill, and J.O. Kessler, “The growth of bioconvection patterns in a uniform suspension of gyrotactic 
microorganisms,” J. Fluid Mech., 195, 223 (1988). https://doi.org/10.1017/S0022112088002393 

[20] N.A. Hill, T.J. Pedley, and J.O. Kessler, “Growth of bioconvection patterns in a suspension of gyrotactic microorganisms in a 
layer of finite depth,” J. Fluid Mech. 208, 509 (1989), https://doi.org/10.1017/s0022112088002393 

[21] T.J. Pedley, and J.O. Kessler, “Hydrodynamic phenomena in suspensions of swimming microorganisms,” Ann. Rev. Fluid 
Mech. 24, 313 (1992), https://doi.org/10.1146/ANNUREV.FL.24.010192.001525 

[22] A.A. Avramenko, “Model of Lorenz instability for bioconvection”, Dopov. Nac. akad. nauk Ukr. 10, 68 (2010). 
[23] E. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130 (1963), https://doi.org/10.1175/1520-

0469(1963)020<0130:DNF>2.0.CO;2 
[24] A.V. Kuznetsov, “The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms,” 

Int. Commun. Heat Mass Transfer, 37, 1421 (2010), https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015 
[25] A.V. Kuznetsov, “Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth,” Eur. J. 

Mech. B. Fluids, 30, 156 (2011), https://doi.org/10.1016/j.euromechflu.2010.10.007 
[26] S. Saini, and Y.D. Sharma, “A Bio-Thermal Convection in WaterBased Nanofluid Containing Gyrotactic Microorganisms: 

Effect of Vertical Throughflow,” J. Appl. Fluid Mech., 11, 895 (2018), https://doi.org/10.29252/jafm.11.04.28062 
[27] N. Faiza, A. Shafiq, L. Zhao, and A. Naseem, “MHD biconvective flow of Powell Eyring nanofluid over stretched surface,” 

AIP Advances, 7, 065013 (2017), https://doi.org/10.1063/1.4983014 



47
A Bio-Thermal Convection in a Porous Medium Saturated by Nanofluid...          EEJP. 4 (2022)

[28] S. Zuhra, N.S. Khan, Z. Shah, and S. Islam, “Simulation of bioconvection in the suspension of second grade nanofluid 
containing nanoparticles and gyrotactic microorganisms,” Aip Advances, 8, 105210 (2018), https://doi.org/10.1063/1.5054679 

[29] S.M. Atif, S. Hussain, and M. Sagheer, “Magnetohydrodynamic stratified bioconvective flow of micropolar nanofluid due to 
gyrotactic microorganisms,” Aip Advances, 9, 025208 (2019), https://doi.org/10.1063/1.5085742 

[30] A.A.M. Arafa, Z.Z. Rashed, and S.E. Ahmed, “Radiative MHD bioconvective nanofluid flow due to gyrotactic microorganisms 
using AtanganaBaleanu Caputo fractional derivative,” Phys. Scr. 96, 055211 (2021). https://doi.org/10.1088/1402-4896/abe82d 

[31] M.I. Asjad, N. Sarwar, B. Ali, S. Hussain, T. Sitthiwirattha, and J. Reunsumrit, “Impact of Bioconvection and Chemical 
Reaction on MHD Nanofluid Flow Due to Exponential Stretching Sheet,” Symmetry, 13, 2334 (2021). 
https://doi.org/10.3390/sym13122334 

[32] A.V. Kuznetsov, and A.A. Avramenko, “Stability Analysis of Bioconvection of Gyrotactic Motile Microorganisms in a Fluid 
Saturated Porous Medium,” Transp. Porous Media, 53, 95 (2003). https://doi.org/10.1023/A:1023582001592 

[33] D.A. Nield, A.V. Kuznetsov, and A.A. Avramenko, “The onset of bioconvection in a horizontal porous-medium layer”, Transp. 
Porous Media, 54, 335 (2004). https://doi.org/10.1023/B:TIPM.0000003662.31212.5b 

[34] A.A. Avramenko, and A.V. Kuznetsov, “The Onset of Convection in a Suspension of Gyrotactic Microorganisms in 
Superimposed Fluid and Porous Layers: Effect of Vertical Throughflow”, Transp. Porous Media, 65, 159 (2006), 
https://doi.org/10.1007/s11242-005-6086-3 

[35] A.V. Kuznetsov, “The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension 
of oxytactic microorganisms,” Eur. J. Mech. B/Fluids, 25, 223 (2006), https://doi.org/10.1016/j.euromechflu.2005.06.003 

[36] D.A. Nield, and A.V. Kuznetsov, “The cheng-minkowycz problem for natural convective boundary layer flow in a porous 
medium saturated by a nanofluid: A revised model,” Int. J. Heat Mass Transfer, 65, 682 (2013), 
https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.054 

[37] M. Zhao, S. Wang, H. Wang, and U.S. Mahabaleshwar, “Darcy-Brinkman bio-thermal convection in a suspension of gyrotactic 
microorganisms in a porous medium”, Neural Comput. Appl, 31, 1061 (2019), https://doi.org/10.1007/s00521-017-3137-y 

[38] A. Mahdy, “Gyrotactic Microorganisms Mixed Convection Nanofluid Flow along an Isothermal Vertical Wedge in Porous 
Media”, Int. J. Aerosp. Mech. Eng. 11, 840 (2017). https://doi.org/10.5281/zenodo.1130959 

[39] A. Alsenafi, and M. Ferdow, “Dual solution for double-diffusive mixed convection opposing flow through a vertical cylinder 
saturated in a darcy porous media containing gyrotactic microorganisms”, Sci. Rep., 11, 19918 (2021), 
https://doi.org/10.1038/s41598-021-99277-x 

[40] H.A. Nabwey, S.M.M. EL-Kabeir, A. Rashad, and M. Abdou, “Gyrotactic microorganisms mixed convection flow of nanofluid 
over a vertically surfaced saturated porous media”, Alex. Eng. J. 61, 1804 (2022), https://doi.org/10.1016/j.aej.2021.06.080 

[41] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1981).  
[42] Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, and G. Wu, “Heat transfer properties of nanoparticle-in-fluid dispersions 

(nanofluids) in laminar flow,” Int. J. Heat Mass Transfer, 48, 1107 (2005), https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038 
[43] J.C. Umavathi, D. Yadav, and M.B. Mohite, “Linear and nonlinear stability analyses of double-diffusive convection in a porous 

medium layer saturated in a maxwell nanofluid with variable viscosity and conductivity”, Elixir Mech. Engg. 79, 30407 (2015) 
[44] S. Agarwal, N. Sacheti, P. Chandran, B.S. Bhadauria, and A.K. Singh, “Non-linear Convective Transport in a Binary Nanofluid 

Saturated Porous Layer”, Transp. Porous Med. 93, 29 (2012), https://doi.org/10.1007/s11242-012-9942-y 
[45] M. Zhao, S. Wang, S. Li, Q. Zhang, and U. Mahabaleshwar, “Chaotic Darcy-Brinkman convection in a fluid saturated porous 

layer subjected to gravity modulation”, Results Phys. 9, 1468 (2018), https://doi.org/10.1016/j.rinp.2018.04.047 
 

БІОТЕРМАЛЬНА КОНВЕКЦІЯ В ПОРИСТОМУ СЕРЕДОВИЩІ, ЯКЕ НАСИЧЕНЕ НАНОРІДИНОЮ 
ТА МІСТИТЬ ГІРОТАКТИЧНІ МІКРООРГАНІЗМИ, ПІД ЗОВНІШНІМ МАГНІТНИМ ПОЛЕМ 

Михайло Й. Коппa, Володимир В. Яновськийa,b, Улаваті С. Махабалешварc 
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Вивчення теплової конвекції в пористих середовищах, які насичені нанорідиною та мікроорганізмами, є важливим завданням 
для багатьох геофізичних та інженерних програм. Концепція суміші нанорідин та мікроорганізмів приваблює багатьох 
дослідників через її здатність покращувати теплові властивості та, як наслідок, швидкості теплообміну. Ця властивість активно 
використовується як в електронних системах охолодження, так і біофізиці. Таким чином, метою цього дослідження є вивчення 
біотермальної нестійкості в пористому середовищі, яке насичене нанорідиною на водній основі, що містить гіротактичні 
мікроорганізми, у присутності вертикального магнітного поля. Наявність зовнішнього магнітного поля як у природних, так і в 
технологічних ситуаціях, стимулювала нас у проведенні цього теоретичного дослідження. З використанням моделі 
Дарсі-Брінкмана розглянуто лінійний аналіз конвективної нестійкості для обох вільних меж з урахуванням ефектів 
броунівської дифузії та термофорезу. Для проведення цього аналітичного дослідження було використано метод Галеркіна. 
Встановлено, що теплообмін здійснюється стаціонарною конвекцією без коливальних рухів. У стаціонарних режимах конвекції 
аналізуються нанорідини оксидів металів (Al2O3), металеві нанорідини (Cu, Ag) та напівпровідникові нанорідини (TiO2, SiO2). 
Збільшення чисел Чандрасекара та Дарсі значно покращує стабільність системи, але збільшення пористості та модифікованого 
біоконвекційного числа Релея-Дарсі прискорюють початок нестійкості. Для визначення перехідного режиму 
тепломасоперенесення застосовується нелінійна теорія, заснована на представленні методу рядів Фур'є. На малих проміжках 
часу числа Нуссельта та Шервуда мають коливальний характер. Числа Шервуда (масообмін) у часовому інтервалі досягають 
стаціонарних значень швидше, ніж числа Нуссельта (теплообмін). Це дослідження може допомогти у вивченні конвекції 
морської води в океанічній корі, а також у створенні біосенсорів. 
Ключові слова: нанорідина, біотеплова конвекція, сила Лоренца, термофорез, броунівський рух, гіротактичний 
мікроорганізм, магнітне поле 




