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In the present research, some static and dynamic nuclear properties of the closed-shell nuclei;58Ni, 90Zr, 116Sn, and 144Sm have been 
studied using the Random Phase Approximation (RPA) with different Skyrme parameterizations, particularly SyO-, Sk255, SyO+, 
SLy4, BSk17, and SLy5. In particular, in studies of static properties such as single-particle radial nuclear densities for neutrons, protons, 
mass, and charge densities with their corresponding root mean square (rms) radii, All the obtained results agreed well with the relevant 
experimental data. Concerning the dynamic nuclear properties such as, the excitation energy, transition density, and giant resonance 
modes for the excitation to the low-lying negative partite excited states 1–, 3–, 5–, and 7– have also been studied. The obtained results 
that estimates of RPA with Skyrme-type interactions are a good way to describe the properties of the structure of even-even, closed-
shell nuclei. 
Keywords. Skyrme Forces, Hartree-Fock (HF), Random Phase Approximation (RPA), Higher Modes Excited State, Skyrme Energy 
Density. 
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INTRODUCTION 
The structure of the atomic nucleus is dictated by the interactions of its constituents. Understanding the behavior of multi-

degree-of-freedom systems in terms of the fundamental interactions between their constituent components is one of the most 
difficult challenges in theoretical physics. The theoretical models need to be greatly simplified to find a solution to the problem 
of many-body in non-relativistic quantum mechanics, which governs self-bound composite systems [1]. When it comes to 
explaining the structure and dynamical features of nuclei, this is precisely the case [2-4]. A nuclear multi-body issue, which 
occurs in many disciplines of physics, is notoriously difficult to answer precisely. There are a number of approximate techniques 
for dealing with such systems. The independent particle approximation is used in the Simple Shell Model (SM), which ignores 
all correlation effects. The nuclear SM is one of the most important tools for understanding the structure of atomic nuclei and 
their radioactive decay stability. It is, like the atomic SM, is a microscopic approach that calculates the interaction of individual 
nucleons with a mean-field potential created by each of the system's constituent nucleons [5]. The nuclear shell model is based 
on the premise that each nucleon (proton or neutron) travels in the average field independently to the first order. RPA based on 
Hartree-Fock (HF) has been particularly successful in describing collective motion phenomena in nuclei at the microscopic 
level [6]. The HF and RPA nuclear structure approaches are widely regarded as highly successful in designing the ground states 
and excitations of spherical nuclei with effective interactions that are density-dependent [7]. The categorization of excitation 
modes is contingent upon the process by which a nucleus is excited [8]. 

In the present, the static and dynamic nuclear properties of some closed-shell nuclei, such as 58Ni, 90Zr, 116Sn, and 144Sm 
nuclei, were investigated using a basis on Skyrme-type interactions and the self-consistent HF- RPA, SyO+, SyO-, Sk255, 
SLy4, BSk17, and SLy5. In particular, the charge, neutron, proton, and mass densities associated with root mean square 
radii (rms) In addition, excitation energy, transition densities, and strength functions for the transition to negative parity states 
are also included. The estimated result will be compared with the available experimental data. In these nuclei, giant resonance 
(GR) modes and transition densities were also detected, indicating that the nucleus is moving collectively. 

THEORETICAL CONSIDERATION 
Hartree-Fock Method 

The "self-consistent field" approach was invented by Hartree, which he developed shortly after the formulation of 
the Schrödinger equations, to approximate the calculation of the wave functions and energy of atoms using the wave 
function of a single particle, which may be thought of as a combination of many-body wave functions [9]. Using 
variational principles, the HF equations can be obtained [10]. The variational principle is a method for calculating the 
wave functions and bound-state energies of a time-independent Hamiltonian [11]. Calculations for closed-shell nuclei 
were performed using the density-dependent nucleon-nucleon interaction of Skyrme [12]. Which of the following is 
regarded as a Slater determinant for the single-particle state: 

 
1 2

1( , ..., )  det ( )
!A jx x x x

A    (1) 

where is the set of space r ,   spin, and q isospin coordinate, A is the number of sets. 
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The integral of the Hamiltonian density H can be used to expectation the Slater determinant total Hamiltonian's (H) 
expectation value: 

 ( )H H r dr   
     (2) 

Regarding the HF wave function, the predicted value of the whole Hamiltonian is used to estimate the ground-state 
energy in the HF approach [11]. 
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The HF equations are simplified [11]. 
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With the addition of a non-local term, it resembles the ordinary one-body Schrödinger equation. The ground state 
Slater determinant, also known as the solution of the wave function matrix of a single particle, may be used to derive a 
sequence of one-body densities.  
 

Skyrme-Type Interaction 
The Skyrme interaction was developed for nuclear structure computations based on the idea that the energy 

functional could be rescaled and written as a zero-range expansion. As a result, the HF equations may be inferred easily 
by exchanging terms with the same mathematical structure as direct terms. Since Brink and Vautherin’s pioneering 
work [13]. The Skyrme interaction is defined as the sum of two and three body components [14]. It is possible to express 
the interaction between two nucleons with r1and r2 spatial coordinates in the standard form [15]: 
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where, 12 = 1 2( )r r 
   is the interaction Dirac delta function [16], 𝜎 are the Pauli spin matrices and P


= (1+ 1
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 )/2 is 

the spin exchange operator, while k 

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The free parameters t1, t0, t3, t2, x0, x1, x2, x3, and W0, to produce the experimental data obtained from a limited 
number of nuclei, including binding energies as well as rms radii, are combined with the theory of nuclear matter 
properties. 
 

Skyrme Energy Density 
The Skyrme energy density functional, which is a function of various densities, can be calculated using the 

conventional Skyrme force [15]. The integral of the Hamiltonian density H can be used to calculate the probability value 
for the total Hamiltonian (H) of the Slater determinant:  

    3
SkyrmeE T  V d r E r .       (6) 

The Hamiltonian operator can be expressed as a sum of terms representing various aspects of the force [15]: 

 0 3kin eff fin so sg CoulH H H H H H H H H       
        

 (7) 
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Skyrme-Hartree-Fock Equations 
It's difficult to represent the system's energy as a function of the standard density matrix using the Skyrme interaction 

because of the dependence on J. In this situation, the energy must be adjusted with single-particle wave functions, with 
the additional stipulation that the φk is normalized [17]. 
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where the coefficients of the variation are, 

    
2 2

1 1 2 2 2 2 1 1*

1 1= = (2 ) (2 ) (2 1) (2 1)  
2 8 82 q

q qq

E t x t x t x t x
mm

  


       
  , (10) 

 

 

   

 

-1 2 2 2
0 0 0 3 3 3

3 3 3 1 1 2 2 2 2 1 1 q

2
1 1 2 2 1 1 2 2

1 1 = t  (2 ) (2 1) t (2 ) (2 1)( )  
2 24

1 1 1+  t (2 ) (2 1) (2 ) (2 ) (2 1) (2 1)  
12 8 8
1 13 (2 ) (2 )  3 (2 1) (2 1

16 16

q p n
q

q

EU x x x x

x x t x t x t x t x

t x t x t x t x





     


    



           

             

          2
0 1

1) W . . +  
2q q CJ J qV       

, (11) 

 0 1 1 2 2 1 2 q
1 1 1 =  W (t x +t x )J+ (t -t )J
2 8 8q q

q

EW
J
  


      , (12) 

assuming a spherical closed-shell nucleus. As a result, the SHF radial equations can be deduced [18] which give can be 
deduced. 
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The Random Phase Approximation 

RPA is commonly regarded as a suitable method for studying nuclear structure since it provides an effective 
formalism for describing numerous giant resonances or excitations caused by low-lying particle holes, which are examples 
of nuclear excitations [19]. This theory can be used to describe the properties of low-energy excited states [20]. 
The straightforward HF Slater-determinant of the Schrödinger equation for this situation is [21]. 

 ˆ
vH v E v , (14) 

The so-called creation operators †
vQ  can be employed to express the eigenvectors v . 

 †
v 0v Q , (15) 

where 0 , the ground state, is also known as the vacuum. 
In the RPA, we can generate and annihilate p-h pairs; the real ground state is not merely the HF vacuum [21]. 
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v ab ab ab ab

ab
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Hermitian conjugation yields the following annihilation operator: 

 * * †( ) ( )v v
v ab ab ab ab

ab
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The state's excitation energy v  and the correlation matrix 0v vw E E   are combined into one matrix equation [21]. 
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If the size of the p-h configuration space is N, the matrices elements. The sub matrices Band A are formed from the 
particle-hole configurations, where matrix A is Hermitian and the correlation matrix B is symmetric [22]. 
With the use of a multipole, transition density characterizes the connection between each excited state and the ground 
state. A transition is a generated amplitude for the operator. It is possible to compute its transition density's radial 
component. It has the definition below [23]:  
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Below is the description of the density of state radial transition [23]. 
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Excitation characteristics such as volume or surface type can be revealed through transition densities. The transition 
density for neutrons and protons is given as it can be either an isoscalar (IS) (T = 0) or an isovector (IV) (T = 1) [23]: 
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In general, spherical harmonics related sum rule features can be enlarged in IS and IV external fields (F). It is 
possible to compute it using [23]. It can be calculated from: 
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The IS and IV giant resonances' strength function distributions S(E) have been discovered to be extremely sensitive 
to nuclear matter’s physical characteristics. The strength function of low-lying energy could be calculated by using the 
following: 
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When the sum rule characteristics of generic IS and IV external fields are connected [23]. We can calculate the 
energy moments by integral the strength function, S(E).  
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where E1 and E2 are the excitation energy limits. The energy moments can be calculated using the formula integrating 
the strength function S(E). These densities can be used for calculating the rms radius of neutrons, protons, charge, and 
mass distributions [13], [24]:  
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The proton radius is used to determine the charge radius [22]. 

 22 2
ch p pr r r  , (28) 

where the proton's rms charge radius is 0.8 fm. The neutron skin thickness t is calculated using the difference in rms radii 
between the proton and the neutron. This difference provides information on the structure of nuclei [13]. 

 
1 1  2 22 2

np n p
r r r   . (29) 

 
RESULTS AND DISCUSSION 

The Nuclear Ground State Properties 
The ground state nuclear properties of an HF, such as the charge density distribution rms, and the binding energies 

per nucleon and neutron skin thickness, were calculated and compared using several Skyrme parameterizations: Sk255, 
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BSk17, SyO+, SyO-, SLy4 and SLy5. These parameterizationsare described in tabulated 1. Tables (2–5) show the 
calculated static nucleon properties for the closed-shell nuclei chosen using these parameterizations in conjunction with 
experimental data from Refs. [25,26]. In the microscopic model, the radius values have risen from 3.7 fm (for 58Ni) to 
4.9 fm (for 144Sm). And the binding energies per nucleon are in the range(8.68.26) MeV. This means that the binding 
energy per particle is nearly 8 MeV. From the tabulated results, it is clear that charge rms radius values in BSk17 
parameterization are the closest to experimental data for 58Ni and 116Sn, followed by the results of SyO+ for 90Zr and SLy5 
for 144Sm. 

The nuclear charge densities provide a description of a nucleus' interior structure. Fig. 1 depicts the estimated HF 
radial charge density distribution for a single particle for 58Ni, 90Zr, 116Sn, and 144Sm, respectively. A comparison was 
made with the available experimental data 58Ni, 90Zr, 116Sn, and 144Sm, respectively. A comparison was made with the 
experimental data [27,28] except for 116Sn, for which no available experimental data exists. The 58Ni results are in 
complete good agreement with experimental data using SLy5, SLy4, BSk17, SyO-and SyO+ parameterizations. However, 
the Sk255 results are comparable to experimental evidence but do not fit within the nucleus. For 90Zr, the SLy4, BSk17, 
SLy5, and Sk255 parameterizations coincide quite well. However, the results for SyO+ and SyO- are close to the 
experimental data but don't fit inside the nucleus. For 116Sn Sk255, BSk17, SyO+, SLy5, SLy4, and 
SyO-parameterizations, although the findings are comparable to experimental data, they do not fit inside the nucleus. 
Consideration must also be given to the fact that nucleons possess intrinsic electromagnetic structure. Therefore, the 
proton, neutron, and mass density profiles must be computed. The profile of every nuclear density type of each of the 
chosen nuclei is shown in Fig. 2. Examining these curves demonstrates that the nuclear charge distributiondensity is 
depends on the rms radius, which rises as the number of protons in each nucleus increases. As the nucleus radius rose for 
144Sm, the density distributions for mass, charge, proton, and neutron increased. While in 58Ni, 90Zr, and 116Sn, the charge 
density distributions gradually declined as the nucleus' radii shrank. From Tables (2–5), it is evident that the energy per 
nucleon for all nuclei match with experimental data, particularly when the SLy5 and SLy4 parameterizations are used. In 
Figs. (3, 4), the theoretical rms charge radii and the binding energies per nucleon for closed-shell nuclei are compared 
with experimental data from Refs. [25], [26]. Very good agreement with experiments is seen, especially when Skyrme 
parameterization is used. 
Table 1. The Skyrme parameterizations used in the present work. 

Parameters BSk17 [29] Sk255 [30] SyO+[31] SyO-[31] SLy4 [15] SLy5 [15] 
t₀ (MeV fm3) -1837.33 -1689.35 -2099.419 -2103.653 -2488.91 -2484.88
t₁ (MeV fm5) 389.102 389.3 301.531 303.352 486.82 483.13
t₂ (MeV fm5) -3.1742 -126.07 154.781 791.674 -546.390 -549.40
t₃ (MeV fm3+3α) 11523.8 10989.6 13526.464 13553.252 13777.0 13763.0
x₀ 0.411377 -0.1461 -0.029503 -0.210701 0.834 0.778
x₁ -0.832102 0.116 -1.325732 -2.810752 -0.344 -0.328
x₂ 49.4875 0.0012 -2.323439 -1.461595 -1.0 -1.0
x₃ 0.654962 -0.7449 -0.147404 -0.429881 1.354 1.267
w₀ (MeV fm5) 145.885 95.39 287.79 353.156 123.0 126.0
w`₀ (MeV fm5) 145.885 95.39 -165.7776 -397.498 123.0 126.0
Α 0.3 0.3563 0.25 0.25 0.1666666 0.1666666

Table 2. The calculated binding energy per nucleon, neutron, proton, mass, charge radii, and also the neutron skin thickness (tn), for  
58Ni by using different Skyrme parameterizations. 

Force Rn(fm) Rp(fm) Rm(fm) Rc(fm) 
Theo. tn(fm) Rc(fm) 

Exp. [25] 
B/A(MeV) 

Theo. 
B/A(MeV) 
Exp. [26] 

BSk17 4.2669 4.2017 8.4686 4.2764 0.0652 4.2694 -8.9177121 -8.710 
Sk255 4.3104 4.2024 8.5128 4.2771 0. 108 -8.9674868 
SyO+ 4.2785 4.1674 8.4459 4.2427 0.1111 -8.8412684 
SyO- 4.3010 4.1651 8.4661 4.2405 0.1359 -8.8117009 
SLy5 4.2871 4.2211 8.5082 4.2955 0.066 -8.7051038 
SLy4 4.2875 4.2251 8.5126 4.2994 0.0624 -8.7320496 

Table 3. The calculated binding energy per nucleon, neutron, proton, mass, charge radii, and.also the neutron skin thickness (tn), for  
90Zr by using different Skyrme parameterizations. 

Force Rn(fm) Rp(fm) Rm(fm) Rc(fm) 
Theo. tn(fm) Rc(fm) 

Exp. [25] 
B/A(MeV) 

Theo. B/A(MeV) Exp. [26] 

BSk17 3.6890 3.6923 7.3813 3.7771 -0.0033 3.7757 -8.9121212 -8.732 
Sk255 3.7272 3.7172 7.4444 3.8015 0.01 -8.8322377 
SyO+ 3.6812 3.6730 7.3542 3.7583 -0.0082 -8.8506103 

 

SyO- 3.6780 3.6713 7.3493 3.7565 0.0067 -8.8691517 
 

SLy5 3.7097 3.7114 7.4211 3.7957 -0.0017 -8.6936665 
 

SLy4 3.7128 3.7159 7.4287 3.8001 -0.0031 -8.7065109 
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Table 4. The calculated binding energy per nucleon, neutron, proton, mass, charge radii, and. also the neutron skin thickness (tn), for  
116Sn by using different Skyrme parameterizations. 

Force Rn(fm) Rp(fm) Rm(fm) Rc(fm) 
Theo.

tn(fm) Rc(fm) 
Exp. [25]

B/A(MeV) 
Theo. 

B/A(MeV) 
Exp. [26]

BSk17 4.6403 4.5458 9. 1861 4.6150 0.0945 4.6250 -8.6701555 -8.523 
Sk255 4.6933 4.5440 9.2373 4.6132 0.1493 -8.7335998  
SyO+ 4.6364 4.5294 9.1658 4.5988 0.107 -8.6147510  
SyO- 4.6480 4.5364 9.1844 4.6057 0.1116  -8.6209021  
SLy5 4.6593 4.5620 9.2213 4.6310 0.0673 -8.4741056  
SLy4 4.6636 4.5668 9.2304 4.6356 0.0968 -8.4858585  

Table 5. The calculated binding energy per nucleon, neutron, proton, mass, charge radii, and. also the neutron skin thickness (tn), for  
144Sm by using different Skyrme parameterizations. 

Force Rn(fm) Rp(fm) Rm(fm) Rc(fm) Theo. tn(fm) Rc(fm) Exp. [25] B/A(MeV) Theo. B/A(MeV) Exp. [26]

BSk17 4.9436 4.8697 9.8133 4.9343 0.0739 4.9524 -8.4640657 -8.304 
Sk255 5.0028 4.8717 9. 8745 4.9363 0.1311 -8.5106563  
SyO+ 4.9585 4.8443 9.8028 4.9092 0.1142  -8.3523560  
SyO- 4.9792 4.8463 9.8255 4.9112 0.1329 -8.3412634  
SLy5 4.9620 4.8853 9.8473 4.9497 0.0767 -8.2672154  
SLy4 4.9659 4.8920 9.8579 4.9564 0.0739 -8.2278044  

 

  

(a) (b) 

  

(c) (d) 

Figure 1. The calculated charge density distribution profiles of the magic nucleus (a) 58Ni, (b) 90Zr, (c) 116Sn, and 
(d) 144Sm in comparison with known experimental results (closed dots) collected from Refs. (58Ni and90Zr) [27], (116Sn) 
[28]. 
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Figure 2. Calculated of proton, mass, neutron, and charge density distributions for closed-shell nuclei 58Ni, 90Zr, 116Sn and 144Sm using 
SCRPA 

Figure 3. The Nuclear root-mean-square(rms) charge radii for 
closed shell nuclei as a function of nucleon number A, compared 
with data from experimental Ref. [25] 

Figure 4. Nuclear B.E/A for closed shell nuclei as a function of 
nucleon number A, compared with data from experimental Ref. 
[26]

 
The Excited States Properties 

RPA calculations were widely utilized to describe the transition densities of the proton and neutron as well as GRs 
modes. This technique classifies collective resonances of various multipolarities, like the giant dipole photon absorption 
cross-section multipole at rank 2, referred to as isoscalar giant dipole resonance (ISGDR), rank 3 is giant octupole 
resonance (GOR), rank 5 is giant triacontadipole resonance (GTR), and rank 7 is giant octacosahectapole resonance 
(GOCR). In addition, the relation between the IV and IS strength functions and also the excitation energy functions has 
been defined, as have multipole excitations characterized by p-h pairings in which the particles and hole states are slightly 
below and above the Fermi surface. For optimum results, SLy5 and SLy4 parameterizations were chosen for this purpose 
based on the best binding energy estimates compared with experimental data [26]. 
 

Transition density calculation. For collective electric excitations, the transition density is useful for the low-lying 
excited states for nuclei 58Ni, 90Zr, 116Sn and 144Sm, The radial transition densities of protons and neutrons for the RPA 
state are shown in Figs. (5–12). 
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Figure 5. The radial transition densities of protons and neutrons for the negative parity state are shown for 58Ni (a) 3-, (b) 5- and (c) 7- 
using RPA with SLy4 Skyrme parameterization. The energy of excitation was compared with experimental data taken from Ref. [33] 

Compared to the existing experimental data, the estimated excitation energy of the negative parity excited states is 
qualitatively consistent with the results of the experiments (90Zr has state 3-(2.747875MeV), 116Sn has states 
3-(2.66159MeV) and 7-(2.90885MeV), and 144Sm has state 5-(2.82517MeV)). There is a small difference between 
theoretical values and experimental data for (58Ni with states 3-(4.971MeV) and 5-(5.5890MeV)), (90Zr with states 
5-(2.319000MeV) and 7-(4.037507MeV)), (116Sn with state 1-(6.020MeV)), and (144Sm with state 7-(3.12407MeV)) and 
a significant difference for (58Ni with state 7-(6.00847MeV)) and (90Zr with state 1-(6.020 MeV)). The associated 
transition densities effectively represent density oscillations around the ground state configuration. It is a crucial 
characteristic that sheds light on the nature of nuclear excitations in excited states, which determine protons and neutrons 
responses to external disturbance to obtain a simple estimation of the collectivity shown by the various dipole responses. 
It is shown that protons and neutrons can vibrate either in the skin mode's IS phase, where protons oscillate against 
neutrons, or in phase IV, which is the opposite (pn mode). Furthermore, the IV characterization is crucial for describing 
the motion of the neutron and proton within the nucleus, as it appears the peaks for proton and neutron transition densities 
appear to be positive for both protons and neutrons. The quantum numbers identifying these p-h pairs' SP states are 
identical. The electric multipole excitations (Jπ = 1–, 3–, 5–, 7–) emphasize this section of the current work. GR states 
are classified using the spin S, isospin T transmitted and total angular momentum J, as a result of nuclear ground state 
excitation. The scope of this study was confined to electric IS resonance with S = 0 and T = 0.Electric IV resonance takes 
place when S = 1 and T = 1. 

  

  

Figure 6. Same as Fig. 5 but using RPA with SLy5 Skyrme parameterization. For 90Zr nucleus (a) 1, (b) 3-, (c) 5- and (d) 7-. 
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Figure 7. The radial transition densities of protons and neutrons for the negative parity state are shown for 116Sn (a) 3-, (b) 5- and 
(c) 7- using RPA with SLy4 Skyrme parameterization. The energy of excitation was compared to the experimental results obtained 
from Ref. [33] 

Figure8. Same as Fig. 7 but using RPA with SLy5 Skyrme parameterization. For 144Sm nucleus (a) 5-, and (b) 7- 

  

Figure 9. The proton (a) and neutron (b) transition densities for the transition to the 1– statein 90Zr and116Sn nuclei using SLy5 and 
SLy4 Skyrme parameterizations
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Figure 10. The proton (a) and neutron (b) transition densities for the transition to the 3– state in 58Ni, 90Zr and116Sn nuclei using 
SLy5 and SLy4 Skyrme parameterizations 

Figure 11.The proton (a) and neutron (b) transition densities for the transition to the 5– state in 58Ni, 90Zr ,116Sn and 144Sm nuclei   
using SLy5 and SLy4 Skyrme parameterizations. 

  

Figure 12: The proton (a) and neutron (b) transition densities for the transition to the 7– state in 58Ni, 90Zr ,116Snand 144Sm nuclei   
using SLy5 and SLy4 Skyrme parameterizations 

 
Giant Resonance Modes. The most visible manifestation of nucleon collective motion is GRs. Figs. 13-16 show 

the strength functions for the excitation to the negative parity states in 58Ni, 90Zr, 116Sn, and 144Sm nuclei. The ISGDR is 
significantly fragmented compared to ISGTR, ISGOR, and ISGOCR, which appear to be less fragmented. This was 
reflected in IVGTR, IVGOR, IVGDR, and IVGOCR. This indicates that the collective strength of high multipolarity GRs 
is distributed, and the quantity of collective strength falls as the multipolarityJ of the GRs [32]. It is important to note 
that the IS mode is produced when the neutrons and protons vibrate in phase, while the IV mode is produced when they 
vibrate in the opposite phase. The higher modes of strength functions for higher modes emerge clearly using RPA 
approach calculations, which explored upper-level excitation and yielded the collective nuclear motion of nucleons, 
energy, spin, and parity, all properties of exciting levels. This emphasized the significance of calculating GR strength 
functions using completely self-consistent HF-based RPA. Collective motion was believed to be a common characteristic 
of quantum many-body systems. It is believed that the distribution of transition strengths of a low external field that 
excites the nucleus exhibits resonance peaks that correspond to the elementary vibrational collective modes. 
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Tables (6-9) summarize the overall calculated results of the EWSR m1 and RPA m1 using SLy5 parameterizations. 
The total EWSR of strengths is growing compared to those computed using RPA. Therefore, m1 includes those from p-
h strengths. The D.C (represents the double commutator which gives EWSR). The deviations of m1 (RPA) from m1 
(EWSR) from R values are minor for all collective modes, indicating high precision for self-consistent HF-RPA 
calculations. It is also worth mentioning that it is the most widely used. The GDR is a well-studied GR wherein protons 
vibrate collectively against neutrons. This, in the end, shows how strongly neutrons and protons interact inside the nucleus, 
which is a key part of nuclear interaction. 

  

  

  

Figure 13. IS (left panel) as well as IV (right panel) HF-based RPA strength function for the octopole (E3),triacontadipole (E5), 
and octacosahectapole (E7) in 58Ni, using the SLy4 Skyrme interaction 

Table 6. The realisation of the EWSR (m1) for the IS and IV within the RPA using multipoles J for 58Ni.Using the SLy5 
parametrization with the summing from 0 to Emax= 60 MeV.MeVfm2J are the units. R = m1(RPA) / m1 (D.C.) 

Jπ T m1 (RPA) m1(D.C) R 

3- 0 
1 

3.84191×106 

4.17831×106
3.64699×106 

3.98378×106
1.05344 
1.04883 

5- 0 
1 

1.06005×1011 

1.08982×1011
1.01450×1011 

1.05378×1011
1.04489 
1.03420 

7- 0 
1 

4.71703×1013 

4.74086×1013
4.30197×1013 

1.37570×1017
1.09648 

3.44614×10-4 
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Figure 14. IS (left panel) as well as IV (right panel) HF-based RPA strength function for the dipole photo absorption cross section 
(E1), octopole (E3), triacontadipole (E5), and octacosahectapole (E7) 

Table 7. The same as Table 6, for 90Zr. The results are obtained by using the SLy4 parameterization. 
Jπ T m1 (RPA) m1(D.C) R 
1- 0 

1 
9.02386×105 

3.84977×102
9.14815×105 

3.88898×102
0.98641 
0.98991

3- 0 
1 

9.41224×106 

1.03355×107
9.51103×106 

1.04769×107
0.98961 
0.98650

5- 0 
1 

3.77037×1010 

3.92052×1010
3.90294×1010 

4.09882×1010
0.96603 
0.95649

7- 0 
1 

1.65031×1014 

1.66744×1014
1.97037×1014 

1.27032×1018
0.837565 

1.31261×10-4 
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Figure 15. IS (left panel) as well as IV (right panel) HF-based RPA strength function for the dipole photo absorption cross section 
(E1), octopole (E3), triacontadipole (E5), and octacosahectapole (E7) in 116Sn, using the SLy4 Skyrme interaction 

Table 8. The same as Table 7, for 116Sn. The results are obtained by using the SLy4 parameterization. 

Jπ T m1 (RPA) m1(D.C) R 

1- 0 
1 

1.58971×106 

4.95137×102 
1.60455×106 

4.98954×102 
0.9907 
0.9923 

3- 0 
1 

1.67417×107 

1.84779×107 
1.68763×107 

1.86690×107 
0.9920 
0.9897 

5- 0 
1 

9.05465×1010 

9.46386×1010 
9.30575×1010 

9.80651×1010 
0.9730 
0.9650 

7- 0 
1 

5.76248×1014 

5.83076×1014
6.39154×1014 

6.21586×1018
0.9015 

9.3804×10-5

Table 9. The same as Table 8, for 144Sm. The results are obtained by using the SLy5 parameterization. 

Jπ T m1 (RPA) m1(D.C) R 

5- 0 
1 

1.7375×1011 

1.83920×1011 
1.74605×1011 

1.85616×1011 
0.9951 
0.9908 

7- 0 
1 

1.11146×1015 

1.13293×1015 
1.24269×1015 

1.70570×1019 
0.8943 

6.6420×10-5 
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Figure16. IS (left panel) as well as IV (right panel) HF-based RPA strength function for the triacontadipole (E5), 
and octacosahectapole (E7) in 144Sm, using the SLy5 Skyrme interaction 

 
CONCLUSIONS 

The present research has led us to conclude that self-consistent RPA calculations are based on Skyrme effective 
nucleon-nucleon interaction, and these calculations give a significant description of the ground state properties for the 
closed-shell for 58Ni, 90Zr, 116Sn, and 144Sm. Considering the binding energy, neutron, proton, and neutron skin thickness, 
and charge radii, remarkable correlations were found with experimental data. For the static nuclear properties, the SLy4 
and SLy5 parameterizations give the best results in compression with experimental data. Regarding dynamic properties, 
the RPA method is an efficient tool for describing the higher modes resulting from the collective motion of nucleons 
within the nucleus. It can also be used to describe the transition. density for proton. and neutron modes, in addition to GRs 
modes. The RPA method is the simplest theory that predicts the main features of giant resonance (GR) with a high degree 
of accuracy. 
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ДОСЛІДЖЕННЯ ЯДЕРНОЇ СТРУКТУРИ ДЕЯКИХ ЯДЕР ЗА ДОПОМОГОЮ САМОУЗГОДЖЕНИХ 
РОЗРАХУНКІВ RPA ІЗ ВЗАЄМОДІЄЮ ТИПУ SKYRME 

Нур М. Карімa, Алі А. Алзубадіa 
aУніверситет Багдада, Науковий коледж, факультет фізики 

У цьому дослідженні були вивчені деякі статичні та динамічні ядерні властивості ядер із закритою оболонкою:58Ni, 90Zr, 116Sn 
і 144Sm з використанням методу Random Phase Approximation (RPA) і різних параметрів Скірма, зокрема SyO-, Sk255, SyO+, 
SLy4, BSk17 і SLy5. Зокрема, у дослідженнях статичних властивостей, таких як ядерна густина для нейтронів, протонів, маса 
та густина заряду з їхніми відповідними середньоквадратичними радіусами, одночастинкові розподіли ядерної густини. Усі 
отримані результати добре узгоджуються з відповідними експериментальними даними. Що стосується динамічних 
властивостей, також були вивчені енергія збудження, щільність переходу та гігантські резонансні моди для збудження 
низькорозташованих негативних збуджених станів 1–, 3–, 5– та 7–. Результати показують, що оцінки RPA з взаємодіями типу 
Skyrme є хорошим способом опису властивостей структури парно-парних ядер із закритою оболонкою. 
Ключові слова:cили SKYRME, Хартрі-Фок (HF), апроксимація випадкової фази (RPA), збуджений стан вищих мод, 
щільність енергії Skyrme 




