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In the present research, some static and dynamic nuclear properties of the closed-shell nuclei;*®Ni, *Zr, '%Sn, and '**Sm have been
studied using the Random Phase Approximation (RPA) with different Skyrme parameterizations, particularly SyO-, Sk255, SyO+,
SLy4, BSk17, and SLy5. In particular, in studies of static properties such as single-particle radial nuclear densities for neutrons, protons,
mass, and charge densities with their corresponding root mean square (rms) radii, All the obtained results agreed well with the relevant
experimental data. Concerning the dynamic nuclear properties such as, the excitation energy, transition density, and giant resonance
modes for the excitation to the low-lying negative partite excited states 1, 37, 57, and 7 have also been studied. The obtained results
that estimates of RPA with Skyrme-type interactions are a good way to describe the properties of the structure of even-even, closed-
shell nuclei.
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INTRODUCTION

The structure of the atomic nucleus is dictated by the interactions of its constituents. Understanding the behavior of multi-
degree-of-freedom systems in terms of the fundamental interactions between their constituent components is one of the most
difficult challenges in theoretical physics. The theoretical models need to be greatly simplified to find a solution to the problem
of many-body in non-relativistic quantum mechanics, which governs self-bound composite systems [1]. When it comes to
explaining the structure and dynamical features of nuclei, this is precisely the case [2-4]. A nuclear multi-body issue, which
occurs in many disciplines of physics, is notoriously difficult to answer precisely. There are a number of approximate techniques
for dealing with such systems. The independent particle approximation is used in the Simple Shell Model (SM), which ignores
all correlation effects. The nuclear SM is one of the most important tools for understanding the structure of atomic nuclei and
their radioactive decay stability. It is, like the atomic SM, is a microscopic approach that calculates the interaction of individual
nucleons with a mean-field potential created by each of the system's constituent nucleons [5]. The nuclear shell model is based
on the premise that each nucleon (proton or neutron) travels in the average field independently to the first order. RPA based on
Hartree-Fock (HF) has been particularly successful in describing collective motion phenomena in nuclei at the microscopic
level [6]. The HF and RPA nuclear structure approaches are widely regarded as highly successful in designing the ground states
and excitations of spherical nuclei with effective interactions that are density-dependent [7]. The categorization of excitation
modes is contingent upon the process by which a nucleus is excited [8].

In the present, the static and dynamic nuclear properties of some closed-shell nuclei, such as **Ni, *Zr, 1'°Sn, and “Sm
nuclei, were investigated using a basis on Skyrme-type interactions and the self-consistent HF- RPA, SyO+, SyO-, Sk255,
SLy4, BSk17, and SLy5. In particular, the charge, neutron, proton, and mass densities associated with root mean square
radii (rms) In addition, excitation energy, transition densities, and strength functions for the transition to negative parity states
are also included. The estimated result will be compared with the available experimental data. In these nuclei, giant resonance
(GR) modes and transition densities were also detected, indicating that the nucleus is moving collectively.

THEORETICAL CONSIDERATION
Hartree-Fock Method

The "self-consistent field" approach was invented by Hartree, which he developed shortly after the formulation of
the Schrdodinger equations, to approximate the calculation of the wave functions and energy of atoms using the wave
function of a single particle, which may be thought of as a combination of many-body wave functions [9]. Using
variational principles, the HF equations can be obtained [10]. The variational principle is a method for calculating the
wave functions and bound-state energies of a time-independent Hamiltonian [11]. Calculations for closed-shell nuclei
were performed using the density-dependent nucleon-nucleon interaction of Skyrme [12]. Which of the following is
regarded as a Slater determinant for the single-particle state:

(pﬁ(xl,xz...,xA)Zﬁ det|¢ﬁ(xj)| 0

where is the set of space 7, o spin, and g isospin coordinate, A is the number of sets.

7 Cite as: N.M. Kareem, and A.A. Alzubadi, East Eur. J. Phys. 4, 57 (2022), https://doi.org/10.26565/2312-4334-2022-4-04
© N.M. Kareem, A.A. Alzubadi, 2022


https://orcid.org/0000-0002-2275-9398
https://orcid.org/0000-0002-7226-1141
https://doi.org/10.26565/2312-4334-2021-4-04
https://periodicals.karazin.ua/eejp/index
https://portal.issn.org/resource/issn/2312-4334

58
EEJP. 4 (2022) Noor M. Kareem, Ali A. Alzubadi

The integral of the Hamiltonian density H can be used to expectation the Slater determinant total Hamiltonian's (H)
expectation value:

(olfilo)=[ 1) a7 @)

Regarding the HF wave function, the predicted value of the whole Hamiltonian is used to estimate the ground-state
energy in the HF approach [11].
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The HF equations are simplified [11].
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With the addition of a non-local term, it resembles the ordinary one-body Schrdodinger equation. The ground state
Slater determinant, also known as the solution of the wave function matrix of a single particle, may be used to derive a
sequence of one-body densities.

Skyrme-Type Interaction
The Skyrme interaction was developed for nuclear structure computations based on the idea that the energy
functional could be rescaled and written as a zero-range expansion. As a result, the HF equations may be inferred easily
by exchanging terms with the same mathematical structure as direct terms. Since Brink and Vautherin’s pioneering
work [13]. The Skyrme interaction is defined as the sum of two and three body components [14]. It is possible to express
the interaction between two nucleons with riand r2 spatial coordinates in the standard form [15]:
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where, 6,,=36(7, —7,) is the interaction Dirac delta function [16], o are the Pauli spin matrices and 13(; =1+ 0,. 0,)2is

the spin exchange operator, while k ’ and k are the operators for relative momentum. k' acting on the right and k' acting
~ 1 - = -~ 1 - -
on the left. They are defined as follows: k& = —?(Vl— V,) and k= ?(Vl— V,).
i i

The free parameters ti, to, t3, t2, Xo, X1, X2, X3, and Wy, to produce the experimental data obtained from a limited
number of nuclei, including binding energies as well as rms radii, are combined with the theory of nuclear matter
properties.

Skyrme Energy Density
The Skyrme energy density functional, which is a function of various densities, can be calculated using the
conventional Skyrme force [15]. The integral of the Hamiltonian density H can be used to calculate the probability value
for the total Hamiltonian (H) of the Slater determinant:

E[p]=(|T + Vgyme W)zjd3r E(r). (6)

The Hamiltonian operator can be expressed as a sum of terms representing various aspects of the force [15]:

H=H, +H,+H+H +H,+H, +H,, (7
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Skyrme-Hartree-Fock Equations
It's difficult to represent the system's energy as a function of the standard density matrix using the Skyrme interaction
because of the dependence on J. In this situation, the energy must be adjusted with single-particle wave functions, with
the additional stipulation that the ¢ is normalized [17].
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assuming a spherical closed-shell nucleus. As a result, the SHF radial equations can be deduced [18] which give can be

deduced.
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The Random Phase Approximation
RPA is commonly regarded as a suitable method for studying nuclear structure since it provides an effective
formalism for describing numerous giant resonances or excitations caused by low-lying particle holes, which are examples
of nuclear excitations [19]. This theory can be used to describe the properties of low-energy excited states [20].
The straightforward HF Slater-determinant of the Schrodinger equation for this situation is [21].

H4|v>:Ev v), (14)

The so-called creation operators Q] can be employed to express the eigenvectors | v) .
—_NT
v=a

where |O> , the ground state, is also known as the vacuum.

0), (15)

In the RPA, we can generate and annihilate p-/ pairs; the real ground state is not merely the HF vacuum [21].
0" (IM) =3 X, 4, (JM) =Y, A, (IM) - (16)
Hermitian conjugation yields the following annihilation operator:
0, = zi X, 4, (M) =Y, A, (M) | (17)

The state's excitation energy|v> and the correlation matrix #w, = E, — E, are combined into one matrix equation [21].
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[_2* _]}J (i) = (52)- (18)

If the size of the p-k configuration space is N, the matrices elements. The sub matrices Band A4 are formed from the
particle-hole configurations, where matrix 4 is Hermitian and the correlation matrix B is symmetric [22].
With the use of a multipole, transition density characterizes the connection between each excited state and the ground
state. A transition is a generated amplitude for the operator. It is possible to compute its transition density's radial
component. It has the definition below [23]:

9, (F)=(v

P0) =30, (Vv () (19)

Below is the description of the density of state radial transition [23].

__ O NAGIIG,
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Excitation characteristics such as volume or surface type can be revealed through transition densities. The transition
density for neutrons and protons is given as it can be either an isoscalar (IS) (T = 0) or an isovector (IV) (T = 1) [23]:

50, (r)=8p,,(r)+ p, ,(r); AT =0, 21

p," (r)=8p,,(r) =3, (r); AT =1. (22)

In general, spherical harmonics related sum rule features can be enlarged in IS and IV external fields (F). It is
possible to compute it using [23]. It can be calculated from:

B =3, () (F)(E), (23)

B =3, ()Y, (F). (24)

The IS and IV giant resonances' strength function distributions S(E) have been discovered to be extremely sensitive
to nuclear matter’s physical characteristics. The strength function of low-lying energy could be calculated by using the
following:

S(E) = Z]<v||ﬁj||o>‘2 S(E-E.). (25)

When the sum rule characteristics of generic IS and IV external fields are connected [23]. We can calculate the
energy moments by integral the strength function, S(E).

m, = f E*S(E)E . (26)

E

where E1 and E2 are the excitation energy limits. The energy moments can be calculated using the formula integrating
the strength function S(E). These densities can be used for calculating the rms radius of neutrons, protons, charge, and

mass distributions [13], [24]:
1
1 2 dr |2
=) { et } : @7)
P, (r)dr
The proton radius is used to determine the charge radius [22].
2
(r,)= <rp2>+<r>p , (28)

where the proton's rms charge radius is 0.8 fm. The neutron skin thickness t is calculated using the difference in rms radii
between the proton and the neutron. This difference provides information on the structure of nuclei [13].

Ar,, =<r2 >H% —<r2>p; . (29)

RESULTS AND DISCUSSION
The Nuclear Ground State Properties
The ground state nuclear properties of an HF, such as the charge density distribution rms, and the binding energies
per nucleon and neutron skin thickness, were calculated and compared using several Skyrme parameterizations: Sk255,
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BSk17, SyO+, SyO-, SLy4 and SLy5. These parameterizationsare described in tabulated 1. Tables (2—5) show the
calculated static nucleon properties for the closed-shell nuclei chosen using these parameterizations in conjunction with
experimental data from Refs. [25,26]. In the microscopic model, the radius values have risen from 3.7 fm (for **Ni) to
4.9 fm (for '**Sm). And the binding energies per nucleon are in the range(8.68.26) MeV. This means that the binding
energy per particle is nearly 8 MeV. From the tabulated results, it is clear that charge rms radius values in BSk17
parameterization are the closest to experimental data for *®Ni and ''%Sn’ followed by the results of SyO-+ for *°Zr and SLy5
for 4Sm.

The nuclear charge densities provide a description of a nucleus' interior structure. Fig. 1 depicts the estimated HF
radial charge density distribution for a single particle for Ni, *°Zr, !'®Sn, and '**Sm, respectively. A comparison was
made with the available experimental data 3¥Ni, **Zr, !'%Sn, and **Sm, respectively. A comparison was made with the
experimental data [27,28] except for !'%Sn, for which no available experimental data exists. The *¥Ni results are in
complete good agreement with experimental data using SLy5, SLy4, BSk17, SyO-and SyO+ parameterizations. However,
the Sk255 results are comparable to experimental evidence but do not fit within the nucleus. For *°Zr, the SLy4, BSk17,
SLy5, and Sk255 parameterizations coincide quite well. However, the results for SyO+ and SyO- are close to the
experimental data but don't fit inside the nucleus. For ''®Sn Sk255, BSkl17, SyO+, SLy5, SLy4, and
SyO-parameterizations, although the findings are comparable to experimental data, they do not fit inside the nucleus.
Consideration must also be given to the fact that nucleons possess intrinsic electromagnetic structure. Therefore, the
proton, neutron, and mass density profiles must be computed. The profile of every nuclear density type of each of the
chosen nuclei is shown in Fig. 2. Examining these curves demonstrates that the nuclear charge distributiondensity is
depends on the rms radius, which rises as the number of protons in each nucleus increases. As the nucleus radius rose for
144Sm, the density distributions for mass, charge, proton, and neutron increased. While in 3¥Ni, *°Zr, and !'°Sn, the charge
density distributions gradually declined as the nucleus' radii shrank. From Tables (2-5), it is evident that the energy per
nucleon for all nuclei match with experimental data, particularly when the SLy5 and SLy4 parameterizations are used. In
Figs. (3, 4), the theoretical rms charge radii and the binding energies per nucleon for closed-shell nuclei are compared
with experimental data from Refs. [25], [26]. Very good agreement with experiments is seen, especially when Skyrme
parameterization is used.

Table 1. The Skyrme parameterizations used in the present work.

Parameters BSk17 [29] Sk255 [30] SyO+[31] SyO-[31] SLy4 [15] SLyS5 [15]
to (MeV fm?) -1837.33 -1689.35 -2099.419 -2103.653 -2488.91 -2484.88
t: (MeV fm°) 389.102 389.3 301.531 303.352 486.82 483.13
t: (MeV fm°) -3.1742 -126.07 154.781 791.674 -546.390 -549.40
ts (MeV fm33%)  11523.8 10989.6 13526.464 13553.252 13777.0 13763.0
Xo 0.411377 -0.1461 -0.029503 -0.210701 0.834 0.778
X1 -0.832102 0.116 -1.325732 -2.810752 -0.344 -0.328
Xz 49.4875 0.0012 -2.323439 -1.461595 -1.0 -1.0
X3 0.654962 -0.7449 -0.147404 -0.429881 1.354 1.267
wo (MeV fm°) 145.885 95.39 287.79 353.156 123.0 126.0
w'o (MeV fm®) 145.885 95.39 -165.7776 -397.498 123.0 126.0
A 0.3 0.3563 0.25 0.25 0.1666666 0.1666666

Table 2. The calculated binding energy per nucleon, neutron, proton, mass, charge radii, and also the neutron skin thickness (tn), for
3Ni by using different Skyrme parameterizations.

Force  Rn(fm) Rp(fm) Rm(fm) l}“ﬁgﬁ) ta(fm) E‘;;(.f;'z‘él B/ ‘;%:V) ]ia/?ﬁv[[;;]])
BSk17 42669 42017  8.4686 42764  0.0652  4.2694 89177121 8710
Sk255 43104 42024 85128 42771  0.108 -8.9674868
SyO+ 42785  4.1674  8.4459 42427  0.1111 -8.8412684
SyO- 43010 41651 84661 42405  0.1359 -8.8117009
SLy5 42871 42211 85082 42955  0.066 -8.7051038
SLy4 42875 42251 85126 42994  0.0624 -8.7320496

Table 3. The calculated binding energy per nucleon, neutron, proton, mass, charge radii, and.also the neutron skin thickness (tn), for
%0Zr by using different Skyrme parameterizations.

Force Rn(fm) Rp(fm)  Rm(fm) ]}clfi':.) ta(fm) E];;ff;;‘;] B/ ‘?%ﬁv) B/A(MeV) Exp. [26]
BSk17 3.6890 3.6923 7.3813 3.7771 -0.0033 3.7757 89121212 -8.732
Sk255 37272 37172 7.4444 3.8015 0.01 -8.8322377
Syo+ 3.6812 3.6730 7.3542 3.7583 -0.0082 -8.8506103
SyO- 3.6780 3.6713 7.3493 3.7565 0.0067 -8.8691517
SLy5 3.7097 3.7114 74211 3.7957 -0.0017 -8.6936665

SLy4 3.7128 3.7159 7.4287 3.8001 -0.0031 -8.7065109
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Table 4. The calculated binding energy per nucleon, neutron, proton, mass, charge radii, and. also the neutron skin thickness (tn), for
1168 by using different Skyrme parameterizations.

Force Rn(fm) Rp(fm) Rm(fm) Rec(fm)  ta(fm) Re(fm) B/A(MeV) B/A(MeV)
Theo. Exp. [25] Theo. Exp. [26]

BSk17 4.6403 4.5458 9. 1861 4.6150 0.0945 4.6250 -8.6701555 -8.523
Sk255 4.6933 4.5440 9.2373 4.6132 0.1493 -8.7335998

SyO+ 4.6364 4.5294 9.1658 4.5988 0.107 -8.6147510

SyO- 4.6480 4.5364 9.1844 4.6057 0.1116 -8.6209021

SLy5 4.6593 4.5620 9.2213 4.6310 0.0673 -8.4741056

SLy4 4.6636 4.5668 9.2304 4.6356 0.0968 -8.4858585

Table 5. The calculated binding energy per nucleon, neutron, proton, mass, charge radii, and. also the neutron skin thickness (tn), for
144Sm by using different Skyrme parameterizations.

Force Rn(fm) Rp(fm) Rm(fm) Rec(fm) Theo. ti(fm)  Re(fm) Exp. [25] B/A(MeV) Theo. B/A(MeV) Exp. [26]

BSk17 4.9436 4.8697 9.8133 49343 0.0739 4.9524 -8.4640657 -8.304
Sk255 5.0028 4.8717 9. 8745 4.9363 0.1311 -8.5106563
SyO+ 49585 4.8443 9.8028 4.9092 0.1142 -8.3523560
SyO- 4.9792 4.8463 9.8255 49112 0.1329 -8.3412634
SLy5 4.9620 4.8853 9.8473 4.9497 0.0767 -8.2672154
SLy4 4.9659 4.8920 9.8579 4.9564 0.0739 -8.2278044
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Figure 1. The calculated charge density distribution profiles of the magic nucleus (a) 3Ni, (b) *Zr, (c) !'°Sn, and
(d) '"**Sm in comparison with known experimental results (closed dots) collected from Refs. (**Ni and®°Zr) [27], (*'%Sn)
[28].
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The Excited States Properties

RPA calculations were widely utilized to describe the transition densities of the proton and neutron as well as GRs
modes. This technique classifies collective resonances of various multipolarities, like the giant dipole photon absorption
cross-section multipole at rank 2, referred to as isoscalar giant dipole resonance (ISGDR), rank 3 is giant octupole
resonance (GOR), rank 5 is giant triacontadipole resonance (GTR), and rank 7 is giant octacosahectapole resonance
(GOCR). In addition, the relation between the IV and IS strength functions and also the excitation energy functions has
been defined, as have multipole excitations characterized by p-h pairings in which the particles and hole states are slightly
below and above the Fermi surface. For optimum results, SLy5 and SLy4 parameterizations were chosen for this purpose
based on the best binding energy estimates compared with experimental data [26].

Transition density calculation. For collective electric excitations, the transition density is useful for the low-lying
excited states for nuclei *®Ni, **Zr, 1%Sn and '“*Sm, The radial transition densities of protons and neutrons for the RPA
state are shown in Figs. (5-12).
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Figure 5. The radial transition densities of protons and neutrons for the negative parity state are shown for ¥Ni (a) 3-, (b) 5 and (c) 7-
using RPA with SLy4 Skyrme parameterization. The energy of excitation was compared with experimental data taken from Ref. [33]

Compared to the existing experimental data, the estimated excitation energy of the negative parity excited states is
qualitatively consistent with the results of the experiments (°°Zr has state 37(2.747875MeV), '"°Sn has states
37(2.66159MeV) and 7-(2.90885MeV), and '**Sm has state 57(2.82517MeV)). There is a small difference between
theoretical values and experimental data for (*®Ni with states 37(4.971MeV) and 5-(5.5890MeV)), (°**Zr with states
57(2.319000MeV) and 7:(4.037507MeV)), (''*Sn with state 17(6.020MeV)), and ("**Sm with state 7-(3.12407MeV)) and
a significant difference for (*®Ni with state 7(6.00847MeV)) and (°°Zr with state 17(6.020 MeV)). The associated
transition densities effectively represent density oscillations around the ground state configuration. It is a crucial
characteristic that sheds light on the nature of nuclear excitations in excited states, which determine protons and neutrons
responses to external disturbance to obtain a simple estimation of the collectivity shown by the various dipole responses.
It is shown that protons and neutrons can vibrate either in the skin mode's IS phase, where protons oscillate against
neutrons, or in phase IV, which is the opposite (pn mode). Furthermore, the IV characterization is crucial for describing
the motion of the neutron and proton within the nucleus, as it appears the peaks for proton and neutron transition densities
appear to be positive for both protons and neutrons. The quantum numbers identifying these p-h pairs' SP states are
identical. The electric multipole excitations (Jm = 1—, 3—, 5—, 7-) emphasize this section of the current work. GR states
are classified using the spin S, isospin T transmitted and total angular momentum J, as a result of nuclear ground state
excitation. The scope of this study was confined to electric IS resonance with S =0 and T = 0.Electric IV resonance takes
place when S=1and T=1.
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Giant Resonance Modes. The most visible manifestation of nucleon collective motion is GRs. Figs. 13-16 show
the strength functions for the excitation to the negative parity states in *®Ni, °*Zr, ''°Sn, and '**Sm nuclei. The ISGDR is
significantly fragmented compared to ISGTR, ISGOR, and ISGOCR, which appear to be less fragmented. This was
reflected in IVGTR, IVGOR, IVGDR, and IVGOCR. This indicates that the collective strength of high multipolarity GRs

is distributed, and the quantity of collective strength falls as the multipolarity V.J of the GRs [32]. It is important to note
that the IS mode is produced when the neutrons and protons vibrate in phase, while the IV mode is produced when they
vibrate in the opposite phase. The higher modes of strength functions for higher modes emerge clearly using RPA
approach calculations, which explored upper-level excitation and yielded the collective nuclear motion of nucleons,
energy, spin, and parity, all properties of exciting levels. This emphasized the significance of calculating GR strength
functions using completely self-consistent HF-based RPA. Collective motion was believed to be a common characteristic
of quantum many-body systems. It is believed that the distribution of transition strengths of a low external field that
excites the nucleus exhibits resonance peaks that correspond to the elementary vibrational collective modes.



Study of the Nuclear Structure for Some Nuclei Using Self-Consistent RPA Calculations...

67
EEJP. 4 (2022)

Tables (6-9) summarize the overall calculated results of the EWSR m1 and RPA m1 using SLyS parameterizations.
The total EWSR of strengths is growing compared to those computed using RPA. Therefore, m1 includes those from p-
h strengths. The D.C (represents the double commutator which gives EWSR). The deviations of m1 (RPA) from ml
(EWSR) from R values are minor for all collective modes, indicating high precision for self-consistent HF-RPA
calculations. It is also worth mentioning that it is the most widely used. The GDR is a well-studied GR wherein protons
vibrate collectively against neutrons. This, in the end, shows how strongly neutrons and protons interact inside the nucleus,
which is a key part of nuclear interaction.
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Table 6. The realisation of the EWSR (ml) for the IS and IV within the RPA using multipoles J for 58Ni.Using the SLyS5
parametrization with the summing from 0 to Emax= 60 MeV.MeV{m? are the units. R = m1(RPA) /m1 (D.C.)

Jr T ml (RPA) m1(D.C) R

3 0 3.84191x10° 3.64699x10° 1.05344
1 4.17831x10° 3.98378x10° 1.04883

s 0 1.06005x10" 1.01450x10"! 1.04489
1 1.08982x10" 1.05378x10"! 1.03420

- 0 471703108 4.30197x10" 1.09648
1

4.74086x10"

1.37570x10"7

3.44614x10*
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Table 7. The same as Table 6, for °*Zr. The results are obtained by using the SLy4 parameterization.

I T ml (RPA) m1(D.C) R
- 0 9.02386x10°  9.14815x10° 0.98641

1 3.84977x10°  3.88898x10? 0.98991
3 0 9.41224x10°  9.51103x10° 0.98961

1 1.03355x107  1.04769x107 0.98650
s 0 3.77037x101°  3.90294x10'° 0.96603

1 3.92052x101°  4.09882x10' 0.95649
. 0 1.65031x10"™  1.97037x10"  0.837565

1 1.66744x10%  1.27032x10"  1.31261x10"
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Figure 15. IS (left panel) as well as IV (right panel) HF-based RPA strength function for the dipole photo absorption cross section
(E1), octopole (E3), triacontadipole (E5), and octacosahectapole (E7) in '1°Sn, using the SLy4 Skyrme interaction

Table 8. The same as Table 7, for ''°Sn. The results are obtained by using the SLy4 parameterization.

Jr T ml (RPA) m1(D.C) R
- 0 1.58971x106 1.60455x10° 0.9907

1 4.95137x10? 4.98954x10? 0.9923
3 0 1.67417x10 1.68763x10’ 0.9920

1 1.84779x107 1.86690x107 0.9897
s 0 9.05465x101° 9.30575%101° 0.9730

1 9.46386x101° 9.80651x10"° 0.9650
. 0 5.76248x10" 6.39154x10" 0.9015

1 5.83076x10" 6.21586x10'*  9.3804x10°

Table 9. The same as Table 8, for '“*Sm. The results are obtained by using the SLy5 parameterization.

Jr T ml (RPA) m1(D.C) R
s 0 1.7375x10" 1.74605%10"! 0.9951
1 1.83920x10"! 1.85616x10'" 0.9908
. 0 1.11146x10' 1.24269%10'3 0.8943
1 1.13293x10' 1.70570x10" 6.6420x10°




70

EEJP. 4 (2022) Noor M. Kareem, Ali A. Alzubadi
2x10° T - :
8x10° T T X T T 1445
[ 1asm | H stys 1
SLys Ecuog=50MeV
6x10° - Ecuron=50MeV _| 2x10° - 1 -
o oc
e I ] & » ]
3 =
T 4x10° |~ - - 10° -
2 3
= r ] = r ]
= =
2x10° — L ex10” .
° ‘ 210 T a0 eo ° ' 1 ' 1
E(MeV) o 20 40 60
€ E(MeV)
2x10*? T T T T " 2x10** T T " ;
" 2x10** -
2x10% - -
S ] H i
2 r 1 S 107 -
[ 102 _| = L ]
= L i 3 8x10" - —
= = H g
& 6x10™ - — gl "
ax10" -
o n 1 n 1 n o n 1 I 1
(o] 20 40 60 o 20 40 60
E(MeV) E(MeV)

Figurel6. IS (left panel) as well as IV (right panel) HF-based RPA strength function for the triacontadipole (ES),
and octacosahectapole (E7) in '#*Sm, using the SLy5 Skyrme interaction

CONCLUSIONS

The present research has led us to conclude that self-consistent RPA calculations are based on Skyrme effective
nucleon-nucleon interaction, and these calculations give a significant description of the ground state properties for the
closed-shell for *Ni, °°Zr, 1'%Sn, and '**Sm. Considering the binding energy, neutron, proton, and neutron skin thickness,
and charge radii, remarkable correlations were found with experimental data. For the static nuclear properties, the SLy4
and SLy5 parameterizations give the best results in compression with experimental data. Regarding dynamic properties,
the RPA method is an efficient tool for describing the higher modes resulting from the collective motion of nucleons
within the nucleus. It can also be used to describe the transition. density for proton and neutron modes, in addition to GRs
modes. The RPA method is the simplest theory that predicts the main features of giant resonance (GR) with a high degree
of accuracy.
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JOCJIUKEHHA SSAEPHOI CTPYKTYPH JESAKUX SAJIEP 3A TOIIOMOTI'OI0 CAMOY3TOJKEHIX
PO3PAXYHKIB RPA I3 B3AEMOJIEIO TUITY SKYRME
Hyp M. Kapim?, Aui A. An3ydani®

“Vuisepcumem bazoaoa, Haykosuii koneddc, ghaxynomem @izuxu
V upoMy JocHiaKeHHi 6y BUBUEHI €Ki CTaTHYHI Ta AMHAMIYHI S€PHI BJIACTHBOCTI AZiep i3 3aKpUTO0 000510HK00:> N1, *Zr, 116Sn
i 1%Sm 3 Bukopucrannsm meroxy Random Phase Approximation (RPA) i pisuux napamerpis Ckipma, 30kpema SyO-, Sk255, SyO+,
SLy4, BSk17 i SLyS5. 3okpema, y JOCIiKEHHAX CTATHYHUX BIACTUBOCTEH, TAKMX SIK siiepHA TYCTHHA I HEHTPOHIB, IPOTOHIB, Maca
Ta TyCTHHA 3apsiAy 3 IXHIMHU BiJIOBIJHUMH CEPEIHbOKBAAPATHIHUMU PaJiiycaMH, OJHOUYACTHHKOBI PO3IOALIH sIIEpHOT TYCTHHH. Y Ci
OTpUMaHi pPEe3yabTaTH AOOpE Y3rOMKYIOThCS 3 BIANOBIIHUMH €KCHEpUMEHTaNbHUMH AaHuMHU. Illo cTocyeThcs OMHAMIYHHX
BIIACTUBOCTEH, TaKOK OyJIM BHBUYCHI €Hepris 30YIPKEHHs, IIUIBHICTh MEepexXofy Ta TiraHTChKi PE30HAHCHI MO Ui 30YIKEHHS
HU3BKOPO3TAIIOBAaHUX HEraTHBHHX 30YMKeHHUX cTaHiB 17, 37, 5~ ta 7-. PesynbpraTn nmokasyrors, mo ouinku RPA 3 B3aemonisimu tumy
Skyrme € XopOImuM CII0cO00M OINCY BIACTUBOCTEH CTPYKTYPH HAapHO-TIAPHUX sIAEP i3 3aKPUTOI0 000IOHKOIO.
Koarouosi caoBa:cuimm SKYRME, Xaprpi-®ok (HF), anpoxcumaunis BumagkoBoi ¢azun (RPA), 30ymxeHui craH BHIIMX MOZ,
IiIBHICT eHepril Skyrme





