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In this paper, we determine eigen energies, eigenfunctions and statistical properties of non-relativistic heavy quarkonia interacting with
the extended Cornel potential within a space-time generated by a cosmic-string. We extend the Cornel potential by adding the inverse
square potential plus the quadratic potential. We have calculated the energy eigenvalues and the corresponding eigenstates using the
Extended Nikiforov-Uvarov (ENU) method. Then, based on the equation of energy spectra, the thermodynamic properties like partition
function, entropy, free energy, mean energy and specific heat capacity are calculated within the space-time of a cosmic-string. In the
next step, we investigate the influence of the cosmic-string parameter on quantum states of heavy quarkonia and their statistical
properties.
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1. INTRODUCTION

The study of quantum particles under the influence of a potential in a curved space-time with Topological defect has
inspired a large number of research in recent years [1, 2, 3, 4, 5, 6] with different motivations. Kibble [4, 5] was the first
to state the mechanism which would have led to the appearance of topological defects in the universe. According to grand
unification theories (GUT) [4, 5, 6], the conditions which reigned in the very early moments of the universe were such
that the four fundamental interactions were one [4, 5, 7]. A few moments after the Big-Bang, the universe began to expand
and became less and less hot and its density decreased [7, 8]. From the initial phase where the grand unification
symmetries would be realized, a spontaneous breaking of these symmetries would then have taken place and at this
moment, stable topological defects were formed.

Thus, a large variety of topological defects have been studied in previous works, namely: point defects [4, 5, 6, 7, 8]
called monopoles, linear defects or cosmic-strings [4, 5, 7], surface defects or "domain walls" [9], and also combinations
between these different defects [10, 11, 12]. These faults are often stable; so, it is absolutely possible that some of them
would have survived, until now [9]. However, cosmic strings are compatible with cosmological models [6] and current
observations. Their cosmological effects could be confirmed with current and future work. It is therefore quite logical to
give particular interest to the study of quantum systems on curved space-time with cosmic-string background. In [6], the
author presents cosmic-strings as the most important topological defect in our universe.

Their effects on the environment are mainly gravitational in nature [6, 10, 11, 12]. To this end, a quantum particle
placed in a gravitational field will be influenced by the topology of the space and by its interaction with the local curvature.
From this interaction, it follows that an observer at rest with respect to the particle will see a shift in its spectrum. This
would be of considerable interest both from a theoretical and an observational point of view. Apart from the effects due
to the gravitational field, other effects can be induced by a cosmic-string, like for example bremsstrahlung process [13],

the creation of the (e*,e" ) pair [14], gravitational leasing [15] and the gravitational Aharonov-Bohm effect [16].

The study of thermodynamic properties of quantum systems plays a major role in theoretical High Energy Physics
(HEP) and related fields [17]. Usually, quarks and gluons remain confined in hadrons and in particular in the protons and
neutrons which form the atomic nucleus. Indeed, Quantum Chromodynamics (QCD), a theory that accounts for the strong
interaction predicts that by compressing or heating nuclei, it is possible to create a plasma of quarks and gluons [18, 19],
a matter with poorly understood thermodynamic properties. In past few decades, some experimental works have been
carry out to identify the existence of deconfinement transitions [19] and determine its signatures. Then, it was predicted
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that the suppression of charmonium (a bound state of charm and anti-charm quarks) meson is a possible signature of the
QCD phase transition [18, 19, 20]. This phenomenon of deconfining matter is in principle observable through the study
of the J/¢ particle [20], a meson as heavy as three surrounding protons. The suppression of the ¢ meson has been

announced as being the signature of deconfinement transition, it would be interesting to study in depth the thermodynamic
properties of heavy mesons, in this case heavy quarkonia.

In [21], the author obtained thermodynamic properties of the quark-gluon plasma from the constituent quasi particle
model of quark-gluon plasma. Then in [22, 23, 24], thermodynamic properties are investigated using chiral quark models.
In this work, we obtain the solutions of the Schrodinger equation produced by the gravitational field of a topological
defect, for all values of the orbital angular momentum quantum number /. The Extended Nikiforov-Uvarov method
[25, 26] is used to obtain exact analytical solutions of the radial Schrédinger equation in cosmic-string background. Next,
we apply the results to obtain the thermodynamic properties of heavy quarkonia from cosmic-string geometry, which is
not consider in other works.

This paper is organized as follows: in Section 2, the Extended Nikiforov-Uvarov method is reviewed. The bound
state solutions for the extended Cornel potential are obtained for the Schrédinger equation in cosmic-string background
in Section 3. Then in section 4, thermodynamic properties of heavy quarkonia within cosmic-string geometry are
presented. In Section 5 results are discussed, and conclusions are presented in Section 6.

2. BASIC CONCEPTS OF THE EXTENDED NIKIFOROV-UVAROV METHOD
In this section, we briey present the Extended Nikiforov-Uvarov (ENU) technique, for more details see [25, 26, 27].
The extended Nikiforov-Uvarov method is obtained by changing the boundary conditions of the standard
Nikiforov-Uvarov (NU) method and is used for solving any second order differential equation which has at most four
singular points. The equation to be solved is of the form:

w(r)=0, Q)

such that 7(r), o(r) and 7 (r) are polynomials of at most second, third and fourth degree, respectively. By choosing

w such that:
v (r)=4(r)Y(r), &)

where ¢(r) and Y (r) are functions to be determined later. Moreover, considering the above substitution Eq. (1) reduces

to an equation of the form
O'(r)Y”(r)+r(r)Y’(r)+h(r)Y(r)=O, 3)

where ¢(r) solves the equation

“)

h(r)—iz'(r)zG(r). &)
And the polynomials of the function ¥ (r) satisfy the Rodriguez formula [27]

5_d
p(r)dr

In Eq. (6), B, is the normalization factor and p is the density function. The function p solves the following equation:

(c(r)p(r) =(r)p(r). ™

The function 7(r) required for this method are given by:

7(r) = “'(”)‘F(’)i\/[ ”'(r)‘?(’)] 5 (r)+G(r)o(r). ®)

Y, (r)= [o" (1) ()] (©)

2
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where 7(r) is a second-degree polynomial. The function 4, () is determined from the equation

h, (r):—gr'(r)—n(n_l)a”(r)+c, ©)

where r(r) = 7(r)+27r(r) and C, is an integration constant. In the order to obtain the eigenvalue solution of the
problem by ENU method [25, 26, 27], the polynomials 4(r) and A, (r) are equal and Y (r)=Y,(r) is a particular
solution of degree 7 of Eq. (3). The function #(r) is defined as a logarithmic derivative given in Eq. (4), and then

eigenfunction spectra can be obtained analytically. For more details one can see Refs. [26] and [27].

3. SCHRODINGER WAVE EQUATION IN THE SPACE-TIME OF A COSMIC STRING
In spherical coordinates, the line element describing the cosmic string space-time [6] is given by

(xo =ct, x'=r, x**=0, ¥ :(p)
ds* = g, dx" ® dx’ = ~c*di* +dr’ +r’d0’ +[ yd0 +arsin0dg] (10)

4GJ
where 0 <r <o, 0<fd<m,and 0<@ <27, 0<a=1-4J is the topological parameter of the cosmic string, ¥ =——,
c
is the torsion [23] parameter and J denotes the linear mass density [28, 29,30,31] of the cosmic string. From General
Relativity (GR), we know that the values of J varies in the interval J € ]0,1[ .
For ¢ —1 and y —0, the metric given by Eq. (10) reduces to the usual Minkowski metric in spherical coordinates.

The metric tensor for the space-time described by Eq. (10) is:

-1 0 0 0
(x) 0 1 0 0 -1 0 an
X)= =
Euv 0 0 4 +r yarsin@ 0 (g,-,-) ’

0 0 yarsin@ o’r’sin®@

with the inverse metric,

-1 0 0 0
0 1 0 0
v 1 X
g”(x)=l 0 o0 — SR S— (12)
( ) r ar’sin@
0 0 V4 r+r
ar’sinf o’r*sin’ @
We adopt the signature (—,+,+,+) for the metric tensor g*, and its determinant is given by

g= det( g‘”) =—a’r*sin’ @, with u,v=0,1,2,3. In the curvilinear coordinates system ds’ =Y >* g dx'® dx’

such that » —>x', @ »>x?, @ —x’ the metric tensor of the internal 3-dimensional Euclidian space is:

1 0 0
g, (x)=1 0 Z+r*  yarsing |. (13)
0 yarsind a’r’sin’@

The Laplace-Beltrami operator of the local coordinates system can be expressed as:

1 0 i 0 .. .
A =E§[g’\/§§J i,j=1,2,3 and g=det(g,.j)=a2r4 sin” 6. (14)

Then, considering Eq. (14) and for small values of the torsion parameter y < 1, the Laplace-Beltrami operator becomes:

SEINE o o1&
Ag=—7— —| | +cotd—+ + , 15
o rz{ﬁr{r [arn %0 o0 azsinzﬁawz} (1
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from this we can write the Hamiltonian operator in natural units (7=c =1) as:

10> 20 1 o 1o 1 1 0’
=os| aato ot aetd — st 2
2M| or" ror r 00 r 060 r a'sin“fop

J+V(r,9,¢), (16)

M =m,m, / (m , mq) is the reduced mass of the quark-antiquark system, where m, and m, are the mass of quark

and antiquark respectively [8, 26].
The non-relativistic Schrodinger equation in curved background space-time is [16, 23]

Oy, KO 20 1 0 10 1 1 3 | e v
lha‘{’(l’,l)z—Wli87+——+—zcot9£+r—zaez+r—2azsinzga¢2}LP(I",I)-FV(I")‘“P(I"J), (17)

ror r
here, we consider bound states of two heavy quarks interacting with the extended Cornel potential [26, 32]

V(r):—£+ar+%+br2. (18)
r r

The first term is a Coulomb-like potential due to one-gluon exchange processes between quark-antiquark [32], the second
term is a linear confinement term. The additional part was added to improve quark-antiquark properties [26, 32, 33]. As
V =V (r), the following commutation relations must be satisfied

| L)) =0, | 2r(r)]=0. (19)

Consequently, L_and L’ are good quantum numbers to describe the quantum states of the system under the influence of
this potential. Inserting the new form of ¥ as

¥ (7.1) = V/T(V)H (6)®, (p)e ™, (20)

and substituting in Eq. (17) gives the following set of second-order differential equations,

d’y, (r 2M 2M S
—dr’z( )+[—h—2V(r)+ = En[—r—z} v, (r)=0, 1)
d*H" (0 dH!" (6 2
’2( ) 4ot 0), §-————|H(6)=0, 22)
de do a“sin” 0
dzd)m 1)
d—cf()+m2®m (9)=0, 23)

where § and m’ are the separation constants. Using the following boundary condition: @, (p+27)=, (p), we can

easily obtain the solution of Eq. (23) as
D, ((0) =——=e", m=0,+1,+2,43,.... (24)
To find the solutions of Eq. (22), we introduce the variable 77 = cos 8 , which map Eq. (22) into

ZHm m 2
d 1(77)_ 2y d /(77)_,_ S__™M™ H"(n)=0. (25)

dn’ (1—772) dn az(l—nz)

To obtain suitable solutions of Eq. (25), it is therefore necessary to analyze the way the solutions behave around singular
points, namely 7 . Then we assume the following form for the solution:

H (7)=(1-7") g (n), (26)
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where g, is analytic everywhere except at 77 — too. From Eq. (25) and Eq. (26), and introducing the following

generalized quantum numbers, namely lays Mgy == from the cosmic-string geometry, we obtain the following

a
equation:
d’g,) (1) g, (1)
() ()
(1-7%) i =2(m+1)n ir —[ n g+, —5} g (1) @7)
From the expansion of g, (n) into a power series,
oy (1) = Zam” , (28)

and inserting in Eq. (27) gives us the following recurrence relation:

”(”_1)+2(m(a) +l)n—5+m(a) (m(a) +1)
an+2 = an > (29)
(n+l)(n+2)

where n=0,1,2,3,... . For physically acceptable solutions, the series must be truncated at a certain value of # :
n(n=1)+m, (m, +1)+2(m, +1)n-5=0. (30)
Solving for § gives:
5=l (z(a) + 1) with — f, =m, +n, 31)
l(a) being the generalized angular orbital quantum number. The generalized quantum numbers Lo and m,, are not
always integers. l(a) =M, +n= 2in= l—[l—lJ m , where [ =0,1,2,... Eq. (25) can therefore take the form:

o (04
2
[ m(a):| M)

(1-7") T e ’(a)(lw)”)‘(l_nz) Hygy (1) (32)

where Eq. (32) is the generalized Legendre equation within the cosmic-string space-time and H :g’; (77) are the

generalized Legendre polynomials given by the formula:

. . (_l)z(a) My d[(“)m(") N
Hh (m) = B () =S — (=) ——r| (1-77) |- (33)
(@)° dn
Let's now turn to the radial equation.

Substituting the proposed potential in Eq. (21) and choosing the separation constant being 6 = l(a) (l(a) +1) , the

radial equation becomes:

2
vulr) ";:fz(r) + riz[ ~2Mg ~1,, (I, +1)+ 2MKr +2M (E,, ~d)r* =2Mar’ - 2Mbr4} . (r)=0, (34)

that we put in a simple form by introducing the following constants:

&=l (l*1)+2Me, & =2MK, & =2M(E,~d) . 5)

& =2Ma, & =2Mb

The functions from the Nikiforov-Uvarov method are:
7(r) =0, (36)

o(r)=r, (37)
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E(F):—(fo +§lr+§2r2 —§3r3 —§4r4. (38)
Using equation Eq. (10), 7(r) is found as:
r):%i\/§0+%—§1r—§2r2+§3r3+§4r4+rG(r) . 39)
Assuming that the term under the square root of the above expression becomes quadratic,
1 2
z(r)= E+(a0+alr+a2r ) (40)

Let's take the function G(r) in the form G(r)= Ar+ B . By comparison between Eq. (39) and Eq. (40), we obtain

the following four sets of solutions for the unknowns «,, @,, &, 4 and B in terms of the problem parameters:

o =& o =—E
_ & _ &
a, = 2\/5 a, 2
I:yq,= tfo-i-l I:qe,= §O+l
[&] _
A=&+ J—+2JZ G+ A=¢+ Gyfi+
B=&+ \7;3* §o+_ BZ&‘% §°+Z
a, :\/E @, :_\/5—4
s -
2\¢&, 2\,
I : § a, :—‘/§O+% IV 1 ya, =- /é:o +% . (41)
L [aT L Ly 1
A_§2 \/7 -2 §4 §o+_ A_§2+4\/§7+2 54 §0+Z
S 1 & 1
- §o+_ B:§1+_ §0+_
Je VT4 JENT 4
Considering Eq. (4), we have two solutions for ¢(r) which are given by:
g.(r)= KiréilZo exp{i%(azrz + Zalr)J . (42)

The wave function will be physically acceptable if ¢, <0, a, <0 and ¢, >0 and then the set II of parameters is
the suitable one in the determination of the eigenvalue and the eigenfunction of the problem.
As the functions /(r) and &, () are equal, we use Eq. (5) and Eq. (9) to obtain the energy equation as

Ar+Bx(2ar+a)=C,—n| £(2ar+a,)) @3)

where C, is an integration constant which couples with the parameters of potential. Eq. (43) leads us to have two distinct

choices ++ and ——, which are given by I and II as follows
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2a, + A=-2na, —2a, + A=2na,
: II : . 44)
B+a, =C, —ne, B-a =C, +ne,
The choice of —— and set Il results on the relation A+2(n+1)a, =0 from which we can write:
4.8 +[E] -4 +1
G lal HaVEE Ly 45)
42,
Using Eq. (35) and Eq. (45), we obtain the expression below:
i - __ -
E, —d-" 42 % 2(n+1)+2,[2Mg +| I - TR Y| I U Y L (46)
4b M a a 4

We note that the presence of the cosmic string parameter & breaks the degeneracy in all the states with /= 0. When
a— 1 and d — 0, we recover the results obtained in [26, 33]. Moreover, for « > 1, d > 0, a=0 and g =0 we obtain

the energy spectrum of a spherical quantum harmonic oscillator [26].
For the wave function, it is easy to obtain ¢(r) from Eq. (4) as

1 2
a17+5a27

é(r)= r[aMEJ e[ , (47)
and p(r) from Eq. (7) as

1 >
ar+—or

p(r)=r* 62[ : (48)

Then we use Eq. (6) to obtain the function Y, (r) as

(r)= B, e i{ a3 J . (49)

n

dr"
From Eq. (2) the radial eigenfunctions are then

v, (r)= Nn,rf%%e{aly%aﬂzj 57{ p2en ez[w%aﬁj } : (50)

where N, is the normalization factor, and «,, &, &, are given from set 11

4. THERMODYNAMIC PROPERTIES OF THE ¢q SYSTEM

To consider the thermodynamic properties of heavy quarkonia within cosmic-string framework, the starting point is
the partition function [34, 35]. From a statistical mechanical point of view, the partition function can be constructed as
follow:

2(p)= e

n=0

-B —Z—ZM 2—5 1+J2,ug+ l—[l—olt]m“l—[l—oll]m+lJ+}‘J _4,5\/2:%

=e Se v , (51)
1 -p|2 %+ —%+4 %’ 1+\/2,ug+ l—[l—oll]mHl—[l—é]m+lJ+}lJ ] 5

=5€ csch| 246, |—
2 u

here f =k,T , where k, is the Boltzmann constant and 7" is the absolute temperature of the system. Once the partition
function is obtained, we can have the Helmholtz free energy as:
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2 PYED
S Yy A (SO U YR VN (P | R (ORI UL 0 0 (O 7

4b u a a 4 p

2
= -Z 44 2—b 1+ g+ 1= =2 m|| 1= 1= L[+ 1] |22 /2

4b a a 4 Y7,
+—ln[25mh£2ﬂ JJ

From the Helmholtz free energy, we can obtain the other statistical quantities in a straightforward manner. The
entropy of the system can be obtained as

(52)

S=- Bﬂz or
op
_ LB
1 | ap 2 (53)
7]
B e
=—In| 2e J:sinh 25 2b +20 2—be \/:csch 25 2b
\ u \ u
The internal energy U is defined as:
olnZ(p
U———(ﬂF) —( )
op op
. . e
) 2b I+, 2ug+| - 1—l mi|l-
4b Y7 a
. (59
2 T T T ,zﬂﬁ
B AR A T Oyt IV UL 8 | [ TS PSR BV i 08 \Ecsch 25 2
4b y7, a a 4 Y7, )7
Then from the internal energy we can compute the specific heat capacity at constant volume C, as
Cv:_lgﬂa_U
op
“‘ﬂﬁ 4ﬁ
e V| 1+ / \F
[2b “o
=16k, p’ " (55)

2
,WJE
l—e V#

r Bl

5. RESULTS AND DISCUSSION
In this section, we discuss the effect of cosmic-string geometry on thermodynamic properties and spectrum of heavy
quarkonia. Fig. 1,2 and 3 show the plots of the radial wave functions of c¢ mesons for the 1P, 2P and 3P states
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respectively, at different values of the parameter of the topology. Whereas, in Fig. 4,5 and 6, variations of the radial wave
functions of b mesons are plotted for the 1P, 2P and 3P states respectively, at different values of the parameter « .

wavefunction of c¢ 2P states

wavefunction of c¢ 1P states

09
—=0.4 09

25 / ~ o 08
, - \ a=0.6 = 07

p— P~
= \ —=0.8 06 = 06
SR 15+ 05 Q, - 0.5

= — o | B 3
= =04 = 04

0.3
0.2
0.1

Figure 1. Ground states wave functions of cc meson plotted against of Figure 2. Radial wave functions of first excited states of cc meson plotted

the radius # at different values of @ with /=1, m, =+1 against of the radius 7 at different values of @ with /=1, m, = +1

wavefunction of c¢¢ 3P states wavefunction of bb 1P states

1 0.14
0.9
0.12 -
- a=0.4
0.1
07 a=0.6
—
o 06 & 008 .
= — - =a=0.8
< 05 = 0
= 04 =" a=1
03 0.04
0.2
0.02
0.1
0
0 0 2 4 6 8 10

Figure 3. Radial wave functions of second excited states of cc
meson plotted against of the radius 7 at different values of @ with

Figure 4. Ground states wave functions of b5 meson plotted against

of the radius 7 at different values of @ with /=1, m, = +1

I=l, m, =+l
0 wavefunction of bb 2P states ; wavefunction of bb 3P states

¥ 1 1
0.9 0.9
0.1 0.8 0.8
0.7 0.7
3 0 0.6 /L\ 0.6
C:T — =) .4 l 05 \z 05

o

= 01 —r=0).6 0.4 > 04
-_—-n=().8 03 03
0.2 — 02 0.2
0.1 0.1

03 0 0

0 2 4 6 8 10

Figure 5. Radial wave functions of first excited states of b» mesons
plotted against of the radius 7 at different values of @ with /=1,

m, =+1

Figure 6. Radial wave functions of second excited states of bb
mesons plotted against of the radius 7 at different values of @ with

1=, m, =+1

It appears that the peaks of the wave functions are shifted backward for small values of @, and its values shift to

higher values by increasing @ for cc , and by decreasing a for bb .In Fig. 7,8 and 9 are plotted the radial functions of
probability densities of cc mesons for the 1P, 2P and 3P states respectively, considering different values of the
topological parameter @ . Whereas, in Fig. 10,11 and 12 are plotted the radial functions of probability densities of bb
mesons for the 1P, 2P and 3P states respectively It is observed that the behavior is the same for any P — state, but

with some shift in the peaks toward the origin. Considering cc and bb mesons, the peaks are shifted toward the origin
as a decrease.
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Figure 7. Density functions of radial probability for ground states Figure 8. Density functions of radial probability for ground states
of c¢¢ meson plotted against of the radius 7 at different values of  of b mesons plotted against of the radius » at different values of
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values of @ with /=1, m, =+1 values of @ with /=1, m, =+1
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Figure 11. Density functions of radial probability for second excited ~ Figure 12. lgensity functions of radial probability for second excited
states of cc meson plotted against of the radius » at different states of »b meson plotted against of the radius » at different

values of @ with /=1, m, = +1 values of @ with /=1, m, =+1

To calculate the thermodynamic properties of quark-antiquark systems, we have employed tools from statistical
mechanics, taking as a starting point the canonical partition function of the system, from which the other statistical
quantities were calculated in a straightforward manner. Next, we depict the statistical properties of cc and bb mesons
in Figs. 13-22. In our model, the effect of the cosmic-string appears only when / # 0. Indeed, from Eq. (51) we clearly
see that S — states are not influenced by the cosmic-string geometry but by the usual Minkowski geometry because when
[ =0 weequally have / Q= 0, and all the quantities become « — independent. In fact, setting the cosmic-string parameter
to 1 automatically eliminate the effect of topological defect. For this reason, much emphasis were placed on the study of
states with / # 0, namely the P — states.

In Fig. 13,14, we have plotted the canonical partition function respectively for ¢c and bb quarkonia in terms of
[ for different values of the cosmic-string parameter « . It is clearly seen that by decreasing the value of «, all the
curves are separated from the classical Minkowski curve (@ =1). For all the values of the topological parameter the
behavior is the same but with different magnitudes. Moreover, the splitting increases as @ decreases and then the partition
function decreases with increasing £ which is in agreement with [36, 37]. In [36], the author applied the deformed five

parameter exponential potential and observed that with increasing /7, the canonical partition function for the
Minkowskian case decreases monotonically.
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lertition function of c¢¢ with [ =1 and m; = +1

Figure 13. Density functions of radial probability for second excited states
of cc meson plotted against of the radius 7 at different values of a

with /=1, m, = +1

Psartitiou function of bb with I = 1 and m; = +1

Figure 14. Density functions of radial probability for second excited states
of bb meson plotted against of the radius » at different values of @

with /=1, m, =+1

In Fig. 15,16 The Helmholtz free energy is plotted as a function of £ respectively for cc¢ and bb mesons.

Fr;ee Energy of ¢¢ meson with [ =1 and m; = +1

Figure 15. Density functions of radial probability for second excited states
of cc meson plotted against of the radius 7 at different values of a

with /=1, m, = +1

Fr1ee Energy of bb meson with [ = 1 and m; = +1

Figure 16. Density functions of radial probability for second excited states
of bb meson plotted against of the radius 7 at different values of @

with /=1, m, = +1

The effect of the cosmic-string geometry clearly appears when « takes values different from a =1 (classical

Minkowski space-time). It is found that the Helmholtz function increases monotonically with increasing £, and the curves

with a #1 are separated from the classical Minkowski curve. Moreover, the splitting is important for small values of a . In
[34], the author treated quark-gluon plasma as composed of light quarks only, which interact weakly. They observed that the
Helmholtz free energy decreases as the temperature increases. In [35], Modarres and Gholizade calculated the Helmholtz
function of a neutral particle and observed that the free energy of the system decreases as the temperature increases. In the
present model, the behavior of charm and bottom quark matter is in agreement with [34, 35, 38].

In Fig. 17,18 the internal energy is plotted against £ for different values of a , respectively for cc and bb mesons.
It reveals that, U ( g ) decreases with increasing [, and its values shift to lower values by increasing the parameter of

the topology « .

Ilg%rnul Energy of ¢¢ meson with [ =1 and my = +1 I“'fé"“l Energy of bb meson with I = 1 and m; = +1

e (=02 —=().2
5 e (10,4 4 -_ -
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45 —— 0=0.8 35 —a=0.6

— =10 a=0.8

——a=1.0

Figure 17. Density functions of radial probability for second excited states
of cc meson plotted against of the radius 7 at different values of a

with /=1, m, = +1

Figure 18. Density functions of radial probability for second excited states
of bb meson plotted against of the radius » at different values of @

with /=1, m, =+1
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In [38], the authors studied thermodynamic properties of neutral particles in a cosmic-string background from non-
relativistic Schrodinger-Pauli equation. They observed that the internal energy of the system increases as the temperature
increases. Thus, the conclusion of the present work for internal energy is the same with recent works [36, 37, 38].

The entropy S (/) and the specific heat capacity C, () are plotted against £ respectively in Fig. 19 and Fig. 21

cc meson and in Fig. 20 and Fig. 22 bb meson. These figures show that the entropy and the specific heat capacity of

cc and bb mesons are not influenced by the parameters of topology, and are similar to the solution for a at Minkowski
space-time. In [38] a similar result was obtained for neutral particles, showing the non-dependence on topological defect
of heat capacity and entropy, which is in total agreement with the present work.

45Entmpy of ¢¢ meson with [ =1 and m; = +1 4;311t1'0py of bb meson with I = 1 and m; = +1
. —a=0.2 ) —=(.2
—a=0.4 — =04
o a=0.6 35 a=0.6
= 3 — = —a=0.8
N —_—a=1.0 Q , )
7 25 x —a=1.0

04 0.5 0.6 0.7 0.8 0.9 1 11 12 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Figure 19. Density functions of radial probability for second excited states
of cc meson plotted against of the radius 7 at different values of @

with /=1, m, =+1

S&)gé‘iﬁc heat capacity of ¢¢ meson with [ =1 and m; = +1

04 0.5 06 0.7 0.8 0.9 1 11 12

Figure 21. Density functions of radial probability for second excited states

Figure 20. Density functions of radial probability for second excited states
of bb meson plotted against of the radius 7 at different values of @

with /=1, m, =+1

Sa)gatiﬁc heat capacity of bb meson with [ = 1 and m; = +1

0.12 L L L L : L L )
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Figure 22. Density functions of radial probability for second excited states

of cc meson plotted against of the radius 7 at different values of @  of hb meson plotted against of the radius 7 at different values of @

with /=1, m, =+1 with =1, m, =+1
6. CONCLUSION

In this work, we have investigated the effects of the gravitational field of a topological defect on thermodynamical
properties of heavy quarkonia. We have used the extended Nikiforov-Uvarov method to solve the radial Schrédinger

wave equation in the space-time of a cosmic string, for the potential V(r) =——+ar +£2+ br* . We obtain the radial
r r

wave functions of ¢z and bb mesons as well as the energy eigenvalues, which are shifted from the usual Minkowski
energies. From this, we have considered all the statistical quantities using the canonical partition function of the system.
The wave functions and the thermodynamic properties were analyzed graphically. It was observed that the peaks of radial
functions of probability densities are shifted toward the origin as @ decrease. The thermodynamic quantities present a
shift compared to the classic limit; this difference becomes more important for small values of the cosmic-string
parameter. The partition function shifts to lower values as @ decrease, the Helmholtz function increases monotonically
with increasing £, and the curves with @ # 1 are separated from the Minkowski curve, then the values of the internal
energy are shifted to lower values by increasing the parameter of the topology. Meanwhile the specific heat capacity and
the entropy are not influenced by the topological defect.
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BILTHUB I'PABITAIIIMHOI'O IIOJISI HA TOIMOJOITYHUMA JEDEKT
HA CTATUCTHUYHI BJACTHBOCTI BAXKKUX KBAPK-AHTUKBAPKOBUX CUCTEM
Angpe Ame Atanrana Jlikene®‘, Ani 3apma?, /Ibenonne Hra Onrono?,
Kan Mapi Ema'a Ema'a®, Ilarpic Ese AGiam™*, ’Kepmen I06ep Ben-Boui?
“Jlabopamopis amomuoi, MoneKyIApHoi ma s0epHoi Pizuku, kageopa izuxu, npupoorHuyUll haxyrvmem
VYuisepcumem Hynoe I, P.O. Box 812, Aynoe, Kamepyn
bHeaynoepe Buwe nedazoziune yuunuwe, gpaxyromem gizuxu, Yuieepcumem Mapya, P.O. Box 55, bepmya, Kavepyn
¢Cexyis s0eprux mexnonoeiti (NTS), Incmumym ceonoeiunux i ipnunux docnioxcens, P.O. Box 4110, Aynoe, Kamepyn
V wiii ctaTrTi MM BU3HAYaEMO BIIACHI eHepril, BiacHi (GYHKIIT Ta CTATUCTUYHI BIACTHBOCTI HEPEISITUBICTCHKOTO BAYKKOTO KBAPKOHIIO,
0 B3a€EMOJI€ 3 pPO3IMUpPEeHHM NoTeHHiaroM KopHenss B MpOCTOpi-daci, CTBOPEHOMY KOCMIYHOIO CTPYHOI. MH pO3IIHUPIOEMO
noreHmian Koprens, nomatoun oOepHeHHMI KBaJpaTHHH ITOTEHIiall IDTIOC KBAaApAaTHYHMII MOTEHIia]. MU po3paxyBanu BIacHI
3HAUEHHs SHeprii Ta BiMOBIIHI BIACHI CTaHH 3a J0MOMOro posmmperoro Merony Hikipoposa-YBaposa (ENU). ITotim Ha ocHOBI
PIBHSIHHS €HEPreTHYHHX CIEKTPIB OOYMCIIOIOTHCA TEPMOAMHAMIUHI BIACTHBOCTI, Taki fK CTaTHUCTHYHA CyMa, €HTPOIis, BiIbHA
EHEPTisl, CepeTHs CHEPrisl Ta MUTOMA TETUIOEMHICTD Y IIPOCTOpi-yaci KOCMigHO1 cTpyHH. Ha HacTymmHOMY KpOIli MU TOCTIIKYEMO BILTHB
napameTpa KOCMIYHOI CTPYHH Ha KBaHTOBI CTaHH Ba)KKUX KBAapKOHIiB Ta X CTATMCTUYHI BIaCTHBOCTI.
KonrouoBi ciioBa: TepMOAMHAMIUHI BIACTHBOCTI, KBapK, XBHiIboBe piBHsAHHSA Illpeninrepa, Tomonoridnuii nedekr, mpocrip-yac,
KOCMiuHa CTpyHa, po3uupeHuii norenuian Koprena, me3oH, posmupenuii meroa Hikidhoposa-YBaposa.





