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In this paper, we determine eigen energies, eigenfunctions and statistical properties of non-relativistic heavy quarkonia interacting with 
the extended Cornel potential within a space-time generated by a cosmic-string. We extend the Cornel potential by adding the inverse 
square potential plus the quadratic potential. We have calculated the energy eigenvalues and the corresponding eigenstates using the 
Extended Nikiforov-Uvarov (ENU) method. Then, based on the equation of energy spectra, the thermodynamic properties like partition 
function, entropy, free energy, mean energy and specific heat capacity are calculated within the space-time of a cosmic-string. In the 
next step, we investigate the influence of the cosmic-string parameter on quantum states of heavy quarkonia and their statistical 
properties. 
Keywords: thermodynamic properties, quark, Schrödinger wave equation, topological defect, space-time, cosmic string, extended 
Cornel potential, meson, extended Nikiforov-Uvarov method. 
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1. INTRODUCTION 
The study of quantum particles under the influence of a potential in a curved space-time with Topological defect has 

inspired a large number of research in recent years [1, 2, 3, 4, 5, 6] with different motivations. Kibble [4, 5] was the first 
to state the mechanism which would have led to the appearance of topological defects in the universe. According to grand 
unification theories (GUT) [4, 5, 6], the conditions which reigned in the very early moments of the universe were such 
that the four fundamental interactions were one [4, 5, 7]. A few moments after the Big-Bang, the universe began to expand 
and became less and less hot and its density decreased [7, 8]. From the initial phase where the grand unification 
symmetries would be realized, a spontaneous breaking of these symmetries would then have taken place and at this 
moment, stable topological defects were formed. 

Thus, a large variety of topological defects have been studied in previous works, namely: point defects [4, 5, 6, 7, 8] 
called monopoles, linear defects or cosmic-strings [4, 5, 7], surface defects or "domain walls" [9], and also combinations 
between these different defects [10, 11, 12]. These faults are often stable; so , it is absolutely possible that some of them 
would have survived, until now [9]. However, cosmic strings are compatible with cosmological models [6] and current 
observations. Their cosmological effects could be confirmed with current and future work. It is therefore quite logical to 
give particular interest to the study of quantum systems on curved space-time with cosmic-string background. In [6], the 
author presents cosmic-strings as the most important topological defect in our universe. 

Their effects on the environment are mainly gravitational in nature [6, 10, 11, 12]. To this end, a quantum particle 
placed in a gravitational field will be influenced by the topology of the space and by its interaction with the local curvature. 
From this interaction, it follows that an observer at rest with respect to the particle will see a shift in its spectrum. This 
would be of considerable interest both from a theoretical and an observational point of view. Apart from the effects due 
to the gravitational field, other effects can be induced by a cosmic-string, like for example bremsstrahlung process [13], 
the creation of the ( ,e e  ) pair [14], gravitational leasing [15] and the gravitational Aharonov-Bohm effect [16]. 

The study of thermodynamic properties of quantum systems plays a major role in theoretical High Energy Physics 
(HEP) and related fields [17]. Usually, quarks and gluons remain confined in hadrons and in particular in the protons and 
neutrons which form the atomic nucleus. Indeed, Quantum Chromodynamics (QCD), a theory that accounts for the strong 
interaction predicts that by compressing or heating nuclei, it is possible to create a plasma of quarks and gluons [18, 19], 
a matter with poorly understood thermodynamic properties. In past few decades, some experimental works have been 
carry out to identify the existence of deconfinement transitions [19] and determine its signatures. Then, it was predicted 

 
† Cite as: A.A.A. Likéné, A. Zarma, D.N. Ongodo, J.M. Ema'a Ema'a, P.E. Abiama, and G.H. Ben-Bolie, East Eur. J. Phys. 3, 129 (2022), 
https://doi.org/10.26565/2312-4334-2022-3-17 

https://doi.org/10.26565/2312-4334-2022-3-17
https://periodicals.karazin.ua/eejp/index
https://portal.issn.org/resource/issn/2312-4334
https://orcid.org/0000-0003-2642-7400
https://orcid.org/0000-0002-6162-7961
https://orcid.org/0000-0002-0564-4548


130
EEJP. 3 (2022) André Aimé Atangana Likéné, Ali Zarma, et al

that the suppression of charmonium (a bound state of charm and anti-charm quarks) meson is a possible signature of the 
QCD phase transition [18, 19, 20]. This phenomenon of deconfining matter is in principle observable through the study 
of the J ψ  particle [20], a meson as heavy as three surrounding protons. The suppression of the cc  meson has been 
announced as being the signature of deconfinement transition, it would be interesting to study in depth the thermodynamic 
properties of heavy mesons, in this case heavy quarkonia. 

In [21], the author obtained thermodynamic properties of the quark-gluon plasma from the constituent quasi particle 
model of quark-gluon plasma. Then in [22, 23, 24], thermodynamic properties are investigated using chiral quark models. 
In this work, we obtain the solutions of the Schrödinger equation produced by the gravitational field of a topological 
defect, for all values of the orbital angular momentum quantum number l . The Extended Nikiforov-Uvarov method 
[25, 26] is used to obtain exact analytical solutions of the radial Schrödinger equation in cosmic-string background. Next, 
we apply the results to obtain the thermodynamic properties of heavy quarkonia from cosmic-string geometry, which is 
not consider in other works. 

This paper is organized as follows: in Section 2, the Extended Nikiforov-Uvarov method is reviewed. The bound 
state solutions for the extended Cornel potential are obtained for the Schrödinger equation in cosmic-string background 
in Section 3. Then in section 4, thermodynamic properties of heavy quarkonia within cosmic-string geometry are 
presented. In Section 5 results are discussed, and conclusions are presented in Section 6. 

 
2. BASIC CONCEPTS OF THE EXTENDED NIKIFOROV-UVAROV METHOD 

In this section, we briey present the Extended Nikiforov-Uvarov (ENU) technique, for more details see [25, 26, 27]. 
The extended Nikiforov-Uvarov method is obtained by changing the boundary conditions of the standard 
Nikiforov-Uvarov (NU) method and is used for solving any second order differential equation which has at most four 
singular points. The equation to be solved is of the form: 

    
     

   2 0,
τ r σ r

ψ" r ψ' r ψ r
σ r σ r

    (1) 

such that  τ r ,  σ r  and  σ r  are polynomials of at most second, third and fourth degree, respectively. By choosing 
ψ  such that: 

      r r Y r  , (2) 

where  r  and  Y r  are functions to be determined later. Moreover, considering the above substitution Eq. (1) reduces 
to an equation of the form 

             0r Y" r r Y' r h r Y r    , (3) 

where  r  solves the equation 

  
 

 
 

' r r
r r


 
 

, (4) 

      h r ' r G r  . (5) 

And the polynomials of the function  Y r satisfy the Rodriguez formula [27] 

         .
n

nn
n n

B dY r r r
r dr

 


      (6) 

In Eq. (6), nB  is the normalization factor and   is the density function. The function   solves the following equation: 

         r r = r r    . (7) 

The function  r  required for this method are given by: 

                
2

,
2 2

' r r ' r r
r r G r r

   
  

        
 

 (8) 



131
Effects of Gravitational Field of a Topological Defect on Statistical Properties...          EEJP. 3 (2022)

where  r  is a second-degree polynomial. The function  nh r  is determined from the equation 

        
1

,
2 6n n

n nnh r ' r '' r C 


     (9) 

where      2r r r     and nC  is an integration constant. In the order to obtain the eigenvalue solution of the 
problem by ENU method [25, 26, 27], the polynomials  h r  and  nh r  are equal and    nY r Y r  is a particular 
solution of degree n  of Eq. (3). The function  r  is defined as a logarithmic derivative given in Eq. (4), and then 
eigenfunction spectra can be obtained analytically. For more details one can see Refs. [26] and [27]. 
 

3. SCHRÖDINGER WAVE EQUATION IN THE SPACE-TIME OF A COSMIC STRING 
In spherical coordinates, the line element describing the cosmic string space-time [6] is given by 

 0 1 2 3, , ,x ct x r x x        

  22 2 2 2 2 2  sinvds g dx dx c dt dr r d d r d
              , (10) 

where 0  ,r    0 ,   and 0 2 ,    0 1 4 J    is the topological parameter of the cosmic string, 3

4 ,GJ
c

 

is the torsion [23] parameter and J  denotes the linear mass density [28, 29,30,31] of the cosmic string. From General 
Relativity (GR), we know that the values of J  varies in the interval  0,1J  . 

For 1   and 0  , the metric given by Eq. (10) reduces to the usual Minkowski metric in spherical coordinates. 
The metric tensor for the space-time described by Eq. (10) is: 

    2 2

2 2 2

1 0 0 0
1 00 1 0 0

00 0 sin
0 0 sin sin

ij

g x
gr r

r r

   
   

                     
 

, (11) 

with the inverse metric, 

  
2 3

2 2

3 2 4 2

1 0 0 0
0 1 0 0

10 0
sin

0 0
sin sin

vg x
r r

r
r r

 
 

 
   

               
 

, (12) 

We adopt the signature  , , ,     for the metric tensor g , and its determinant is given by 

  2 4 2sing det g r     , with , 0,1, 2,3.    In the curvilinear coordinates system 3 32
1 1  i j

iji jds g dx dx     

such that 1r x , 2x  , 3x   the metric tensor of the internal 3-dimensional Euclidian space is: 

   2 2

2 2 2

1 0 0
0 sin
0 sin sin

ijg x r r
r r

  
   

        
 

. (13) 

The Laplace-Beltrami operator of the local coordinates system can be expressed as: 

 1 , 1,2,3ij
LB i ig g i j

x xg

         
      and   2 4 2sin .ijg det g r    (14) 

Then, considering Eq. (14) and for small values of the torsion parameter 1  , the Laplace-Beltrami operator becomes: 

 
2 2

2
2 2 2 2 2

1 1cot
sinLB r

r rr


    

                           
, (15) 
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from this we can write the Hamiltonian operator in natural units ( 1c  ) as: 

  
2 2 2

2 2 2 2 2 2 2 2

1 2 1 1 1 1cot , ,
2 sin

H V r
M r rr r r r

  
    

                  
, (16) 

 q q q qM m m m m   is the reduced mass of the quark-antiquark system, where qm  and qm  are the mass of quark 
and antiquark respectively [8, 26]. 

The non-relativistic Schrödinger equation in curved background space-time is [16, 23] 

        
2 2 2 2

2 2 2 2 2 2 2 2

2 1 1 1 1, cot , ,
2 sin

i r t r t V r r t
t M r rr r r r


    

                       

    , (17) 

here, we consider bound states of two heavy quarks interacting with the extended Cornel potential [26, 32] 

   2
2

K gV r r br
r r

     . (18) 

The first term is a Coulomb-like potential due to one-gluon exchange processes between quark-antiquark [32], the second 
term is a linear confinement term. The additional part was added to improve quark-antiquark properties [26, 32, 33]. As 

 V V r , the following commutation relations must be satisfied 

    2, 0, , 0.zL V r L V r              (19) 

Consequently, zL  and 2L  are good quantum numbers to describe the quantum states of the system under the influence of 
this potential. Inserting the new form of   as 

        , nlnl iE tm
l m

r
r t H e

r


    
 , (20) 

and substituting in Eq. (17) gives the following set of second-order differential equations, 

      
2

2 2 2 2

2 2 0nl
nl nl

d r M MV r E r
dr r
  

          
, (21) 

 
     

2 2

2 2 2cot 0
sin

m m
l l m

l

d H dH m H
dd

 
  

  

        
, (22) 

    
2

2
2 0,m

m

d
m

d






    (23) 

where   and 2m  are the separation constants. Using the following boundary condition:    2m m      , we can 
easily obtain the solution of Eq. (23) as 

   1 , 0, 1, 2, 3,...
2

im
m e m


        . (24) 

To find the solutions of Eq. (22), we introduce the variable cos  , which map Eq. (22) into 

  
 

 
   

2 2

2 2 2 2

2 0.
1 1

m m
l l m

l

d H dH m H
dd

   
   

          
 (25) 

To obtain suitable solutions of Eq. (25), it is therefore necessary to analyze the way the solutions behave around singular 
points, namely  . Then we assume the following form for the solution: 

      2 21
m

m
l lH g    , (26) 



133
Effects of Gravitational Field of a Topological Defect on Statistical Properties...          EEJP. 3 (2022)

where lg  is analytic everywhere except at    . From Eq. (25) and Eq. (26), and introducing the following 

generalized quantum numbers, namely  l  ,  a
mm


 , from the cosmic-string geometry, we obtain the following 

equation: 

      
      

       
2

2 2
21 2 1l l

l

d g dg
m m m g

dd
 

   

 
   


         . (27) 

From the expansion of    lg    into a power series, 

     n
nlg a  




 , (28) 

and inserting in Eq. (27) gives us the following recurrence relation: 

 
         

  2

1 2 1 1

1 2n n

n n m n m m
a a

n n
  



     


 
, (29) 

where 0,1,2,3,...n  . For physically acceptable solutions, the series must be truncated at a certain value of n : 

          1 1 2 1 0n n m m m n          . (30) 

Solving for   gives: 

     1l l         with        l m n   , (31) 

 l   being the generalized angular orbital quantum number. The generalized quantum numbers  l   and  m   are not 

always integers.    
1ml m n n l l m   

          
 

, where 0,1, 2,...l  Eq. (25) can therefore take the form: 

    
     

   
      

   
   

2
2

2
2 2

1 2 1
1

m m
ml l
l

md H dH
l l H

dd

 

 
  

 
  

 

               

, (32) 

where Eq. (32) is the generalized Legendre equation within the cosmic-string space-time and  
   m

lH 

   are the 
generalized Legendre polynomials given by the formula: 

  
     

       

 
 

 
     

     
 

22
1

1 1
2 !

l

l m

l l mm
m m
l l l

dH P
l d

  
 

 



  


   




          
. (33) 

Let's now turn to the radial equation. 
Substituting the proposed potential in Eq. (21) and choosing the separation constant being     1l l    , the 

radial equation becomes: 
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, (34) 

that we put in a simple form by introducing the following constants: 
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. (35) 

The functions from the Nikiforov-Uvarov method are: 

   0,r   (36) 

   2 ,r r   (37) 



134
EEJP. 3 (2022) André Aimé Atangana Likéné, Ali Zarma, et al

   2 3 4
0 1 2 3 4 .r r r r r            (38) 

Using equation Eq. (10),  r  is found as: 
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Assuming that the term under the square root of the above expression becomes quadratic, 
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Let's take the function  G r  in the form  G r Ar B  . By comparison between Eq. (39) and Eq. (40), we obtain 
the following four sets of solutions for the unknowns 2 1 0, , A     and B  in terms of the problem parameters: 
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Considering Eq. (4), we have two solutions for  r  which are given by: 

    0
1

22
2 1

1exp 2
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r K r r r
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   

      
 

 . (42) 

The wave function will be physically acceptable if 1 20,  0    and 0 0   and then the set II of parameters is 
the suitable one in the determination of the eigenvalue and the eigenfunction of the problem. 
As the functions  h r  and  nh r  are equal, we use Eq. (5) and Eq. (9) to obtain the energy equation as 

    2 1 2 12 2nAr B r C n r             , (43) 

where nC  is an integration constant which couples with the parameters of potential. Eq. (43) leads us to have two distinct 
choices    and  , which are given by I and II as follows 
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The choice of   and set II results on the relation   22 1 0A n     from which we can write: 

    
2

4 2 3 4 4 0
4

4

4 4 1
2 1

4
n

     



  

  . (45) 

Using Eq. (35) and Eq. (45), we obtain the expression below: 
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. (46) 

We note that the presence of the cosmic string parameter   breaks the degeneracy in all the states with 0l  . When 
   1   and    0d  , we recover the results obtained in [26, 33]. Moreover, for   1  ,   0d  ,  0a   and  0g   we obtain 

the energy spectrum of a spherical quantum harmonic oscillator [26]. 
For the wave function, it is easy to obtain  r  from Eq. (4) as 

  
2

0 1 2
1 1
2 2

r r
r r e

  


             
    , (47) 

and  r  from Eq. (7) as 
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Then we use Eq. (6) to obtain the function  nY r  as 
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. (49) 

From Eq. (2) the radial eigenfunctions are then 
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, (50) 

where nlN  is the normalization factor, and 0 1 2, ,     are given from set II 
 

4. THERMODYNAMIC PROPERTIES OF THE qq  SYSTEM 
To consider the thermodynamic properties of heavy quarkonia within cosmic-string framework, the starting point is 

the partition function [34, 35]. From a statistical mechanical point of view, the partition function can be constructed as 
follow: 
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here Bk T  , where Bk  is the Boltzmann constant and T  is the absolute temperature of the system. Once the partition 
function is obtained, we can have the Helmholtz free energy as: 



136
EEJP. 3 (2022) André Aimé Atangana Likéné, Ali Zarma, et al

 

 

22 4

2

1 ln

2 1 1 1 14 1 2 1 1 1 ln 1
4 4

2 1 14 1 2 1 1 1
4

b

F Z

a b g l m l m e
b

a b g l m l m
b








   


  



 

                                                                  

                               

1 22
4

1 2ln 2sinh 2

b

b




 

                
             

. (52) 

From the Helmholtz free energy, we can obtain the other statistical quantities in a straightforward manner. The 
entropy of the system can be obtained as 
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The internal energy U is defined as: 
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Then from the internal energy we can compute the specific heat capacity at constant volume vC  as 
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5. RESULTS AND DISCUSSION 

In this section, we discuss the effect of cosmic-string geometry on thermodynamic properties and spectrum of heavy 
quarkonia. Fig. 1,2 and 3 show the plots of the radial wave functions of cc  mesons for the 1P , 2P  and 3P  states 
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respectively, at different values of the parameter of the topology. Whereas, in Fig. 4,5 and 6, variations of the radial wave 
functions of bb  mesons are plotted for the 1P , 2P  and 3P  states respectively, at different values of the parameter α . 

Figure 1. Ground states wave functions of cc  meson plotted against of 
the radius r  at different values of α  with 1,l  1lm    

Figure 2. Radial wave functions of first excited states of cc  meson plotted 
against of the radius r  at different values of α  with 1,l 1lm    

  

Figure 3. Radial wave functions of second excited states of cc  
meson plotted against of the radius r  at different values of α  with 

1,l  1lm    

Figure 4. Ground states wave functions of bb meson plotted against 
of the radius r  at different values of α  with 1,l  1lm    

  

Figure 5. Radial wave functions of first excited states of bb mesons 
plotted against of the radius r  at different values of α  with 1,l  

1lm    

Figure 6. Radial wave functions of second excited states of bb  
mesons plotted against of the radius r  at different values of α  with 

1,l  1lm    

It appears that the peaks of the wave functions are shifted backward for small values of α , and its values shift to 
higher values by increasing α  for cc , and by decreasing α  for bb . In Fig. 7,8 and 9 are plotted the radial functions of 
probability densities of cc  mesons for the 1P , 2P  and 3P  states respectively, considering different values of the 
topological parameter α . Whereas, in Fig. 10,11 and 12 are plotted the radial functions of probability densities of bb  
mesons for the 1P , 2P  and 3P  states respectively It is observed that the behavior is the same for any P  state, but 
with some shift in the peaks toward the origin. Considering cc  and bb  mesons, the peaks are shifted toward the origin 
as α  decrease. 
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Figure 7. Density functions of radial probability for ground states 
of cc  meson plotted against of the radius r  at different values of α  with 1,l  1lm    

Figure 8. Density functions of radial probability for ground states 
of bb  mesons plotted against of the radius r  at different values of α  with 1,l  1lm    

  
Figure 9. Density functions of radial probability for first excited 
states of cc meson plotted against of the radius r  at different 
values of α  with 1,l  1lm    

Figure 10. Density functions of radial probability for first excited 
states of bb  meson plotted against of the radius r  at different 
values of α  with 1,l  1lm    

  
Figure 11. Density functions of radial probability for second excited 
states of cc  meson plotted against of the radius r  at different 
values of α  with 1,l  1lm    

Figure 12. Density functions of radial probability for second excited 
states of bb  meson plotted against of the radius r  at different 
values of α  with 1,l  1lm    

To calculate the thermodynamic properties of quark-antiquark systems, we have employed tools from statistical 
mechanics, taking as a starting point the canonical partition function of the system, from which the other statistical 
quantities were calculated in a straightforward manner. Next, we depict the statistical properties of cc  and bb  mesons 
in Figs. 13-22. In our model, the effect of the cosmic-string appears only when 0l  . Indeed, from Eq. (51) we clearly 
see that S  states are not influenced by the cosmic-string geometry but by the usual Minkowski geometry because when 

0l   we equally have   0l α , and all the quantities become α independent. In fact, setting the cosmic-string parameter 
to 1 automatically eliminate the effect of topological defect. For this reason, much emphasis were placed on the study of 
states with 0l  , namely the P  states. 

In Fig. 13,14, we have plotted the canonical partition function respectively for cc  and bb  quarkonia in terms of β  for different values of the cosmic-string parameter α . It is clearly seen that by decreasing the value of α , all the 
curves are separated from the classical Minkowski curve ( 1α ). For all the values of the topological parameter the 
behavior is the same but with different magnitudes. Moreover, the splitting increases as α  decreases and then the partition 
function decreases with increasing β  which is in agreement with [36, 37]. In [36], the author applied the deformed five 
parameter exponential potential and observed that with increasing β , the canonical partition function for the 
Minkowskian case decreases monotonically. 
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Figure 13. Density functions of radial probability for second excited states 
of cc  meson plotted against of the radius r  at different values of α  
with 1,l  1lm    

Figure 14. Density functions of radial probability for second excited states 
of bb  meson plotted against of the radius r  at different values of α  
with 1,l  1lm    

In Fig. 15,16 The Helmholtz free energy is plotted as a function of β  respectively for cc  and bb  mesons. 

  

Figure 15. Density functions of radial probability for second excited states 
of cc  meson plotted against of the radius r  at different values of α  
with 1,l  1lm    

Figure 16. Density functions of radial probability for second excited states 
of bb  meson plotted against of the radius r  at different values of α  
with 1,l  1lm    

The effect of the cosmic-string geometry clearly appears when α  takes values different from 1α  (classical 
Minkowski space-time). It is found that the Helmholtz function increases monotonically with increasing β , and the curves 
with 1α  are separated from the classical Minkowski curve. Moreover, the splitting is important for small values of α . In 
[34], the author treated quark-gluon plasma as composed of light quarks only, which interact weakly. They observed that the 
Helmholtz free energy decreases as the temperature increases. In [35], Modarres and Gholizade calculated the Helmholtz 
function of a neutral particle and observed that the free energy of the system decreases as the temperature increases. In the 
present model, the behavior of charm and bottom quark matter is in agreement with [34, 35, 38]. 

In Fig. 17,18 the internal energy is plotted against β  for different values of α , respectively for cc  and bb  mesons. 
It reveals that,  U β  decreases with increasing β , and its values shift to lower values by increasing the parameter of 
the topology α . 

  

Figure 17. Density functions of radial probability for second excited states 
of cc  meson plotted against of the radius r  at different values of α  
with 1,l  1lm    

Figure 18. Density functions of radial probability for second excited states 
of bb  meson plotted against of the radius r  at different values of α  
with 1,l  1lm    
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In [38], the authors studied thermodynamic properties of neutral particles in a cosmic-string background from non-
relativistic Schrödinger-Pauli equation. They observed that the internal energy of the system increases as the temperature 
increases. Thus, the conclusion of the present work for internal energy is the same with recent works [36, 37, 38]. 

The entropy  S β  and the specific heat capacity  vC β  are plotted against β  respectively in Fig. 19 and Fig. 21 

cc  meson and in Fig. 20 and Fig. 22 bb  meson. These figures show that the entropy and the specific heat capacity of 
cc  and bb  mesons are not influenced by the parameters of topology, and are similar to the solution for a at Minkowski 
space-time. In [38] a similar result was obtained for neutral particles, showing the non-dependence on topological defect 
of heat capacity and entropy, which is in total agreement with the present work. 

  

Figure 19. Density functions of radial probability for second excited states 
of cc  meson plotted against of the radius r  at different values of α  
with 1,l  1lm    

Figure 20. Density functions of radial probability for second excited states 
of bb  meson plotted against of the radius r  at different values of α  
with 1,l  1lm    

  

Figure 21. Density functions of radial probability for second excited states 
of cc  meson plotted against of the radius r  at different values of α  
with 1,l  1lm    

Figure 22. Density functions of radial probability for second excited states 
of bb  meson plotted against of the radius r  at different values of α  
with 1,l  1lm    

 
6. CONCLUSION 

In this work, we have investigated the effects of the gravitational field of a topological defect on thermodynamical 
properties of heavy quarkonia. We have used the extended Nikiforov-Uvarov method to solve the radial Schrödinger 

wave equation in the space-time of a cosmic string, for the potential   2
2

K gV r r br
r r

    α . We obtain the radial 

wave functions of cc  and bb  mesons as well as the energy eigenvalues, which are shifted from the usual Minkowski 
energies. From this, we have considered all the statistical quantities using the canonical partition function of the system. 
The wave functions and the thermodynamic properties were analyzed graphically. It was observed that the peaks of radial 
functions of probability densities are shifted toward the origin as α  decrease. The thermodynamic quantities present a 
shift compared to the classic limit; this difference becomes more important for small values of the cosmic-string 
parameter. The partition function shifts to lower values as α  decrease, the Helmholtz function increases monotonically 
with increasing β , and the curves with 1α  are separated from the Minkowski curve, then the values of the internal 
energy are shifted to lower values by increasing the parameter of the topology. Meanwhile the specific heat capacity and 
the entropy are not influenced by the topological defect. 
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ВПЛИВ ГРАВІТАЦІЙНОГО ПОЛЯ НА ТОПОЛОГІЧНИЙ ДЕФЕКТ 
НА СТАТИСТИЧНІ ВЛАСТИВОСТІ ВАЖКИХ КВАРК-АНТИКВАРКОВИХ СИСТЕМ 

Андре Аме Атангана Лікенеа,c, Алі Зармаа, Дьєдонне Нга Онгодоа, 
Жан Марі Ема'а Ема'аb, Патріс Елe Абіамa,c, Жермен Юбер Бен-Боліa 
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cСекція ядерних технологій (NTS), Інститут геологічних і гірничих досліджень, P.O. Box 4110, Яунде, Камерун 

У цій статті ми визначаємо власні енергії, власні функції та статистичні властивості нерелятивістського важкого кварконію, 
що взаємодіє з розширеним потенціалом Корнеля в просторі-часі, створеному космічною струною. Ми розширюємо 
потенціал Корнеля, додаючи обернений квадратний потенціал плюс квадратичний потенціал. Ми розрахували власні 
значення енергії та відповідні власні стани за допомогою розширеного методу Нікіфорова-Уварова (ENU). Потім на основі 
рівняння енергетичних спектрів обчислюються термодинамічні властивості, такі як статистична сума, ентропія, вільна 
енергія, середня енергія та питома теплоємність у просторі-часі космічної струни. На наступному кроці ми досліджуємо вплив 
параметра космічної струни на квантові стани важких кварконіїв та їх статистичні властивості. 
Ключові слова: термодинамічні властивості, кварк, хвильове рівняння Шредінгера, топологічний дефект, простір-час, 
космічна струна, розширений потенціал Корнела, мезон, розширений метод Нікіфорова-Уварова. 




