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In this present study, we model Eckart-Hellmann Potential (EHP) to interact in a quark-antiquark system. The solutions of the
Schrodinger equation are obtained with EHP using the Nikiforov-Uvarov method. The energy equation and normalized wave function
were obtained. The masses of the heavy mesons such as charmonium ( ¢¢ ) and bottomonium ( bb ) for different quantum numbers
were predicted using the energy equation. Also, the partition function was calculated from the energy equation, thereafter other thermal
properties such as mean energy, free energy, entropy, and specific heat capacity were obtained. The results obtained showed an
improvement when compared with the work of other researchers and excellently agreed with experimental data.
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The mass spectra (MS) of the heavy mesons (HMs) interactions can be well studied by the Schrodinger equation
(SE) [1--3]. In describing the interaction of the HMs, confining-type potentials are generally used, which is the Cornell
potential (CP) with two terms of Coulomb interaction and a confining term [4]. More so, in solving this equation with
any chosen potential, an analytical method is employed. Most of the analytical methods used are as follows, the Nikiforov-
Uvarov (NU) method [5-8], the Nikiforov-Uvarov Functional Analysis (NUFA) method [9,10], series expansion method
(SEM) [11,12], Laplace transformation method (LTM)[13],WKB approximation method [14,15] and so on[16]. The study
of MS with CP has gained remarkable interest and has attracted the attention of many scholars [17-20]. For instance,
Kumar et al.,[21] used the NUFA method to solve the SE with generalized Cornell potential. The result was used to
predict the MS of the HMs. Using, the vibrational method and supersymmetric quantum mechanics Vega and Flores, [22]
obtained the analytical solutions of the SE with CP. The eigenvalues were used to calculate the MS of the HMs. Also,
Mutuk [23] solved the SE with CP using a neural network approach. The bottomonium, charmonium, and bottom-charmed
spin-averaged spectra were calculated. Furthermore, Hassanabadi et al. [24], used the variational method to solve the SE
with CP. The eigenvalues were used to calculate the mesonic wave function.

In recent times, the study of MS of the HMs with exponential-type potentials has aroused the interest of scholars
[25, 26]. Potential models such as Yukawa potential [27], Varshni [28], screened Kratzer potential [29], Hulthen plus
Hellmann potential [30], and so on have been used in the prediction of the MS of the HMs. For instance, Purohit et al
[31] combined linear plus modified Yukawa potential to obtain the masses of the HMs through the solutions of the Klein-
Gordon equation. The SE for most of the potentials with spin addition cannot be solved analytically; hence, numerical
solutions such as Runge-Kutte approximation [32], Numerov matrix method [33], Fourier grid Hamiltonian method [34],
and so on [35] are employed. Also, adding spin enables one to determine other properties of the mesons like decay
properties and root mean square radii. However, we have considered our mesons as spinless particles for easiness
[1, 25, 36-38]. Furthermore, the thermal properties (TPs) of the HMs have been calculated recently [39-41].

The Eckart potential [42], is a potential model that has great significance in physics. Also, Hellmann potential [43],
has been widely utilized in physics [44]. Hence, Inyang et al [45], proposed the Eckart-Hellmann potential (EHP) model
through their combination to study selected diatomic molecules.

The combination of at least two potential models has a propensity to fit experimental data more than a single potential
[40], hence this study. This study aims to model EHP to fit in the Cornell potential, and to predict the mass spectra of the
heavy mesons through the solutions of the SE using the NU method.

The EHP takes the form [45],

—oq —oq —0q
Rje N Re _&_’_ Rie

Vig)= _l_e,m, (l—ewq )2 q q

, )

where R, R, R,,and R, are the strength of the potential, o is the screening parameter to be determined later and g is

inter-nuclear distance.
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The exponential terms in Eq. (1) are expanded with the power series up to order three, so the potential can be used
to study quarkonia system. Equations (2), (3), and (4) are obtained.
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Putting Egs. (2), (3)and (4) into Eq. (1) we have
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2. The solutions of the SE with EHP
The NU method is adopted with details found in Ref. [46]. The SE of the form is used [47]
d’U(q) | 2u l(l+1)
et (B, V@)~ 7 U(g)=0 ™

where /, is the angular momentum quantum number, g, is the reduced mass for the quark-antiquark particle, ¢ is the

inter-particle distance, and # is reduced plank constant.
Then, we substitute Eq. (5) into Eq. (7), the radial wave equation is obtained as
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Transformation of ¢ (in Eq. (8)) to w coordinates yields Eq.(9),
1
w= ;, q > 0. (9)
The second derivatives of Eq. (9) is given as,
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Substituting Eqgs. (9) and (10) in Eq. (8) gives;
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The approximation scheme (AS) on the terms is introduced by assuming that there is a characteristic radius 7, of the

. . . G, G, . . . 1
meson. The AS is achieved by the expansion of — and —i in a power series around 7, ; i.e. around 6 =—, up to the
w

w

second-order [48].
By setting y =w—0 and around y =0 we expand it in powers of series as;
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Equation (12) yields
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Similarly,

Also, stroking Eqgs. (13) and (14) into Eq. (11) gives:
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Linking Eq. (15) and Eq. (1) of Ref. [46], gives
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Plugging Eq. (17) into Eq. (11) of Ref. [46],
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To determine k, in Eq. (18), the discriminant of the function (Eq. (19)) and Eq. (20) were obtained,
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For acceptable solution, the negative part of Eq. (20) is essential for bound state problems, upon differentiating we get.
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By placing Egs. (17) and (20) into Eq. (6) of Ref. [46]
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Differentiating Eq. (22) gives,
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Usingto Eq. (19) and Eq. (21) of Ref. [46], gives,
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Equating Egs. (24) and (25), followed by the substitution of Egs. (6) and (16) yielded the energy eigenvalue equation of

the EHP

R, R R, R’ Ro’> Ryo’
”1:_0__1_R0R3+2 _u_}_i +£2 i_ 30
2 12 ) 12 2 o-| 240 6

2

2 2 3
27,21 &+R2—R3 N 62;12 _O'RO+R3O' + 126;2 Ro” Ro
K o o 12 2 n°o”\ 240 6

8u 2 2 2 3
n+l+ l+l + 22'u3 —GR°+R3U + ?#4 Ro _Ro +
2 2 ho 12 2 nro" | 240 6

The wave function, is obtained by putting Egs. (17) and (20) into Eq. (4) of Ref. [46]
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Integration of Eq. (27) gives

2.1 Determination of the weight function
Upon differentiating the left-hand of Eq. (6) of Ref. [46] we have,

p W _r(w-c (w)
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The substitution of Egs. (17) and (22) into Eq. (29) and thereafter integrate, gave
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The substitution of Egs. (17) and(30) into Eq. (5) of Ref. [46] gave

26 X gn 2 X
y}l (W) = B"eW\/;Z\/; n e W\/;W \/Z
dw
The Rodrigues’ formula of the associated Laguerre polynomials is
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Hence,

we

The substitution of Egs. (28) and (33) into Eq. (2) of Ref. [46], gives the wave function in terms of associated Laguerre
polynomials as

y,(w) =L [Z—EJ (33)

X e X ¢
w(w)=N,w e e (—J (34)

n W\/E

where N, is normalization constant, which can be obtained from

NACIEES (35)
Inserting (34) into (35) with w=1/r gives
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By using the transformation x = 2Jer we obtained the well-known standard integral of the Laguerre polynomials
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The solution of the standard integral [49] is given as
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Comparing Egs. (38) and (37) we obtained the normalization factor such that the total wave function of the mesons
can be written in closed form as
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Special cases
1. When we set R, =R, =0 Eq. (26) reduces to HP energy
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3. When we set R, =R, =R, =0 =0, Eq. (26) reduces to Coulomb potential energy



109

Non-Relativistic Study of Mass Spectra, and Thermal Properties of a Quarkonium System... EEJP. 3 (2022)
R 2
= — (42)
2
21 (n+1+1)
The result of Eq. (42) is the same as reported by Ref. [31] in Eq. (36).
3. Thermal Properties of the SE with EHP
To obtain the TPs of the heavy mesons, we first calculate the partition function.
Equation 26 can be written in the form
w B |
E,=PR- : (43)
Su 7] (n + 49)
where,
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3.1 Partition function Z(f5)
The partition function (PF) takes the form [39],
2=t “7)
n=0

1 . . . o
where, £ = X7 K is the Boltzmann constant, 7 is the absolute temperature, 7 is the principal quantum number, and A4

is the maximum quantum number.
Replacing Eq. (43) into Eq. (47) gives
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In the classical limit, at high temperature 7 , the summation is replaced by an integral,
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Integrating Eq. (49) gives the PF as,
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The imaginary error function erfi(y) is given as [40],
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erfi(y) = @ - % j’o o dt. (52)

Other TPs can be obtained as follows:
3.2 Mean energy U(f)
0
Up)=——mZ(p), 53
02 Y V2)) (53)

3.3 Free energy F(f3)
F(B)=—KTnZ() 9
3.4 Entropy S(f)

S(B) =Kan(,B)—Kﬂ%InZ(,B) (55)
3.5 Speecific heat capacity C(/f)
ouU , U
e05)) =37 -Kp 0B (56)

4. Results and discussion
The prediction of the MS of the HMs is carried out using the relation [50,51]

M =2m+E, (57)
where m is quarkonium mass and £, is energy eigenvalues.
Plugging Eq. (26) into Eq. (57) gives,
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The reduced mass is defined as £ = % . For bottomonium and charmonium, the numerical values of these masses are

m, = 4.823 GeV' and m_, = 1.209 Gel’ , and the corresponding reduced mass is £, = 2.4115GeV and p =0.6045 GeV

correspondingly [52]. The potential parameters were also calculated by fitting with experimental data. Experimental data
are taken from [53].

We observed that the results obtained from the prediction of mass spectra of charmonium and bottomonium for
different quantum states are in agreement with experimental data and are seen to be improved when compared with other
theoretical predictions with different analytical methods from literature as shown in Tables 1 and 2.

Table 1. Mass spectra of charmonium in (GeV)
m,=1.209 GeV, 1= 0.6045 GeV, R, = 89960.89 GeV, R, = 0.230 GeV,R, =-8.995999582 x 10°GeV,
R, =0.5014478276 GeV, 0=0.01,06 = 1.7 GeV, h = 1

State Present work AIM [21] LTM [17] SEM [15] Experiment [53]
1S 3.096 3.096 3.0963 3.095922 3.096
28 3.686 3.686 3.5681 3.685893 3.686
1P 3.255 3.214 3.5687 - 3.525
2P 3.779 3.773 3.5687 3.756506 3.773
3S 4.040 4.275 4.0400 4.322881 4.040
48 4.269 4.865 4.5119 4.989406 4.263
1D 3.504 3412 4.0407 - 3.770

2D 4.146 - - - 4.159
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Table 2: Mass spectra of bottomonium in (GeV)
m, =4.823 GeV,u= 2.4115 GeV, R, = 1.805186081x10° GeV, R, = 3.084 GeV,

R, =-1.805170402 x 10°GeV,R, = 0.5014694079 GeV, o = 0.01,6 = 1.70 GeV,hi= 1

State Present work AIM [21] LTM [17] SEM [15] Experiment [53]
1S 9.460 9.460 9.745 9515194 9.460
28 10.023 10.023 10.023 10.01801 10.023
1P 9.619 9.492 10.025 - 9.899
2P 10.114 10.038 10.303 10.09446 10.260
38 10.355 10.585 10.302 10.44142 10.355
48 10.567 11.148 10.580 10.85777 10.580
1D 9.864 9.551 10.303 - 10.164

In Fig. 1, we plotted the MS against the principal quantum number (PQN) for different values of angular quantum
number. It was noticed that the MS first increases as the PQN increases and the latter tends to converge towards a point.
The plots of the TPs are shown in Figs. (2-6). The partition function (PF) is plotted against temperature (/) at various

values of maximum quantum number (A ) of 10 and 20. It was observed that the PF increases linearly as the £ is

increased. Figure 3 depict the variation of free energy (FE) with temperature at different values of A . The FE increase at
the beginning at the same rate as the temperature increases and then decreases and converge at a point when the FE is
equal to 1. The plot of internal energy (IE) with temperature is shown in Fig 4. The IE is seen to increase exponentially
at A =10and when A =20 no increment was noticed. In Fig 5, the entropy is plotted against temperature. It was observed
that the entropy increases with an increase in temperature for both values of 4 . In Fig. 6, the plot of specific heat capacity
with temperature is shown. A decrease is noticed when the temperature increases for different values of 4 .
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Figure 1. Variation of mass spectra with a principal quantum
number for different angular quantum number
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Figure 3. Variation of free energy with temperature for
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Figure 2. Variation of partition function with temperature for
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Figure 4. Variation of internal energy with temperature for
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Figure 5. Variation of entropy with temperature for different Figure 6. Variation of specific heart capacity with temperature

values of 4 for different values of A

5. CONCLUSION
In this present study, the solutions of the SE were obtained with EHP using the NU method. The energy equation

and normalized wave function were obtained. The energy spectrum was used to predict the MS of the HMs. Also, the PF

was

calculated from the energy equation, thereafter other TPs were obtained. The results obtained showed an

improvement when compared with the work of other researchers and excellently agreed with experimental data.
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HEPEJATHUBICTCHKE JOCJIIKEHHSI MAC-CHEKTPIB I TEILIOBUX BJJACTUBOCTEN KBAPKOHIEBO{
CHUCTEMMI 3 HOTEHLUIAJIOM EKAPTA-TEJIbBMAHA
Erino IL. Inbsiur?, Epdionr O. Odicynr?, Exai C. Binbam®, ITyen B. Oxon®
“@izuunui paxyromem, Hayionanonuii eioxpumuii yrnieepcumem Hizepii, /[ocabi-A6yooca, Hieepis
bIpyna meopemuunoi ¢isuxu, Qizsuunuii paxyromem, Yuieepcumem Kanabapa, PMB 1115, Karabap, Hizepis

I'pyna meopemuunoi ¢izuxu, @izuunuii paxyremem, Yunisepcumem Yiio, Hicepis

ADizyunuii paxyromem, Yuicepcumem Kanabapa, PMB 1115, Kanabap, Hizepia
VY npomy nocnikeHHi Mu Moaeroemo norteHnian Exapra-I'enemana (EHP) nist B3aemonii B cuctemi KBapK-aHTUKBapK. Po3B'sizku
piBusiHas lpeninrepa orpumani 3 ETTI meromom Hikidoposa-YBapoBa. OTprMaHO PIiBHSHHS €HEprii Ta HOPMOBAaHY XBHIIBOBY

yHkuio. Macu BaXKUX ME30HIB, TAKUX SK 4apMoHiil (cC ) i 6orrowil (b ), nis pisHUX KBaHTOBHMX uucen OyiM nependaveHi 3a
JIOTIOMOTOI0 piBHSHHS eHeprii. KpiM Toro, po3nozineua ¢yHKis Oyia po3paxoBaHa 3 piBHAHHS €HEPTii, MicIs 9oro OyiIu OTpUMaHi
IHIII TETUIOBI BIACTHMBOCTI, TaKi SIK CEpelHsl €Hepris, BiIbHA SHEpris, CHTPOMis Ta IMUTOMA TEINIOEMHICTh. OTpUMaHi pe3yibTaTH
TIO0KAa3aJIM MOKPAICHHS MOPIiBHAHO 3 pOOOTaMHU iHIINX JOCITITHHUKIB 1 9yJIOBO Y3TOJDKYBAIUCS 3 €KCIIEPUMEHTAIEHIME JaHUMIL.
Koarouosi cnoBa: piBusuus Ilpeninrepa; meron Hikipopoa-YBaposa; noreHuian Ekapra-I'enpMana; BaKki ME30HH; TEIUIOBI
BJIACTUBOCTI





