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In this present study, we model Eckart-Hellmann Potential (EHP) to interact in a quark-antiquark system. The solutions of the 
Schrödinger equation are obtained with EHP using the Nikiforov-Uvarov method. The energy equation and normalized wave function 
were obtained. The masses of the heavy mesons such as charmonium ( cc ) and bottomonium ( bb ) for different quantum numbers 
were predicted using the energy equation. Also, the partition function was calculated from the energy equation, thereafter other thermal 
properties such as mean energy, free energy, entropy, and specific heat capacity were obtained. The results obtained showed an 
improvement when compared with the work of other researchers and excellently agreed with experimental data. 
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The mass spectra (MS) of the heavy mesons (HMs) interactions can be well studied by the Schrodinger equation 
(SE) [1--3]. In describing the interaction of the HMs, confining-type potentials are generally used, which is the Cornell 
potential (CP) with two terms of Coulomb interaction and a confining term [4]. More so, in solving this equation with 
any chosen potential, an analytical method is employed. Most of the analytical methods used are as follows, the Nikiforov-
Uvarov (NU) method [5-8], the Nikiforov-Uvarov Functional Analysis (NUFA) method [9,10], series expansion method 
(SEM) [11,12], Laplace transformation method (LTM)[13],WKB approximation method [14,15] and so on[16]. The study 
of MS with CP has gained remarkable interest and has attracted the attention of many scholars [17-20]. For instance, 
Kumar et al.,[21] used the NUFA method to solve the SE with generalized Cornell potential. The result was used to 
predict the MS of the HMs. Using, the vibrational method and supersymmetric quantum mechanics Vega and Flores, [22] 
obtained the analytical solutions of the SE with CP. The eigenvalues were used to calculate the MS of the HMs. Also, 
Mutuk [23] solved the SE with CP using a neural network approach. The bottomonium, charmonium, and bottom-charmed 
spin-averaged spectra were calculated. Furthermore, Hassanabadi et al. [24], used the variational method to solve the SE 
with CP. The eigenvalues were used to calculate the mesonic wave function.  

In recent times, the study of MS of the HMs with exponential-type potentials has aroused the interest of scholars 
[25, 26]. Potential models such as Yukawa potential [27], Varshni [28], screened Kratzer potential [29], Hulthen plus 
Hellmann potential [30], and so on have been used in the prediction of the MS of the HMs. For instance, Purohit et al 
[31] combined linear plus modified Yukawa potential to obtain the masses of the HMs through the solutions of the Klein-
Gordon equation. The SE for most of the potentials with spin addition cannot be solved analytically; hence, numerical 
solutions such as Runge-Kutte approximation [32], Numerov matrix method [33], Fourier grid Hamiltonian method [34], 
and so on [35] are employed. Also, adding spin enables one to determine other properties of the mesons like decay 
properties and root mean square radii. However, we have considered our mesons as spinless particles for easiness 
[1, 25, 36-38]. Furthermore, the thermal properties (TPs) of the HMs have been calculated recently [39-41]. 

The Eckart potential [42], is a potential model that has great significance in physics. Also, Hellmann potential [43], 
has been widely utilized in physics [44]. Hence, Inyang et al [45], proposed the Eckart-Hellmann potential (EHP) model 
through their combination to study selected diatomic molecules. 

The combination of at least two potential models has a propensity to fit experimental data more than a single potential 
[40], hence this study. This study aims to model EHP to fit in the Cornell potential, and to predict the mass spectra of the 
heavy mesons through the solutions of the SE using the NU method. 

The EHP takes the form [45], 
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where 0 1 2 3, , , and RR R R are the strength of the potential,   is the screening parameter to be determined later and q  is 
inter-nuclear distance.  
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The exponential terms in Eq. (1) are expanded with the power series up to order three, so the potential can be used 
to study quarkonia system. Equations (2), (3), and (4) are obtained. 
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Putting Eqs. (2), (3)and (4) into Eq. (1) we have 
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2. The solutions of the SE with EHP 

The NU method is adopted with details found in Ref. [46]. The SE of the form is used [47] 
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where ,l  is the angular momentum quantum number, ,  is the reduced mass for the quark-antiquark particle, q is the 
inter-particle distance, and   is reduced plank constant. 

Then, we substitute Eq. (5) into Eq. (7), the radial wave equation is obtained as 
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Transformation of q  (in Eq. (8)) to w coordinates yields Eq.(9), 
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The second derivatives of Eq. (9) is given as, 
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Substituting Eqs. (9) and (10) in Eq. (8) gives; 
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The approximation scheme (AS) on the terms is introduced by assuming that there is a characteristic radius 𝑟 of the 

meson. The AS is achieved by the expansion of 1G
w

 and 2
2

G
w

 in a power series around 0r ; i.e. around 
0

1
r

 , up to the 

second-order [48]. 
By setting y w  and around 0y   we expand it in powers of series as; 
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Equation (12) yields 
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Similarly, 
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Also, stroking Eqs. (13) and (14) into Eq. (11) gives: 
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Linking Eq. (15) and Eq. (1) of Ref. [46], gives 
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Plugging Eq. (17) into Eq. (11) of Ref. [46],  
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To determine  𝑘, in Eq. (18), the discriminant of the function (Eq. (19)) and Eq. (20) were obtained, 
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For acceptable solution, the negative part of Eq. (20) is essential for bound state problems, upon differentiating we get. 
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By placing Eqs. (17) and (20) into Eq. (6) of Ref. [46]  

 0 2( ) 2 X ww w  


 
 (22) 



107
Non-Relativistic Study of Mass Spectra, and Thermal Properties of a Quarkonium System...          EEJP. 3 (2022)

Differentiating Eq. (22) gives, 

 0( ) 2 Xw  


 (23) 

Usingto Eq. (19) and Eq. (21) of Ref. [46], gives, 
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Equating Eqs. (24) and (25), followed by the substitution of Eqs. (6) and (16) yielded the energy eigenvalue equation of 
the EHP 
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The wave function, is obtained by putting Eqs. (17) and (20) into Eq. (4) of Ref. [46] 
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Integration of Eq. (27) gives 
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2.1 Determination of the weight function 

Upon differentiating the left-hand of Eq. (6) of Ref. [46] we have, 
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The substitution of Eqs. (17) and (22) into Eq. (29) and thereafter integrate, gave 
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The substitution of Eqs. (17) and(30) into Eq. (5) of Ref. [46] gave 
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The Rodrigues’ formula of the associated Laguerre polynomials is 
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Hence, 
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The substitution of Eqs. (28) and (33) into Eq. (2) of Ref. [46], gives the wave function in terms of associated Laguerre 
polynomials as 
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where nlN  is normalization constant, which can be obtained from 
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Inserting (34) into (35) with 1w r  gives  
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By using the transformation 2x r   we obtained the well-known standard integral of the Laguerre polynomials 
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The solution of the standard integral [49] is given as  
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Comparing Eqs. (38) and (37) we obtained the normalization factor such that the total wave function of the mesons 
can be written in closed form as 
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Special cases 
1. When we set 0 1 0R R   Eq. (26) reduces to HP energy 
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2. When we set 2 3 0R R   Eq. (26) Echart potential energy 
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3. When we set 0 1 3 0R R R    , Eq. (26) reduces to Coulomb potential energy 



109
Non-Relativistic Study of Mass Spectra, and Thermal Properties of a Quarkonium System...          EEJP. 3 (2022)

 
 

2
2

222 1
nl

RE
n l

 
 


 (42) 

The result of Eq. (42) is the same as reported by Ref. [31] in Eq. (36). 
 

3. Thermal Properties of the SE with EHP 
To obtain the TPs of the heavy mesons, we first calculate the partition function. 

Equation 26 can be written in the form 

 
 

22
2

1 8nl
PE P

n

       


 

 (43)

 

 

where, 

 
2 2 32

0 3 31 1
2 3 2 4 2 2

21 1 2 6
2 2 12 2 240 6

R R RR Rl
                                 

    
  

 (44) 

 
2 32

0 0 3 31 1
1 0 3 2

3 6
2 12 12 2 240 6
R R R RR RP R R

                   
   

  
 

 (45) 

 
2 32

0 0 3 31
2 2 32 2 2 2 3

2 6 16
12 2 240 6

R R R RRP R R
                                

    
  

 (46) 

 
3.1 Partition function ( )Z   

The partition function (PF) takes the form [39], 
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where, 1
KT

 , K  is the Boltzmann constant, T  is the absolute temperature, n  is the principal quantum number, and   

is the maximum quantum number. 
Replacing Eq. (43) into Eq. (47) gives 
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In the classical limit, at high temperature T , the summation is replaced by an integral, 
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where, 
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Integrating Eq. (49) gives the PF as, 
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The imaginary error function (y)erfi  is given as [40], 
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Other TPs can be obtained as follows: 
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3.3 Free energy F( )  
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3.5 Specific heat capacity C( )  
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4. Results and discussion 

The prediction of the MS of the HMs is carried out using the relation [50,51] 

 2 nlM m E   (57) 

where m is quarkonium mass and nlE is energy eigenvalues. 
Plugging Eq. (26) into Eq. (57) gives, 
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The reduced mass is defined as
2
m

 . For bottomonium and charmonium, the numerical values of these masses are 

bm   4.823 GeV  and cm   1.209 GeV , and the corresponding reduced mass is b   2.4115 GeV  and 
c

 0.6045 GeV  
correspondingly [52]. The potential parameters were also calculated by fitting with experimental data. Experimental data 
are taken from [53]. 

We observed that the results obtained from the prediction of mass spectra of charmonium and bottomonium for 
different quantum states are in agreement with experimental data and are seen to be improved when compared with other 
theoretical predictions with different analytical methods from literature as shown in Tables 1 and 2. 
Table 1. Mass spectra of charmonium in (GeV) 

6
0 1 2

3

1.209 ,  0.6045 ,  R   89960.89 ,  R   0.230 , 8.995999582 10 GeV,
R  = 0.5014478276 GeV, =0.01,  1.7 ,   1

cm GeV GeV GeV GeV R
GeV

      
 


 

 

State Present work AIM [21] LTM [17] SEM [15] Experiment [53] 
1S 3.096 3.096 3.0963 3.095922 3.096
2S  3.686 3.686 3.5681 3.685893 3.686
1P 3.255 3.214 3.5687 - 3.525
2P 3.779 3.773 3.5687 3.756506 3.773
3S 4.040 4.275 4.0400 4.322881 4.040
4S 4.269 4.865 4.5119 4.989406 4.263
1D 3.504 3.412 4.0407 - 3.770
2D 4.146 - - - 4.159
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Table 2: Mass spectra of bottomonium in (GeV) 
6

0 1
8

2 3

4.823 ,  2.4115 ,  R  1.805186081 10  ,  R   3.084 ,
1.805170402 10 GeV,R  = 0.5014694079 GeV,  0.01,  1.70 ,  1

bm GeV GeV GeV GeV
R GeV

               


 
 

State Present work AIM [21] LTM [17] SEM [15] Experiment [53] 
1S 9.460 9.460 9.745 9.515194 9.460
2S  10.023 10.023 10.023 10.01801 10.023
1P 9.619 9.492 10.025 - 9.899
2P 10.114 10.038 10.303 10.09446 10.260
3S 10.355 10.585 10.302 10.44142 10.355
4S 10.567 11.148 10.580 10.85777 10.580
1D 9.864 9.551 10.303 - 10.164
    

In Fig. 1, we plotted the MS against the principal quantum number (PQN) for different values of angular quantum 
number. It was noticed that the MS first increases as the PQN increases and the latter tends to converge towards a point.  
The plots of the TPs are shown in Figs. (2-6). The partition function (PF) is plotted against temperature ( ) at various 
values of maximum quantum number (  ) of 10 and 20. It was observed that the PF increases linearly as the   is 
increased. Figure 3 depict the variation of free energy (FE) with temperature at different values of  . The FE increase at 
the beginning at the same rate as the temperature increases and then decreases and converge at a point when the FE is 
equal to 1. The plot of internal energy (IE) with temperature is shown in Fig 4. The IE is seen to increase exponentially 
at 10 and when 20  no increment was noticed.  In Fig 5, the entropy is plotted against temperature. It was observed 
that the entropy increases with an increase in temperature for both values of  . In Fig. 6, the plot of specific heat capacity 
with temperature is shown. A decrease is noticed when the temperature increases for different values of  . 
 

Figure 1. Variation of mass spectra with a principal quantum 
number for different angular quantum number 

Figure 2. Variation of partition function with temperature for 
different values of   

 

Figure 3. Variation of free energy with temperature for 
different values of   

Figure 4. Variation of internal energy with temperature for 
different values of   
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Figure 5. Variation of entropy with temperature for different 
values of   

Figure 6. Variation of specific heart capacity with temperature 
for different values of   

 
5. CONCLUSION 

In this present study, the solutions of the SE were obtained with EHP using the NU method. The energy equation 
and normalized wave function were obtained. The energy spectrum was used to predict the MS of the HMs. Also, the PF 
was calculated from the energy equation, thereafter other TPs were obtained. The results obtained showed an 
improvement when compared with the work of other researchers and excellently agreed with experimental data. 
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НЕРЕЛЯТИВІСТСЬКЕ ДОСЛІДЖЕННЯ МАС-СПЕКТРІВ І ТЕПЛОВИХ ВЛАСТИВОСТЕЙ КВАРКОНІЄВОЇ 
СИСТЕМИ З ПОТЕНЦІАЛОМ ЕКАРТА-ГЕЛЬМАНА 

Етідо П. Іньянгa, Еффіонг О. Обісунгd, Едді С. Вільямb, Ітуен Б. Оконc 
aФізичний факультет, Національний відкритий університет Нігерії, Джабі-Абуджа, Нігерія 

bГрупа теоретичної фізики, Фізичний факультет, Університет Калабара, PMB 1115, Калабар, Нігерія 
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У цьому дослідженні ми моделюємо потенціал Екарта-Гельмана (EHP) для взаємодії в системі кварк-антикварк. Розв'язки 
рівняння Шредінгера отримані з ЕГП методом Нікіфорова-Уварова. Отримано рівняння енергії та нормовану хвильову 
функцію. Маси важких мезонів, таких як чармоній ( cc ) і боттоній ( bb ), для різних квантових чисел були передбачені за 
допомогою рівняння енергії. Крім того, розподільча функція була розрахована з рівняння енергії, після чого були отримані 
інші теплові властивості, такі як середня енергія, вільна енергія, ентропія та питома теплоємність. Отримані результати 
показали покращення порівняно з роботами інших дослідників і чудово узгоджувалися з експериментальними даними. 
Ключові слова: рівняння Шредінгера; метод Нікіфорова-Уварова; потенціал Екарта-Гельмана; важкі мезони; теплові 
властивості 




