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The paper presents the results of the study of slow surface electromagnetic waves directed along the flat mu-negative metamaterial
slab surrounded by ordinary dielectric material. It is considered the case of isotropic and homogeneous metamaterial without losses.
This metamaterial possesses the positive permittivity and the negative permeability over a definite frequency band. It is found that
two surface modes of TE polarization can propagate along such waveguide structure. The dispersion properties, the spatial
distribution of the electromagnetic field, as well as the phase and group velocities of these slow modes are studied. The first mode is
a conventional forward wave, and has a lower frequency and lower phase velocity than the second mode. The second mode may have
zero group velocity at a certain frequency. Characteristics of these surface modes for different values of the mu-negative slab
parameters have been studied. The studied surface electromagnetic waves can be used for practical applications as in laboratory
experiments, as in various technologies.
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In recent years it was carried out the intensive study of the artificially created materials with special extraordinary
electromagnetic properties — so called metamaterials. Such metamaterials are the innovative composite materials that
consist of artificially constructed periodical structure of small-size units that play the role of atoms for electromagnetic
waves. The main aim of creation of such innovation is to get definite combinations of electromagnetic characteristics
that do not occur in nature. Firstly, the main attention of researches was paid to the double negative (so-called left-
handed) metamaterials, with simultaneously negative value of permittivity and permeability [1,2]. These left-handed
metamaterials are mainly interested with the possibility of realizing a negative refractive index for the creation of ideal
lenses and other devices which contain such metamaterials [3-9]. Next, for these purposes there were also created
mono-negative metamaterials, for example, with positive permittivity and negative permeability values — so called mu-
negative metamaterials [10,11]. No doubt that creating such mono-negative metamaterials is easier in comparison with
double-negative ones [2]. Just now it was found that along the interface between a medium with negative permeability
and vacuum the surface electromagnetic waves can propagate [11]. The real devices are spatially bounded, so it is
necessary to study the electrodynamic properties of the waveguide structure with flat mu-negative metamaterial slab
surrounded by ordinary dielectric material. In this paper we represent a new surface electromagnetic eigenmodes that
can propagate along such waveguide structure.

TASK SETTINGS
Let us study the electrodynamic properties of waveguide structure that is composed of mu-negative metamaterial
layer with thickness d with negative permeability u(®)<0 and constant positive permittivity . The coordinate axis

X is directed along this slab (Fig. 1).
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Figure 1. The geometry of problem

This metamaterial slab in immersed into ordinary unbounded dielectric without losses with permittivity ¢, and

permeability ;. Further study was carried out for the waveguide structure with permittivity ¢ =1, and permeability
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H(w) that depends on the circular wave frequency @ according to the following law, which is in accordance with the
experimental data [10]

Fo'’
wo)=1-————, )
W —a,

0
where @, — is the characteristic frequency of the metamaterial and in our case @,/27x =4ITn; the parameter

F=056.

Let study slow electromagnetic waves, that propagate along flat waveguide structure in the direction of the Z axis
(Fig. 1). It was assumed that the wave disturbances exponentially tend to zero far away from both boundaries. The
dependence of the wave components on time t and coordinates x and z are expressed the following form:

E,H « E(x), H(x)expli(kyz — wr)], ©)

here z lies at the separation plane, and x is the coordinate rectangular to the wave propagation direction and k, — is the
longitudinal wavenumber.

In the considered case it is possible to split the system of Maxwell equations in to two sub-systems. One of them
describes TE-waves and another — TM- waves.

Let us find the solution of the Maxwell system of equations for TE-wave that satisfy the boundary conditions at
the interface between the metamaterial and the dielectric. As a result, one can obtain the wave field components and the
dispersion equation of the eigen electromagnetic E-wave (TM-wave) of the considered planar structure.

The wave field components of the E-wave in the dielectric region x <0 can be written as:

H (x)=H (0)e"",
E (x)= H},(O)k3eh”c / (g, ), 3)
E.(x)=iH (0)h,e""c/(s, w),

where ¢ —is speed of light in vacuum.

The wave field components of the E-wave in the metamaterial region 0<x <d can be found in the following
form:

H, (x) =H, (0) cosh(/(x)-l,-hdth(Kx)}

&K
E, (x)=H,(0) g;k;w[gd/( cosh(xx)+h,e sinh(xx)], 4)
E_(x)=H (0) &:"ja) [ h,e cosh(xx)+e,xc sinh(kx)].

The wave field components of the E-wave (TM-wave) in the dielectric region x >d may be expressed as:

Ho(x)=H (O)e”“(_“d) e,k cosh(kd)+hye sinh(xd)
Y g &K '
E (x)=H, (())Czie”"("”d) [&,x cosh(Kkd)+he sinh(xd)], Q)
" ek
E (x)=-H, (O)ifieh“(_”d) [ &,k cosh(wd)+h,e sinh(xd)].
N e ke

The dispersion equation for the E-wave (TM-wave) has the following form:

2h,e, Kk cosh(/(d)Jr(hjg2 +gjic2) sinh(kd)=0, (6)

where h, = h,(k,,w)=+lki —&,-u, - k> — is transversal wave number in dielectric region, k = @/c — the wavenumber
in vacuum; « = x(k;,w) = \k; —&- u(w)-k> — the transversal wavenumber in metamaterial.

Analogous computations for TM- wave leads to the equations for the wave field components and the dispersion
equation of the eigen electromagnetic H-wave (TE-wave) of the considered flat waveguide structure.
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The wave field components of the electromagnetic H-wave (TE-wave) in dielectric region x <0 may be written as:
E (x)=E (0)e"",
H (x)= —E},(O)clgeh” /(u, o), @)
H.(x)=—i Ey(O)chdeh” 1 (u, ).

The wave field components of the electromagnetic H-wave (TE-wave) in metamaterial region 0< x <d has the
following form:

hyx h M Slnh(l(x)
E,(x)=E,(0)" Cosh(,(x)“—}

HyK
H (x)=-E,(0) K;f p, [k, cosh(kx)+h,u sinh(xx)], (®)
d
ic

H. (x)=-E,(0) [ uh, cosh(xx)+xu, sinh(xx)].

@

The wave field components of the electromagnetic H-wave (TE-wave) in dielectric region x >d can be written as:

Kty cosh(xd)+h,u sinh(xd)

E, (x)= E, (0) i+ [ x ,
d

ck,
K1 @

H, (x) =-E, (0) gli(+d) [Kﬂd cosh(l(d)+hd U sinh(lcd)], 9)

ich,

H_ (x)=E,(0) eh”(fwd)[lc,ud cosh(xd)+h, p sinh(xd)].

K o
The dispersion equation for the electromagnetic H-wave (TE-wave) can be written in the following form

2h, K, cosh(xd) Jr(hj,u2 +K7 4 ) sinh(xd)=0. (10)

RESULTS AND DISCUSSION
Let study the properties of the waves that govern by the dispersion equations (6, 10) for the arbitrary set of
parameters. It was shown that in the frequency range when the metamaterial is mu-negative the equation for the TM-
wave (6) has no solutions and only the equation (10) for TE-wave has the solutions. To study the properties of these
solutions let us introduce the following dimensionless quantities: the normalized circular frequency Q=w/w,,

normalized wavenumber [ = k,c/ @, and normalized thickness of the metamaterial layer A=d @, /c .

The solutions of the dispersion equation (10) for the TE modes for the such set of parameters: ¢ =1, ¢, =1,
u, =1, A=0.4 (the case of thin metamaterial slab) are presented at Fig. 2, 3. It was found that the dispersion equation
(10) possesses two eigen solutions that are shown at Fig. 2.
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Figure 2. The solution of the dispersion equation (10) for  Figure 3. The group V,, and phase ¥, normalized velocities of

TE-modes for &=1,¢,=1,4,=1, A=04. The TE modes presented on the Figure 2. The parameters set and curve
curves marked by the numbers 1 and 2 corresponds to the numbering are the same as for the Figure 2.

two eigenmodes of waveguide structure. Line marked by

the letter ‘s’ corresponds to the eigen wave of the

simplified model, presented in [12].
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The presented solutions (eigenmodes of TE-type) of the dispersion equation (10) for the studied model are marked
by the numbers 1 and 2. The line, marked by the letter ‘s’ corresponds to the single eigenwave of the simplified
waveguide model, presented in [12] under the same parameter set. The further analysis has shown that this solution for
the simplified model corresponds to the low frequency solution (curve 1) for the model considered.

The mutual location of the dispersion curves 1 and 2 in Fig. 2 indicates the existence of three different regions of the
frequency interval. In the Fig. 2 these regions are separated from each other by the dashed horizontal lines. In the first
frequency region 1.04 < Q <1.13 two modes of TE-type that corresponds to different solutions of the dispersion equation
(10) with the same frequency can simultaneously propagate in the considered flat bounded structure. In the second
frequency region 1.13<Q <1.215 the excitation of only one mode that corresponds to the solution 2 with harmonic
spatial dependence is possible. Finally, in the third frequency region 1.215 < Q <1.243, the propagation of two harmonic
waves that corresponds to the solution 2 with the same frequency, but with different wavelengths takes place.

Figure 3 presents the dependence of the group V,, =c'd w/d k, and phase V,,=o/(ksc) normalized velocities for

two eigen TE-modes upon the normalized frequency Q . The parameters set and curve numbering are the same as for the
Figure 2. One can see the analogous to Figure 2 three frequency regions that are separated from each other by the dashed
vertical lines in Fig. 3. In the first frequency region 1.04 < Q2 <1.13 one can observe two slow modes that simultaneously
propagate in the considered flat structure with the same frequency. These two modes possess group and phase velocities
that coincide in direction but have different values, respectively. In the second frequency range 1.13 <Q <1.215 it is
possible the excitation of slow mode 2 only. The phase velocity of this wave is about 0.9 of the speed of light, and its
group velocity decreases with the frequency increase from 0.5¢ down to 0.2¢ according to an almost linear law. In the
third frequency region 1.215 < Q <1.243 one can observe the propagation of two harmonic waves of the mode 2 with the
same frequency but different wavelengths. The group velocities of these waves are of different signs.

The spatial wave field structure of such waves is presented in Figs. 4, 5. The calculations are carried out for the
same parameters set as for the Figs. 2,3: e=1, ¢, =1, u, =1, A=0.4. The wave field components, normalized by

the £, (0) are calculated for £ =4 and obtained from the dispersion equation (10) eigen frequency value Q =1.1288
for the mode 1 (see Fig. 4), and for the Q2 =1.21496 for the mode 2 (see Fig. 5).
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Figure 4. The wave field components normalized on the E ) (0) Figure 5. The wave field components normalized on the E ) (0)
for the mode 1 in the Fig. 2. The parameters set are the same as  for the mode 2 in the Fig. 2. The parameters set are the same as

was used for the Fig. 2. The wave field structure is calculated for was used for the Fig. 2. The wave field structure is calculated for
P =4 and eigen wave frequency Q =1.1288. f =4 and eigen wave frequency Q =1.21496.

The solutions of the dispersion equation (10) in the case of rather thick metamaterial slab for the TE modes for the
such set of parameters: ¢ =1, ¢, =1, y, =1, A=0.8 are presented at Fig. 6, 7. The numbering of the curve are the

same as for the Fig. 2.

The increase of the metamaterial layer thickness leads to the gradually convergence of the both curves 1 and 2 to
each other, and to the solution of the simplified waveguide model, presented in [12] under the same parameter set (see
Fig. 8). This figure presents the variation of the wave eigen frequency € obtained due to the solution of the dispersion
equation (10) when =1, g, =1, u, =1 for =4 while normalized metamaterial slab thickness varies from A =0.4
upto A=0.8.

Also, the increase of metamaterial thickness A leads to the frequency ranges change. So, for the increase of A
from 0.4 up to 0.8 results in the increase of the first frequency range and the decrease of the second, and especially third
frequency ranges where the only wave 2 can exist (see Fig. 6). The region where the TE mode 2 has negative group
frequency value became extremely small (see Fig. 7). So, one can effectively control the propagation properties of TE
modes due to the variation of metamaterial slab thickness.
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The wave spatial wave structure for the mode 2 for the parameters set analogous to that of Fig. 6 for the region,
where wave group velocity tends to zero: V,, ~0 (S ~2.804, Q~1.178) is presented at Fig. 8. This wave is of a

surface wavy type and can be treated as the standing wave due to superposition of two TE type 2 modes that have equal
both frequencies and wavenumber but propagate in opposite directions.
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Figure 7. The group Vg,, and phase Vph normalized velocities of

TE modes presented on the Figure 6. The parameters set and
curve numbering are the same as for the Figure 6

Figure 6. The solution of the dispersion equation (10) for
TE-modes for ¢ =1,¢, =1, u, =1, A=0.8. The curves
marked by the numbers 1 and 2 corresponds to the two
eigenmodes of waveguide structure.
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Figure 9. The wave field components normalized on the Ey(O)

for the mode 2 in the Fig. 6. The parameters set are the same as
was used for the Fig. 6. The wave field structure is calculated for

the region when ¥, ~0 (f~2.804, Q~1.178).

Figure 8. The variation of the normalized wave eigen
frequency (2 obtained due to the solution of the dispersion

equation (10) when € =1, &, =1, pu, =1 for f=4.

125715
2.1
24
___________________________ 1.4
sl W T
I 1.2
1.1
1.10
1.05 4
B
1.00 105 110 115 120  1.25

1.0 15 20 25 30 35 40

Figure 10. The solution of the dispersion equation (10) for  Figure 11. The group V,. and phase V,, normalized velocities
TE-modes for £=1,¢, =1, p, =1. The curves marked by of TE-modes presented on the Figure 10. The parameters set and

the numbers 1 and 2 before point corresponds to the two  curve numbering are the same as for the Figure 10.

eigenmodes of waveguide structure. The numbers after the
point corresponds to different A value: 1 — 0.4, 2 — 0.5,
3-0.6, 4 — 0.8. Dashed curve corresponds to the eigen wave

of the simplified model, presented in [12].
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The dependence of the normalized frequency 2 of the eigen TE waves of the considered structure versus
normalized wavenumber S for £=1,¢, =1, p, =1. The curves marked by the numbers 1 and 2 before point

corresponds to the first and second eigenwaves of waveguide structure. The numbers after the point corresponds to
different A value: 1 — A=04,2— A=05,3— A=0.6,4— A=0.8. Dashed curve corresponds to the eigen wave of
the simplified model, presented in [12]. It is shown, how gradually increase of metamaterial slab thickness leads to the
appropriate convergence of two eigen modes of the considered waveguide structure to the eigen wave of the simplified
model, presented in [12] for the same parameter set. It is necessary to mention the possibility of the effective control of
the frequency ranges where two or only one eigen mode of the considered waveguide structure exist due to the
appropriative choice of the metamaterial slab thickness.
The dependence of the group V, and phase V,

ph
normalized frequency Q for the same parameter set as for the Fig. 10 is presented in the Fig. 11.

The numbering of the curve is the same as for the Fig. 10. It is shown that due to variation of the metamaterial slab
thickness it is possible to manage of the frequency region size where the mode that propagates along the considered
structure is single and possess the negative group velocity.

normalized velocities for two eigen TE-modes versus the
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Figure 12. The dependence of the eigen TE wave normalized frequency Q2 when £ =1, u, =1, A=0.4

for =4 versus the &, value

The dependence of the obtained solutions of the dispersion equation (10) upon the permittivity constant of
ordinary dielectric &, for the following parameter set ¢ =1, 1, =1, A=0.4 and for f =4 is presented at the Fig. 12.

It is obtained that the increase of the &, parameter leads to the slight decrease of the wave frequency Q for both
modes.
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Figure 13. The solution of the dispersion equation (10) for  Figure 14. The group V,. and phase V,, normalized velocities of

TE-modes for &=1, u,=1, A=04. The curves TE modes presented on the Figure 13. The parameters set and

marked by the numbers 1 and 2 before point corresponds to  curve numbering are the same as for the Figure 13.
the two eigenmodes of waveguide structure. The numbers

after the point corresponds to different &, value.

The detailed analysis of the impact of the ¢, parameter on the dispersion properties of the TE eigen waves on the

waveguide considered is presented in Fig. 13. The calculations were made for the following problem parameter set:
e=1, u, =1, A=0.4. The curves marked by the numbers 1 and 2 before the point corresponds to the first and second

eigenwaves of waveguide structure. The numbers after the point corresponds to solutions for different &, value:
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1-¢,=1,2-5,=2,3-¢,=3,4-¢g,=4.1Itis shown, that the increase of the ¢, value results to the decrease and

even to the disappearance of the third, most high-frequency region of the frequency interval. At the same time the first
and the second frequency regions, where two eigen TE modes and one eigen TE mode waveguide structure can exist,
respectively, stay almost unchangeable. Also, the increase of the ¢, value leads to the essential decrease of the

maximum value of the wavelength of the surface modes that can propagate in this structure (see Fig. 13).
The dependence of the group V, and phase ¥, velocities for two eigen TE-modes versus the normalized

frequency Q for the same parameter set as for the Fig. 13 is presented in the Fig. 14. The numbering of the curve is the
same as for the Fig. 13. It is shown, that changing the ¢, parameter value leads to the substantial decrease of phase and

group velocities of the mode 2 and of the phase velocity of mode 1 (Fig. 14). The group velocity of the mode 1 remains
practically unchanged. It is necessary to mention that due to changing ¢, value one can effectively control the size of

the frequency region where the single mode 2 possesses negative group velocity (see Fig. 14).

CONCLUSION

It was studied the peculiarities of propagation of slow surface electromagnetic waves directed along the flat mu-
negative lossless metamaterial slab surrounded by the ordinary dielectric material. It was found that two
electromagnetic surface modes of TE can propagate at the interface between the mu-negative metamaterial layer and a
conventional dielectric. It was studied the dispersion properties, spatial distribution of electric and magnetic field
amplitudes of these eigenwaves of the considered structure for different problem parameters. It is necessary to mention
the existence of new mode, as compared with previously studied simplified model [9]. This new mode can propagate in
one mode regime and possesses the frequency range where its group velocity has a negative value. It was found that due
to variation or metamaterial slab thickness, or ¢, parameter value one can effectively control the size of the frequency

region where this single mode possesses negative group velocity. The obtained results can be useful for both modeling
and manufacturing of modern devices based on metamaterials.
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MNOBLJIBHI HOBEPXHEBI BJIACHI MO/JIM, 11O MNOIINPIOIOTHCS B310OBX
HIAPY MIO-HEI'ATUBHOI'O METAMATEPIAJTY
B.K. l'anaiinuny, O.€. Cnopos, B.I1. Ouedip, M.O. AzapenkoB
Xaprxiecvkutl HayionanbHutl yrieepcumem imeni B.H. Kapasina
VYxpaina, Xapris, nn. Ceoboou, 4

VY crarTi HaBeIEHO PE3yJbTATH JOCIHIDKEHHS MOBUIBHUX NMOBEPXHEBHX CJICKTPOMATHITHHX XBHJIb, CIPIMOBAHHMX Y3[JOBXK ILIOCKOI
MIO-HETaTUBHOI INIACTHHU MeTaMaTrepially, OTOUYCHOI 3BHYAaiHUM JIieTIEKTPUYHUM MaTtepianoM. PosrisiaeTsest BUIIaI0K i30TPOITHOTO
i omHOpigHOrO Meramarepianmy Oe3 BTpar. lleli meramarepianm Mae JOJATHIO €NEKTPHYHY Ta BiJl’€MHY MarHiTHY HPOHHKHOCTI y
MIEBHOMY Jiana3oHi 4acToT. BCTaHOBIEHO, IO B3IOBXK TAaKOi XBUIICBIAHOI CTPYKTYPH MOXYTH IOIIMPIOBATHCS JBi MTOBEPXHEBI MOAU
TE nomspu3zamii. JocmifmkeHo AnCIIepCiiiHI BIACTHBOCTI, MPOCTOPOBUH PO3MOALT €IEKTPOMATHITHOTO MOJISL, a TakoX (a3oBi Ta
IPYNOBI MIBUAKOCTI IMX MOBUIBHHUX Mox. Ilepmia Mona € 3BHYAifHOIO NMPSMOIO XBHIICIO 1 Mae HIDKUY YacTOTy Ta MeEHIIy (a3oBy
HMIBUJKICTB, HDK Jpyra Mmozaa. [lpyra Moma MoXe MaTH HyJIbOBY TpYNOBY LIBHAKICTH Ha NeBHiM dacrori. JlociimkeHo
XapaKTepHCTUKH LUX ITOBEPXHEBHX MOJ Ul PI3HHX 3HAa4YeHb MapaMeTpiB LIapy MIO-HEraTUBHOrO Meramarepiaiy. JlocmimkyBaHi
TIOBEPXHEBI EJIEKTPOMATHITHI XBHJII MOXKYTh OyTH BUKOPHCTaHI K B JaOOPaTOPHUX EKCIIEPHMEHTAX, TaK 1 B Pi3HUX TEXHOJOTIsX.
KirouoBi ciioBa: Mio-HeraTMBHHII MeTamarepiai; eJNeKTpOMarHiTHa I[IOBEpPXHEBA XBHJISL, MUCIEPCiHHI BIACTHBOCTI XBUII;
IIPOCTOPOBA CTPYKTYPa MOJH





